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Abstract: Three methods to estimate the presence of ground surface stones from publicly available
Airborne Laser Scanning (ALS) point clouds are presented. The first method approximates the
local curvature by local linear multi-scale fitting, and the second method uses Discrete-Differential
Gaussian curvature based on the ground surface triangulation. The third baseline method applies
Laplace filtering to Digital Elevation Model (DEM) in a 2 m regular grid data. All methods produce
an approximate Gaussian curvature distribution which is then vectorized and classified by logistic
regression. Two training data sets consisted of 88 and 674 polygons of mass-flow deposits, respectively.
The locality of the polygon samples is a sparse canopy boreal forest, where the density of ALS
ground returns is sufficiently high to reveal information about terrain micro-topography. The surface
stoniness of each polygon sample was categorized for supervised learning by expert observation on
the site. The leave-pair-out (L2O) cross-validation of the local linear fit method results in the area
under curve AUC = 0.74 and AUC = 0.85 on two data sets, respectively. This performance can be
expected to suit real world applications such as detecting coarse-grained sediments for infrastructure
construction. A wall-to-wall predictor based on the study was demonstrated.

Keywords: aerial laser scan; point cloud; digital elevation model; logistic regression; stoniness;
natural resources; micro-topography; Gaussian curvature

1. Introduction

There is an increased attention towards classification of the small scale patterns of terrain surface.
Recognition of micro-topography may help in arctic infrastructure planning [1], terrain trafficability
prediction [2], in hydraulic modeling [3], and in detecting geomorphologic features like in [3,4], and
terrain analysis and modelling.

In Finland, a nationwide airborne light detection and ranging (LiDAR) mapping program has
provided the means for detecting ground objects with the ground return density ρ ≈ 0.8 m−2. Since one
needs at least one point per stone, and to define the stone radius one needs at least 4 points per stone,
this leads to an absolute theoretical detection limit of stone radius rmin = 0.6...1.2 m. The real limit
is naturally somewhat higher. The actual stone sizes fall into this critical range (as discussed in
Section 2.2) making the stoniness detection a difficult problem.
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One aspect of the ground surface is the presence of stones and boulders, which can be
characterized by the stone coverage and by stone size distribution. Mass-flow deposits are recognized
by irregular distribution of boulders and stones on their surface. Mass-flow deposits may have regional
significance in aggregate production if they occur in fields as they do in the Kemijärvi region in Finland.
Mass-flow sediments are often moderately sorted sediments with low fine grained fraction (clay and
silt content, <0.006 mm) being less than 12 % [5]. In addition they contain boulders and stones in
their sediments which may be crushed for aggregates. Therefore, they are potential aggregates for
infrastructure construction. Mass-flow deposits can be detected in a two-step process: First candidate
polygons are found by analyzing geomorphological features in a process which can be automated,
then surface stone detection based on airborne LiDAR data is performed to limit the set of candidates.
Various other geomorphological features like paleolandslides [6], fluvial point bars [7], neotectonic
faults [3] and Pulju moraines [8] in Finland and several other types of glacial landforms elsewhere (see
summary in [9]) have already been mapped using LiDAR data.

The intent of this paper is to document various methods, which analyze airborne laser scanning
data (ALS) or digital elevation model (DEM) to detect stony areas. Our hypothesis is that a direct
approach may be able to detect a signal of a target feature like stoniness better than methods using
DEM. This is because DEM is a general smoothed representation of the ground surface for generic
purposes [10]. This paper focuses on binary classification of the stoniness of sample areas. The approach
results in a classifier, which is subjected to 20 m× 20 m point cloud patches to produce a binary mask
about stoniness covering whole Northern Finland. Stoniness is just one example of micro-topographic
features, which could be detected from public ALS data. Even the positive samples of the data sets
focus on stony mass-flow deposits, algorithms are developed for general stoniness detection, which
can be later targeted to various specific purposes depending on the available teaching data. It is our
hope that the research community finds our results and methods useful in the future.

This paper is an expansion of [11], which studied only one polygon set data2014 using curvature
estimation based on local linear fit (LLC). In comparison to [11], this paper uses an additional data set
data2015, additional public DEM data format and two additional methods: local curvature estimation
based on triangulated surface model computed from LiDAR (LTC) and Laplace filtering of a DEM grid
(DEC). LTC uses triangulated irregular network (TIN) produced by a solid angle filtering (SAF). An
overview of the relation of computational methods and various data formats can be seen in Figure 1.
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Figure 1. The process flow, methods covered in this paper are highlighted. Data formats: (1) 2 m
raster; (2) point cloud; (3) task-specific TIN model; (4) curvature value sets; (5) sample vectors. LLC
can optionally use either original point cloud (2) or vertex points (3) produced by SAF TIN model.
Wall-to-wall classification is a possibility provided by the resulting binary classifier.
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The structure of the paper is as follows: a summary of current research applicable to
micro-topographic feature detection is in Section 1. Data sets and data formats are explained in
Section 2.2. The solid angle filtering (SAF) can be used by two presented methods, it has been
described in Section 2.4. Three methods are documented in Sections 2.5–2.7. Methods are compared in
Section 3. Possible improvements are discussed in Section 4 and further application areas considered
in Section 5.

Current Research

A good presentation of general-purpose ALS classification is in [12]. Our work relates to
some of the contour and TIN -based ground filtering algorithms mentioned in [13], since all of
our methods either directly or indirectly use or produce a tailor-made ground model. Methods
described in [13] are usually more generic accommodating to infrastructure signatures etc. It is
possible, that methods described in our paper have to be combined with existing generic ground model
algorithms, where an assembly of methods would use e.g., a voting arrangement at the approximity of
constructed environment.

Solid angle filtering (SAF) in Section 2.4 resembles the despike algorithm presented in [14].
Two problems are mentioned in [14]: Unnecessary corner removals (rounding off the vertices of e.g.,
block-like structures) and effects of negative blunders (false points dramatically below the real surface
level). Our routine was specifically designed to eliminate these problems. SAF can also be used
in canopy removal. An interesting new technique in limiting the ground return points is min-cut
based segmentation of k-nearest neighbors graph (k-NNG) [15]. The graph is fast to compute with
space partitioning, and it could have served as a basis for stoniness analysis directly e.g., by fast local
principal components analysis (PCA) and local normal estimation with vector voting procedure, as
in [16]. The literature focuses mostly on laser clouds of technological environment, where the problem
of eliminating the canopy (noise) and finding the ground returns (a smooth technical surface) are
not combined. Our experiments with local normal approximation and vector voting were inferior to
results presented in this paper. There is great potential in local analysis based on k-NNG, though.

