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Abstract: Airborne laser scanning (ALS) point cloud data are suitable for digital terrain model (DTM)
extraction given its high accuracy in elevation. Existing filtering algorithms that eliminate non-ground
points mostly depend on terrain feature assumptions or representations; these assumptions result in
errors when the scene is complex. This paper proposes a new method for ground point extraction
based on deep learning using deep convolutional neural networks (CNN). For every point with
spatial context, the neighboring points within a window are extracted and transformed into an image.
Then, the classification of a point can be treated as the classification of an image; the point-to-image
transformation is carefully crafted by considering the height information in the neighborhood area.
After being trained on approximately 17 million labeled ALS points, the deep CNN model can
learn how a human operator recognizes a point as a ground point or not. The model performs
better than typical existing algorithms in terms of error rate, indicating the significant potential of
deep-learning-based methods in feature extraction from a point cloud.

Keywords: deep learning; convolutional neural network (CNN); digital terrain model (DTM); ALS;
ground point classification

1. Introduction

In recent decades, airborne laser scanning (ALS) has become more important in the process of
digital terrain model (DTM) production [1]. ALS can provide a description of a surface on a terrain
with high accuracy and density. However, ALS also records the information of non-terrain objects, such
as buildings and trees. Thus, the ALS filtration is important in the processing of ALS data. Given the
various non-ground objects on the surface and the lack of topology among the points, filtering of the
ALS point cloud can be difficult and troublesome. In fact, point filtering often occupies approximately
80% of the workload of ALS data processing in DTM production. The algorithms of ALS filtration can
be divided into three categories based on their characteristics, as follows:

(1) Slope-based methods. The kernel foundation of these methods considers that two adjacent points
are likely to belong to different categories if they have a mutation in height [2,3]. Slope-based
methods are fast and easy to implement. Their shortcoming is their dependency on different
thresholds in different terrains.

(2) Mathematical morphology-based methods. These methods are composed of a series of 3D
morphological operations on the ALS points. The results of morphological methods heavily
rely on the filter window size. Small windows can only filter small non-ground objects, such
as telegraph poles or small cars. By contrast, large windows often filter several ground points
and make the results of filtration smooth. Zhang [4] proposed progressive morphological filters,
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which can filter large non-ground objects with ground points preserved by varying the filter
window size, to overcome this problem.

(3) Progressive triangular irregular network (TIN)-based method. Axelsson [5] proposed the
iterative TIN; this network has been used in some business software. The TIN selects the
coarse lowest points as ground points and builds a triangulated surface from them. Then, the
TIN adds new points to the triangular surface under many constrains for slope and distance.
However, the method is easily affected by negative outliers; these outliers draw the triangular
surface downward.

(4) Surface-based methods. These methods maintain a surface model of the ground based on the
interpolation of ground points [6–9]. However, these methods are sensitive to input parameters
and negative outliers.

Other recent algorithms try to use optimization to obtain accurate classification. For instance,
semi-global filtering (SGF) [10] employs a novel energy function balanced by adaptive ground saliency
to adapt to steep slopes, discontinuous terrains, and complex objects. Then, the SGF uses semi-global
optimization to determine labels by