There seems to be no research concerning the application of ALS data to stoniness detection
in forest areas. Usually target areas have no tree cover [17], objects are elongated (walls, ditches,
archaeological road tracks, etc.) [17,18] and often multi-source data like photogrammetry or
wide-spectrum tools are used. curbstones which separate the pavement and road in [18]. Their data
has the sample density ρ = 5/ m2 which produces geometric error of size 0.3 m which is larger than the
observed shapes (curbstones) and thus not practical. Effects of foliage and woody debris are discussed
in [19]. They mention that even a high-density ALS campaign is not able to get a dense sampling of
the ground surface in a non-boreal forest (Pennsylvania, U.S.). They reported ground return ratio is
40% with the ground sample density ρ = 4/ m2, which is much higher than ρ ≈ 0.8/ m2 in our study.
The distribution of the local ground sample density was not reported in [19] but is probably much
higher than in our case.

DEM in Figure 1) is a standard data type used by geographic information systems (GIS).
Many implementations and heuristics exist (see e.g., [20]) to form DEM from ALS format .las defined
by [21]. Usually, the smallest raster grid size is dictated by the sample density and in this case DEM
grid size δ = 2 m is possible, and δ = 1 m already suffers from numerical instability and noise.

A rare reference to DEM based detection of a relatively small local ground feature (cave openings)
in forest circumstances is presented in [22]. In that paper the target usually is at least partially exposed
from canopy and the cave opening is more than 5 m in diameter. On the other hand, the forest canopy
was denser than at our site in general. Another application is detecting karst depressions, where slope
histograms [23] and local sink depth [24] were used to detect karst depressions. There are similarities
with our study, e.g., application of several computational steps and tuning of critical parameters
(e.g., the depression depth limit in [23]), although the horizontal micro-topology feature size is much
larger than in our study (diameter of doline depressions is 10–200 m vs. 1.5–6 m diameter of stones in
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our study). The vertical height differences are at the same range, 0.5–1.5 m in our study and in [23,24],
though. A similar study of [25] uses higher density LiDAR data with ρ = 30 m−2 to detect karst
depressions of size 26 m and more. The vertical height difference (depth) was considerably larger
than in in [23,24]. The high density point cloud and a carefully designed multi-step process results
in quantitative analysis of sinkholes in [25], unlike in our study, where the stoniness likelihood of a
binary classifier is the only output.

One reference [19] lists several alternative LiDAR based DEM features, which could be used
in stone detection, too. These include fractal dimension, curvature eigenvectors, and analyzing
variograms generated locally over multiple scales. Some of the features are common in GIS software,
but most should be implemented for stoniness detection.

Hough method adapted to finding hemispherical objects is considerably slower than previous
ones, although there is a recent publication about various possible optimizations, see e.g., [26].
These optimizations are mainly about better spatial partitioning.

Minimum description length (MDL) is presented in [27] with an application to detect planes
from the point cloud. The approach is very basic, but can be modified to detect spherical gaps rather
easily. MDL formalism can provide a choice between two hypotheses: a plain spot/a spot with a stone.
Currently, there is no cloud point set with individual stones tagged to train a method based on MDL.
MDL formalism could have been used without such an annotated data set, but we left this approach
for further study. In addition, probably at least 4..8 returns per stone is needed and thus a higher
ground return density than is currently available.

This paper presents two methods based on ALS data and one method using DEM and acting as a
baseline method. The DEM method was designed according to the following considerations: It has to
be easy to integrate to GIS and it would start from a DEM raster file, then generate one or many texture
features for the segmentation phase. The possible texture features for this approach are the following:

• local height difference, see Laplace filtering Section 2.7. This feature was chosen as the
baseline method since it is a typical and straightforward GIS technique for a problem like
stoniness detection.

• various roughness measures, e.g., rugosity (related trigonometrically to the average slope), local
curvature, standard deviation of slope, standard deviation of curvature, mount leveling metric
(opposite to a pit fill metric mentioned in [19]).

• multiscale curvature presented in [28]. It is used for dividing the point cloud to ground and
non-ground returns, but could be modified to bring both texture information and curvature
distribution information. The latter could then be used for the stoninesss prediction like in this
study. The methods, possibly excluding interpolation based on TIN, seem to be numerically more
costly than our approach.

Possible GIS -integrated texture segmentation methods would be heavily influenced on the choices
made above. Most of the features listed are standard tools in GIS systems or can be implemented
by minimal coding. An example is application of the so called mount leveling metric to stoniness
detection, which would require negating the height parameter at one procedure.

Terrain roughness studied in [19] is a concept which is close to stoniness. Authors mention that
the point density increase from ρ = 0.7/m2 to ρ = 10/m2 did not improve the terrain roughness
observations considerably. This is understandable since the vertical error of the surface signal is at the
same range as the average nearest point distance of the latter data set. The paper states that algorithms
producing the terrain roughness feature have importance to success. This led us to experiment with
various new algorithms.

Point cloud features based on neighborhoods of variable size are experimented with in [29].
Many texture recognition problems are sensitive to the raster scale used, thus we tested a combination
of many scales, too. According to [16], curvature estimation on triangulated surfaces can be divided to
three main approaches:
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• surface fitting methods: a parametric surface is fitted to data. Our local linear fit LLC falls on this
category, yet does not necessarily require triangularization as a preliminary step.

• total curvature methods: curvature approximant is derived as a function of location. Our local
triangular curvature LTC is of this category of methods.

• curve fitting methods.

LLC has a performance bottleneck in local linear fit procedure described in Section 2.5.
This problem has been addressed recently in [30], where an algebraic-symbolic method is used
to solve a set of total least squares problems with Gaussian error distribution in a parallelizable and
efficient way. That method would require modification and experimentations with e.g., a gamma
distributed error term due to asymmetric vegetation and canopy returns.

The vector voting method presented in [16] decreases noise and achieves good approximative
surface normals for symmetrically noisy data sets of point clouds of technological targets. Our target
cloud has asymmetrical noise (vegetation returns are always above the ground), and returns under
the ground (e.g., reflection errors) are extremely rare. Usually vector voting methods are used in
image processing. They are based on triangular neighborhood and any similarity measure between
vertices, focusing signal to fewer points and making it sometimes easier to detect. Neighborhood
voting possibilities are being discussed int Section 4.

General references of available curvature tensor approximation methods in case of triangulated
surfaces are [31,32]. A derivation of Gaussian curvature κG and mean curvature κH is in [33]:

κG = κ1κ2 (1)

κH = (κ1 + κ2)/2, (2)

where κl , l ∈ {1, 2} are the two eigenvalues of the curvature tensor. Perhaps the best theoretical
overview of general concepts involved in curvature approximation on discrete surfaces based on
discrete differential geometry (DDG) is [34].

We experimented with methods which can produce both mean and Gaussian curvatures, giving
access to curvature eigenvalues and eigenvectors. Our experiments failed since the mean curvature κH
seems to be very noise-sensitive to compute and would require a special noise filtering post-processing
step. Difficulties in estimating the mean curvature from a noisy data have been widely noted, see
e.g., [29].

In comparison to previous references, this paper is an independent study based on the following
facts: point cloud density is low relative to the field objects of interest (stones), ratio of ground returns
amongst the point cloud is high providing relatively even coverage of the ground, a direct approach
without texture methods based on regular grids was preferred, individual stones are not tagged in
the test data, and the methods are for a single focused application. Furthermore, we wanted to avoid
complexities of segmentation-based filtering described in [35] and the method parameters had to be
tunable by cross-validation approach.

2. Materials and Methods

Test data is presented in Section 2.2. It is available online, details are at the end of this paper.
Figure 1 presents the process flow of stone detection. Two data sources at left are introduced in

Section 2.2, tested methods (DEC, LLC, LTC) are detailed in Sections 2.5–2.7. The vectorization of
samples varies depending on the method in question, details can be found in Section 2.8. The solid
angle filtering SAF of Section 2.4 is a necessary preprocessing step for LTC, but could be used also
before LLC for computational gain.

2.1. Study Area

The study area is a rectangle of 1080 km2 located in the Kemijärvi municipality, in Finnish
Lapland, see Figure 2. The 675 sample polygons cover approx. 10.7 km2 of the area. Mass-flow
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sediment fields such as the Kemijärvi field, have regional significance for aggregate production as
there is an abundance of closely spaced mass-flow formations within a relatively short distance from
the road network.

Figure 2. Upper left: The site near Kemijärvi Finland. The research area covered by 120 open data .las
files covering 1080 km2. Upper right: the relative location of sample polygons. Amount of sample
sets in parenthesis. Lower left: A view of a sample site in boreal forest. Lower right: approximately
the same view as at lower left after solid angle filtering (see Section 2.4) of the point cloud. The stone
formation has been circled. Location is at UTM map T5212C3, polygon 11240.

2.2. Materials

Table 1 gives a short summary of the data sets: the first set data2014 is rather small with
positive samples occupied by large boulders. The second set data2015 has an imbalance of many
positive samples with smaller stones vs. fewer negative samples. Data sets are depicted in Figure 2.
The acquisition of data sets differ: the classification of data2014 was based on cumulated field
photographs and the land survey annotations of the general topographic map (stone landmarks).
There is no stone size distribution data available for data2014, though. The set data2015 was classified
and the approximative stone size and coverage statistics recorded by a geology expert. The second
data set seems to present more difficult classification task—the areas are more varied and stone size
probably smaller than in the first set. The advantage of having two data sets of different origin is that
the resilience and generality of the methods can be better asserted.

Table 1. Some characteristics of the two data sets.

Data Set Stony Samples Area km2 Non-Stony Samples Area km2 Acquisition

data2014 56 1.7 49 1.7 cumulated observations
data2015 471 4.7 204 6.0 field campaign

The data preprocessing consists of the following three steps:
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1. All hummocky landforms (i.e., hills) with a convex topographic form were delineated from the
ALS derived digital elevation model and its tilt derivative with an Object-Based Image Analysis
algorithm developed in eCognition software, see [1]. This step produced data2014 and data2015
polygon sets ( see Table 1 and Figure 2).

2. A 10 m× 10 m space partitioning grid was used to cut both the point cloud (ALS) and DEM to
polygon samples.

3. Point cloud was cut to 2 m height from initial approximate ground level. The mode of heights in
2 m× 2 m partitions was used as the ground level.

ALS LiDAR data was produced by National Land Survey (NLS) (NLS laser data: http://www.
maanmittauslaitos.fi/en/maps-5) in fall 2012 with a Leica ALS50-II laser scanner (Leica Geosystems,
St. Gallen, Switzerland), the flight altitude was 2000 m. Last-return data has approx. 0.09–0.1 m vertical
ground resolution and average footprint of 0.6 m. ALS data has several additional information fields
per cloud point, see e.g., [21]. We used only x-y-z components of the data. Approximately 25% of
the data are canopy returns, the rest is ground returns. Reflection errors causing outlier points occur
approximately once per 0.5× 106 returns.

DEM data is 2 m regular grid data available from NLS. It is nationwide data aimed for general
purposes (geoengineering, construction industry). Its vertical accuracy is 0.3–1.0 m std. Both ALS
and DEM data were cut to polygon samples by using 10 m× 10 m space partitioning slots. See two
example polygon shapes in Figure 3. The further processing focused only to the point cloud limited by
each polygon sample.
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Figure 3. A stony (upper row) and a non-stony (lower row) sample polygon. Original polygons are
approximated by 10 m× 10 m batches. The ground height (DEM 2 m) and its Laplace discrete operator
signals with 2 m and 4 m radius are depicted. The border noise has been removed from actual analysis.
The 100 m scale is aligned to North.

Stones are bare and the vegetation is thin due to high Northern latitudes.The point cloud on this
site has approx. 25 % returns to forest canopy and approx. 75 % ground returns, so the ground signal
is rather strong. The reflection errors were extremely rare, approx. 1 per 106 returns. Together the
sample sets represent rather well the Kemijärvi study area.

http://www.maanmittauslaitos.fi/en/maps-5
http://www.maanmittauslaitos.fi/en/maps-5
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2.3. Materials online

Sample data sets including some polygon point clouds, DEM data of two map pages, sample
vectors, some field images, SAF algorithm document, a short description of the data set and the
problem are available at: http://users.utu.fi/ptneva/ALS/.

2.4. Solid Angle Filtering (SAF)

The proposed solid angle filtering is a novel method to produce an alternative TIN DEM sensitive
to stones and boulders on the ground. Filtering starts by forming an initial TIN either from a full
point cloud or after an industry standard preliminary canopy and tree point elimination. The cut was
made 2 meters above the local mode of the point cloud height. The 2D projection of TIN satisfies
Delaunay condition at all times during the iterative process of point elimination. The prominent ’pikes’
in the intermediate TIN are removed in random order while the Delaunay triangulation is updated
correspondingly. The implementation requires a dynamical Delaunay algorithm, which facilitates
incremental removal of points. We used an industry standard approach described in [36] with O(k)
computational complexity per removed point, where k stands for the average number of nearest
neighbors of a point.

A second iterative phase removes ‘pits’ in a similar fashion. The prominence of pikes and pits is
measured by solid angle Ωk, which is the spatial angle of the surrounding ground when viewed from
a TIN vertex point pk. Appendix A provides the technical definition of computing Ωk.

Each state of TIN is achieved by dropping one point which fails the following inequality:

Ωmin ≤ Ωk ≤ Ωmax, (3)

where solid angle limits Ωmin = 1.80 sr (steradians) and Ωmax = 12.35 sr correspond to solid angles of
two spherical cones with opening angles 89 ◦ and 330 ◦, respectively. The choice affects the prediction
performance: if both limits are close to a planar situation of Ω ≈ 2π, there is a loss of points. If there
are no limitations (Ωmin ≡ 0, Ωmax = 4π), data is dominated by the noise from canopy and tree
trunks. The solid angle limits were defined by maximizing the Kolmogorov-Smirnov (K-S) test [37]
difference using 95 % confidence limit. Figure 4 depicts the difference between solid angle distributions
at positive and negative sample sets at the choice we made. A pike at approx. 2.5 sr indicates stones.
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Figure 4. The solid angle distribution of positive and negative samples among the data2015 data set.
Averages can be distinguished well but variation among samples is high.

The resulting ground surface triangularization (see lower left part of Figure 2) resembles the end
product of the 3D alpha shape algorithms [38], when alpha shape radius is chosen suitably. It produces
an alternative TIN model which hopefully contains a signal needed in stone detection. In this paper
this method is used as a preprocessing step for LTC method (see Section 2.6) and for LLC method
(see Section 2.5, and Figure 1).

http://users.utu.fi/ptneva/ALS/
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2.5. Curvature Estimation Based on Local Linear Fit (LLC)

LLC method is based on a curvature approximation method described in [33]. The method
requires surface normals to be available at the triangle vertices. LLC provides these normals by a local
linear fit to the point cloud at a regular horizontal grid. Since the resulting curvature function is not
continuous at the border of the triangles, a voting procedure is needed to choose a suitable value for
each grid point.

Finding the local planes is a similar task to finding the moving total least squares (MTLS) model
in [39]. The differences are the following:

• a space partitioning approach is used instead of a radial kernel function to select the participant
points. This is because ground surface can be conveniently space partitioned horizontally unlike
in [39], where the point cloud can have all kinds of surface orientations.

• the point set is not from constructed environment. Canopy returns create a 3D point cloud, thus
the loss function cannot be symmetrical, but must penalize points below the approximate local
ground plane.

The LLC process has 6 steps, which are expounded in Appendix B. Step 1 is cutting the foliage
dominated part of the point cloud, step 2 approximates ground with local linear planes at regular
grid points. Step 3 spans the grid with triangles avoiding spots with missing data. Step 4 defines the
curvature within each triangle. Step 5 combines the curvature values of the neighboring triangles to
each grid point. Step 6 is about forming a histogram over the whole grid of the sample polygon.

LLC is a multi-scale method like [28]. Steps 1 through 6 are repeated with differing grid lengths
δj, j ∈ [1, 6] of the grid, see Table 2. There is a potential danger for overfitting, so the qualities of grid
sizes are discussed here from that point of view.

Table 2. Square grid sizes used in local linear fit of LLC method.

Grid Version 1 2 3 4 5 6

Grid constant δm (m) 1.25 2.0 3.0 4.0 5.0 6.0

The smallest grid size δ1 = 1.25 m has approx. 85 % of the grid slots with only 1 to 3 points
as shown in the left part of Figure 5 and so it represents a practical low limit of the local planar fit.
A practical upper limit is δ6 = 6 m because only the largest boulders get registered on this scale. Such
large boulders are few, as shown in the right part of Figure 5.
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Figure 5. Approximative properties of data2015 data set. Similar qualities of data2014 are not available.
Left: The number of stones at a spatial partition when the partitioning range (the grid size δ) changes.
A sensible approximation of e.g., local ground inclination is possible only when there are at least
3 points per grid square. Right: The difference between positive and negative samples is mainly in
stone size distribution. The practical detection limit in size is approx. 1.0 m.
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2.6. Local Curvature Based on Ground Triangularization (LTC)

The input is a triangulated surface model generated by SAF method described in Section 2.4 and
Figure 1. LTC produces the curvature estimates directly to the vertex points, so local linearization step
3 of the LLC method of Section 2.5 is not needed. Vectorization (step 4 of LLC) has to be done, but
only once, since there are no grids nor multi-grids in this method. The idea is to calculate the value
κk of a Gaussian curvature operator at each ground point pk based on the Gauss-Bonnett theorem as
described in [31].

The right side of the Figure A1 depicts a point pk and its neighboring points pi and pj.
The neighboring triangles Tk of a vertex point k define a so-called spherical excess, which is the
difference between the sum of triangular surface angles βikj and the full planar angle 2π. Now, one
can write an estimator for the Gaussian curvature κk at point pk based solely on local triangularization
formed by the Delaunay process:

βikj = acos(pi − pk, pj − pk)

Ak = ∑t∈Tk
At/3 (4)

κk ≈
(

2π −∑(i,k,j)∈Tk
βikj

)
/Ak, (5)

where βikj is the angle at vertex k in a surface triangle t = (i, k, j) ∈ Tk, acos(., .) is the angle between
two vectors defined in Equation (A1) in Appendix A, and Ak is a characteristic surface area associated
with the vertex k. The characteristic area has been defined approximately by taking one third of the
area At of each adjoining triangle t. There are locally more stable but also more complicated ways
to calculate Ak, see e.g., [31,32]. The choice made in Equation (4) causes noise because the area is
approximate but seems to allow effective histogram vectors.

2.7. Curvature Based on Filtering DEM by a Modified Discrete Laplace Operator (DEC)

The third method is traditional, fast and easy to implement in the GIS framework and thus
provides a convenient baseline for the previous two methods. Local height difference is converted to
local curvature approximant. Curvature histograms are then vectorized as in previous methods.

DEM data with a regular grid with the grid size δ = 2.0 m was utilized. Data is publicly available
over most of Finland. The discrete 2D Laplace operator with radius rhoriz = 2.0 m is well suited
for detecting bumpy features like stones at the grid detection limit. It simply returns the difference
between the average height of 4 surrounding grid points and the height of the center point. A modified
Laplacian filter with rhoriz = 4.0 m (length of two grid squares) was used to estimate the local height
difference on the larger scale, see Figure 6. A postprocessing transformation by Equations (7) and (8)
was applied to produce correspondence to Gaussian geometric curvature κk at point k. A geometric
justification for the transformation is depicted in Figure 6. A stone is assumed to be a perfect spherical
gap with perfect horizontal surrounding plane. The mean curvature κH can be approximated from
the observed local height difference of Equation (6) by using the geometric relation Equation (7),
see Figure 6. z̄(rhoriz) is the average height at the perimeter of horizontal radius r. The local height
difference Z̄ is the key signal produced by Laplacian filter. Gaussian curvature is approximately the
square of the mean curvature, when perfect sphericality is assumed, see Equation (8). The sign of the
Gaussian curvature approximant κGk at point ck can be decided on the sign of the height difference Z̄ at
vertex k. The index k of the vertex point pk is omitted for brevity. Equation (7) comes from rectangular
triangle in Figure 6.

Z̄ = z− z̄(r) local height difference (6)

1/κ2
H ≈ r2

horiz + (1/κH − Z̄)2 approximate mean curvature condition (7)

κH ≈ 2Z̄/(Z̄2 − r2
horiz) mean curvature solved from Equation (7)

κG ≈ − sign(Z̄)κ2
H approximate Gaussian curvature (8)
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Figure 6 shows grid squares of size 2 m× 2 m. Points A are used to calculate the average height
z̄(2.0 m) and points B the average height z̄(4.0 m).

Figure 6. Left: The Laplace difference operator returns the height difference between the center point (1)
and the average of points A. The modified Laplace difference operator does the same but using points
B. These two kernels define each an average circumferential height difference Z̄. Right: The geometric
relation between Z̄ and approximate mean curvature κH . Horizontal line represents average ground
level at the circumference.

Many sample polygons are relatively small. The above described difference operator produces
numerical boundary disturbance, see Figure 3. This can be countered by limiting the perimeter
average z̄(r) only to the part inside the polygon, and then removing the boundary pixels from the
histogram summation.

The next step is to build the sample histograms as with other methods. Histogram vectors from
two filters are concatenated to produce a sample vector of a polygon. The details of forming the
histogram are given in Section 2.8.

2.8. Vectorization

All three methods produce histograms of Gaussian curvature κG = ±1/r2, where r is the local
characteristic curvature radius and the curvature sign has been chosen in Equation (8) so that potential
stone tops have negative curvature and “pit bottoms” have positive curvature. An ideally planar spot
k has curvature radius rk ≡ ∞ and curvature κG ≡ 0. Recall that minimum detectable stone radius
is approx. rmin = 0.6...1.2 m, which leads to a Gaussian curvature interval of κG ∈= [−1.8, 1.8] m−2.
This range was spanned by histogram bins. LLC and DEC are rather insensitive to bin choice, so a
common ad hoc choice was made for these methods, see Table 3. The LTC method proved sensitive
to bin choices, so the values were derived using a subset of 10 positive and 10 negative samples in
leave-pair-out cross-validation. This set was excluded from later performance measurements.

Table 3. Curvature histogram bins.

Method Positive Half of the Bin Values

LLC and DEM 0.010, 0.030, 0.060, 0.13, 0.25, 0.50, 1.0, 2.0
LTC 0.031, 0.12, 0.25, 0.44 ,0.71, 1.13, 1.8

The histogram creates a vector representation xi, i = 1..n for all sample polygons i. The LTC
method produces one histogram vector, the DEC method produces two vectors (for r = 2 and r = 4 m)
and LLC produces 6 vectors (for 6 different grids), which are then concatenated to form the final
sample vector xi.

Figure 7 provides a summary of average curvature distributions produced by each of the three
methods. The planar situation with κG ≡ 0 is the most common. Occurrences with characteristic radius
r < 1 m are very rare. Useful information is contained within the range κG ∈ [−1, 1] m−2. With LLC
method, grid size δ = 2 m is able to detect greater curvatures and grid size δ = 5 m is the last useful
grid size. DEM is remarkably similar to 2 m LLC grid, which was to be expected.
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Figure 7. Curvature distributions produced by each method. Upper left: LLC and grid size 2m.
Upper right: LLC and grid size 4 m. Larger grid size results in narrow band around κ = 0. Lower left:
DEM curvatures are characterized by kurtosis. Lower right: the LTC distribution.

Negative samples (dashed lines) have about the same amount of exactly planar samples, but are a
little bit more slightly curved (|κG| ≈ 0.4 m2) samples. This probably results from the basic ground
curvature distribution. If the presented three methods were to be adapted elsewhere, the changing
background curvature spectrum may result in changes in the prediction performance.

The LTC method is able to detect the negative curvature around the stone causing the curvature
distribution to be asymmetric. Unfortunately, this method is also very noise-sensitive reducing its
performance.

Each method requires more testing and especially test data with known stone properties (relative
coverage of the surface, radius and height distribution, individually located and labeled stones).

2.9. Logistic Regression

The label vector yi ∈ {−1, 1}, i ∈ D = 1...n was acquired by field campaign done by a geology
expert. D is the index set of the full sample set, size n = |D| varies depending e.g., on the different
sensitivity to sparse point cloud of each method. The sample vectors xi ∈ Rd are produced by histogram
vectorization described in Section 2.8. Dimensionality d varies depending on the method. We use the
affine form zi = (1, xi) to shorten the following treatise. Vectors {zi}i∈D are also standardized before
solving the regression problem.

This is a qualitative response problem, so logistic regression was chosen to predict a label ŷ from
a given sample vector x. The prediction coefficient β ∈ Rd+1 is tuned by usual maximum likelihood
approach to optimal value β∗D′ using a sample set {(zi, yi)}i∈D′ , D′ ⊂ D where D′ is the training
set used:

f (zi, β) = Pr(yi = 1 | zi) = (1 + exp [−β · zi])
−1

ŷ(D′)(z) =

{
1 when f (z, β∗D′) ≥ 1/2

−1 otherwise
(9)

The area under curve (AUC) performance measure is natural in this application area, where cost
functions do exist but are not exactly known. The sample set data2014 is rather small and the sample
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set data2015 has imbalanced samples of positive and negative cases and the n-fold cross-validation
may produce too optimistic estimates, as mentioned in [40]. It is recommended in [40] in this case:

• to perform a leave-pair-out (L2O) test over all possible positive-negative label pairs P, and
• to measure L2O area under curve AUC by using the Heaviside function H(.) for summation.

P = {(i, j) | yi = 1, yj = −1, i, j ∈ D} all possible (+,–) pairs

AUC = ∑(i,j)∈P H(ŷij(zi)− ŷij(zj))/|P| leave-pair-out AUC (10)

ŷij(z) = ŷ(D\{i,j})(z) prediction without a pair i, j based on z

H(∆ŷ) =
(
1 + sign(∆ŷ)

)
/2 Heaviside over the prediction difference

2.10. Method Parameters and Design Choices

Some parameters were optimized by nested cross-validation or K-S test and thus settled. Some
parameters are ad-hoc built-in parameters, values of which are chosen mostly during the coding
process. These should be taken into consideration if the methods are utilized under slightly different
conditions. A list of the open parameters, their potential range and some of the discrete design choices
available, follows. Table 4 is a summary of the treatise.

Table 4. Effective method parameters, a summary.

Method Parameters Binary Choices

SAF 2 0
LLC 3–15 63
LTC 0 1
DEC 2 1

LLC: There are 11 non-zero shape parameters of the planar distance weight function g(.) presented
in [11]. The validation of the choices made will be a separate publication. There are some minor design
choices, an example is Equation (B2): one can use either median or mean rule in composing curvature
from surrounding triangle vertices, and results do not change noticeably. Median rule was used to
reduce occasional outliers. Another example is the 6 grid sizes in Table 2. The number of possible
subsets of grids to be used equals 26 − 1 = 63.

LTC: There is a design choice of using the local surface area At/3 in Equation (4) or a more
complex definition given in [32]. This is listed as one binary choice in Table 4.

DEC: There is a binary choice of either choosing Laplacian filter signal Z̄ or the Gaussian
approximant κk of Equation (8) based on the signal Z̄.

2.11. General Wall-to-Wall Prediction

Methods presented in Sections 2.4–2.9 were applied only to given polygon areas, since teaching
is possible only where the response value is known. But after the parameters of predictor have been
settled, the area to be inspected can be a generic one. As a demonstration and speed test, we applied
methods to a 1080 km2 area divided to 20 m× 20 m pixels with approx. 320 points from a point cloud of
density ρ = 0.8 m−2. Pixels have 6 m overlapping margins to increase the sample area to 32 m× 32 m
(approx. 820 points) to avoid partially populated histograms, which would not be recognized correctly
by the classifier. See Figure 8 for the DEC method wall-to-wall result.
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Figure 8. Left: The local height from DEM files, 30 km× 36 km area depicted. The scale is oriented
northwards. The general location of the rectangle can be seen in upper left part of the Figure 2. Right:
Stoniness probability by DEC method. The scale is probabilty of having stones on a particular pixel.
Roads and waterways are classified as stony areas. LLC and LTC methods are much less sensitive to
roads and constructed details.

3. Results

Binary classification of stoniness was done by logarithmic regression over curvature histogram
vectors cumulated over each sample polygon area. Three methods were used; they differ on how the
curvature approximants were produced(Table 5):

• Local linear fitting (LLC) divides the polygon into 6 different grids. Each grid square is fit by a
plane approximating the local ground height of the center of the plane and the plane orientation.
Curvatures are computed from these center points and their orientation normals.

• Curvature from DEM (DEC) uses traditional DEM data. Curvatures are approximated by the
observed local height difference delivered by a modified discrete Laplace operator.

• Curvature by local triangulation (LTC) has a TIN computed by SAF method of Section 2.4.
The curvature is then computed triangle by triangle as in LLC.

Area under curve AUC [41] was measured using both data sets and all three methods, see
Section 2.9. The AUC measure describes the discriminative power of a predictor over various possible
cutoff point choices. A proper cutoff depends on the costs involved and is not known at the moment,
justifying the accommodation of AUC. Leave-pair-out variant of AUC was used, see considerations
for this choice in Section 2.9.

Table 5. Leave-pair-out AUC results based on three methods used: digital elevation model, local linear
fit and local triangular curvature for two polygon sample sets.

Data Set DEC LLC LTC

data2014 0.85 0.82 0.79
data2015 0.68 0.77 0.66

LLC proved best for data2015. This data set is large and perhaps more representative of the
locality, and the performance AUC = 0.77 can be considered adequate for practical application such as
pre-selecting possible gravel deposit sites for infrastructure construction. Its performance is also on
par with many hard natural resource prediction tasks based on open data, see e.g., [2].



Remote Sens. 2016, 8, 720 15 of 21

Data set data2014 is somewhat exceptional, since it contains larger boulders and seems to be an
easy prediction task for wide array of methods. Both DEC and LLC performed well. The same holds
to several other tested methods which have not been included to this report, e.g., neighborhood voting
based on solid angle values.

DEC performance is mediocre with data2015 set because the average stone size depicted in Figure 5
right side is actually below the theoretical detection limit of a regular 2 m grid. Established DEM
computation routines are a trade-off of many general-purpose goals and some of the stone signal
seems to be lost in the case of the data2015 set.

LLC, eventhough it was cross-validated with data2014, performed adequately here. There were
high hopes about local curvature based on triangularization (LTC), but it performed the worst. This is
because LTC computes the curvature directly from a TIN, and the process produces a lot of noise. LTC
has been included in this report mainly because the method is fast to compute and there seems to be
potential to reduce noise in the future by neighborhood voting methods.

The processing speed (see Table 6) has a linear dependence with the area analyzed. This is
because the analysis is done by space partitions of constant point cloud sample size n. All the steps
have a linear O(n) time complexity except the Delaunay triangulation in SAF. The point removal
phase in SAF is of O(kn) complexity, where k ≈ 5...20 is the amount of nearest neighboring points.
The experiments were run on a desktop computer with Intel Core i5-3470 CPU (3.20 GHz) running
Ubuntu Linux 14.10. LLC implementation requires several intermediary file operations, which
makes it slow. All implementations are experimental prototypes and many speed improvements
are still possible.

Table 6. Analysis speed computed from average of two runs over the data set data2015.

Analysis Speed DEC LLC LTC

km2/h 200 0.5 4.0

4. Discussion

A traditional approach for terrain micro-topography classification is to use DEM model as a basis
for a wide array of texture methods. The low end has a simple texture feature computation followed
by segmentation tuned manually by an expert. The high end has several texture features extracted,
and preferably at least two DEM models of different grid size as a basis for analysis.

This paper presents a way to use the existing ALS LiDAR material to construct an alternative
task-specific terrain surface representation which hopefully contains more information e.g., concerning
the presence of stones. All methods presented are conceptually simple, although documenting and
coding LLC and LTC brings up a multitude of details and ad hoc choices, see e.g., the number of
method parameters in Table 4. Each method has potential for further improvement by a more thorough
parameter tuning. SAF and LLC have enough method parameters that tuning by new field campaign
data at more southern boreal forests could succeed. More southern boreal forest provides a challenge
since the ratio of the ground returns is only 30%–60% instead of 70% at our Northern test site.

LLC and DEC perform well enough to be practically usable. The direct utilization of ALS data
seems to work on this site.

Because LTC is based on a TIN model, there is available additional geometrical information like
mean curvature, curvature eigenvalues and eigenvectors etc. for more complex micro-topographic
features. If it is possible to reduce the noise and keep the computation costs at the current low level,
a combination of these features could be a basis for fruitful multi-layer texture analysis.

Many terrain micro-topography classification tasks e.g., registering post-glacial landslides, karst
depresssion detection and fault lines detection e.g., can be done with DEM and by texture methods,
but there may be a need to add stoniness or curvature related features to improve the classification.
The current data sets do not provide accurate quantitative information about stoniness for regression
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methods. The wall-to-wall stoniness result with 20 m × 20 m pixels produced by current binary
classification (see Figure 8) can be utilized as an additional feature in other prediction problems in the
future. The wall-to-wall pixel size must be increased when the ground return ratio decreases in the
southern dense forests.

Three individual methods or a combination of them can be modified to produce estimates of
the relative stone coverage and stone size distribution. This step can be taken only if data sets come
available with individual stones and their properties tagged out. Furthermore, more sophisticated
probabilistic and minimum description length (MDL) based methods would then be possible. The stone
coverage and size distribution information in Figure 5 is approximative only, so current data sets
cannot be used for development of quantitative stoniness models.

It is hard to estimate how far to southern forests the three methods can be extended. The ground
return density varies with boreal forests, and detection results from spatially rather sparse accessible
spots should be somehow extended to nearby areas using other available public data and Machine
Learning methods. This line of research requires specific field test sets, though.

There are several other micro-topological problems, e.g., classifying and detecting undergrowth,
marshland types, military structures, unauthorized inhabitation and geomorphology e.g., frost
phenomena. Some of these require comparison of two snapshots from ultra-light vehicle (UAV)
scans, and e.g., a combination of SAF and MDL might perform well in this scenario. We believe SAF
has wide adaptivity to several purposes by tuning its 2 parameters (minimum and maximum spatial
angle allowed) and MDL can be built to detect a specific shape (a hemisphere in cases of stones, a box,
a prism or a cylinder in case of other applications). As mentioned before, MDL would require denser
point clouds with ρ ≈ 1.6...3.2 m−2.

5. Conclusions and Future Research

Results in Section 3 show that LLC performs better than DEC but is numerically much more
expensive. LLC seems to be robust and useful when the computation costs can be amortized over
several subsequential analyses. LTC performed worst but there is room for improvement as discussed
in Section 4. Both LLC and DEC are ready to be applied to industrial purposes after prototyping
implementations are upgraded to production code.

Current results are bound to stoniness of mass-flow deposits what comes to teaching data, but
each method should work in generic stoniness detection, if such a need arises and general teaching
data sets become available.

Using direct ALS information either as an alternative data source or supplementary one may help
solving a variety of micro-topography detection problems better in the future. The research efforts will
be focused on the following topics:

• Extending the analysis to more dense forests, where stoniness detection occurs only at benevolent
cicumstances (forest openings, sparse canopy, hilltops). In this environment the acquired
stoniness signal has to be combined to a wide array of open data features to extend prediction to
unobservable areas. The corresponding field campaigns will be more elaborate.

• Taking into account the stone coverage and size distribution. It is likely that a multi-grid method
like LLC might perform well in this prediction task (given suitable teaching data), whereas DEC
may be restricted by the general purpose nature of DEM and its modest grid size.

• Topography and vegetation classification of marshlands. Marshlands have similar high ground
return ratio as the current case site. SAF can be tuned by cross-validation to produce a tailored
TIN and an improved LTC method with added curvature properties (mean curvature, curvature
eigenvectors) could detect various micro-topographic marshland features. It is our assumption
that the histogram approach would work also with marshland classification, given a suitable
teaching polygon quality produced in field campaigns.

• Using min-cut based segmentation of k-NNG graph of ALS data as described in [15] instead of
simple Delaunay triangulation. One has to modify the algorithm to include neighborhood voting
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to reduce noise. This could be a fruitful approach, since it could suit to 3D analysis of forest tree
species, providing more motivation for the implementation.

• Utilizing all relevant LiDAR attribute fields, like return intensity, return number, the scan angle etc.
(see [21]).
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Abbreviations

The following abbreviations are used in this manuscript:

ALS Aerial laser scan
AUC area under curve
DDG Discrete differential geometry
DEC Curvature based on DEM
DEM Digital elevation model
DTM Digital terrain model
GIS Geographic information system
k-NNG k-nearest neihgbors graph
K-S Kolmorogov-Smirnov test
L2O Leave-pair-out
LiDAR Light detection and ranging
LLC curvature based on local linear fit
LTC local curvature based on ground triangulation
MDL Minimum description length principle
MTLS Moving total least squares
NLS National Land Survey of Finland
PCA principal components analysis
SAF Solid angle filtering
TIN triangulated irregular network
UAV Ultra-light vehicle

Appendix A

The computation of a solid angle Ωk takes place at the approximity of a point pk, namely at the
set of the adjoining triangles Tk, see detail A) of Figure A1. Detail B) presents a tetrahedron defined
by points pk, pi, pj, pl , where pi, pj ∈ Tk\pk are from the outskirt of the triangle set Tk and pl is an
arbitrary point directly below point pk. There are several ways to implement the solid angle calculation,
a formula based on a classical l’Huillier’s theorem [42] is presented here:

acos(a, b) = cos−1(a0 · b0) angle between two vectors (A1)

x0 := x/‖x‖2 vector normalization

αi = acos(pl − pk, pj − pk) compartment angles i, j, k

αj = acos(pi − pk, pl − pk)

αl = acos(pj − pk, pi − pk)

α0 = αi + αj + αl basic product term

ωil j = 4 tan−1
√

tan α0
4 Πν∈{i,j,l} tan α0−2αν

4 compartment angle (A2)

Ωk = ∑il j∈Tk
ωil j solid angle at point pk (A3)
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Figure A1. Solid angle filtering. (A) The set of adjoining triangles Tk of a point pk seen from above;
(B) A compartment ijl of the vertex point pk presented in detail. A solid angle Ωk is a sum of
compartment angles ωil j of Equation (A2). Point pl is an arbitrary point directly below the vertex
point pk.

Equation (A2) approaches so called Heron’s planar trigonometric formula [42] when angles
αi, ... approach zero. The practical implementation requires a combination of space partitioning to a
manageable point cloud patches of approx. 700...2000 points and a 2D Delaunay triangulation with an
efficient point removal method. We use a batch version (python scipy.spatial.delaunay) with our own
industry standard routine for deletion. This combination is simple to implement and excels in practise
as [36] mentions, even though there exists faster incremental deletion arrangements with 2..3 times
slower construction phase.

Appendix B

Step 1: Data can be preprocessed in three different ways before the LLC step. Alternatives are
listed here in the order of increasing computational efficiency and decreasing amount of points:

(a) raw 3D ALS data
(b) same as (a) with tree and foliage returns cut from approx. 2 m height from approximative

ground level
(c) TIN model produced e.g., by solid angle filtering of Section 2.4

The local linear fitting step 2 finds similar ground model per each alternative, only the speed of
convergence varies. All three alternatives seem to result in about the same quality when measured by
predictor performance.

Step 2: The fitting of the plane resembles a normal regression problem with an ad hoc nonlinear
loss function, which penalizes residuals below the plane to force the ground fit. By applying the
fitting process to planes of varying sizes one gets an assembly of plane orientations and plane centers.
The neighboring planes can then be used to approximate local curvature. Since sample density is
low, some of the plane fits cannot be performed. Therefore, it is numerically more resilient to use
triangulation over neighboring planes and define curvature over each triangle using formulation
developed in [33]. Another approach would be to produce a triangular mesh and estimate curvature
based on it, as in [31,32]. There is a large filtering effect in this approach, since vertex normals depend
on surrounding vertices. Local linear fit seemed to pick up the stoniness signal better, especially since
we used multi-scale grids.

The grid division has been depicted in Figure B1. At each grid slot, one has to find the best fitting
plane P(p, n), where p ∈ R3 is the center point of the plane P and n its normal. The initial state for
the plane is: P0 = P(lowest point of local sample, (0, 0, 1)T) δ.

The plane P represents a good local ground linearization provided that the weight function
g(l) of the orthogonal distance l penalizes heavily points below the approximated ground level.
The details of weight function have been published in [11]. The practical considerations in selecting the
weight function shape are at rapid and guaranteed convergence, whereas the influence to prediction
performance comes from the actual ground returns and their geometry.



Remote Sens. 2016, 8, 720 19 of 21

Figure B1. Left: An individual local plane P(pk, nk) at grid point ck and its parameters (local plane
center point pk and normal nk). A triangulation T of the grid avoids squares with incomplete data.
A local cloud point set Qck and neighboring triangles Tk ⊂ T of a grid slot ck are also depicted. Center:
a stone revealed by two adjacent tilted planes. This stone provides a signal with the grid size δ = 2 m.
Note the amount of missing planes due to a lack of cloud points. Right: The grid of size δ = 4 m at
the same spot. The stone does not appear, local variation has disappeared but the grid is almost full
approximating the sample polygon shape.

The optimal fit at each grid slot concerns now coordinate components wT = (pz, nx, ny) of p and
n. The local plane P is found by a numerical minimization:

w∗ = argmin
w ∑

qj∈Qc

g[(qj − p) · n] (B1)

Step 3: Triangulation is based on the grid centers, where the surface normal is known. Because
of relatively low point density, some grid locations are bound to have no points and thus have to be
omitted from triangulation, see Figure B1. The triangularization T outlined in Figure B1 is generated
randomly, see Figure B1. The end result dictates the adjoining triangle sets Tk ⊂ T of each grid point
k. The size |Tk| of the adjoining triangle sets varies depending on how dense or sparse point cloud is
nearby point k: 1 ≤ |Tk| ≤ 8.

Step 4: The curvature is approximated on each vertex of each triangle as in [33]. There are several
other similar formulations e.g., using rectangular grids, but those are not so suitable in the presence of
sparse and missing cloud points. The end result is set of candidate curvatures κtk, t ∈ Tk per each grid
point pk.

Step 5: Now the task is to combine the final curvature approximant at a grid point pk by taking a
median of values available at the adjoining vertices of all surrounding triangles:

κ(pk) = median
t∈Tk

κtk (B2)

Step 6: We used the normalized histograms of h = histk∈Kκ(pk), where K is the set of grid centers
and histogram operator hist(.) and its properties are documented in Section 2.8.
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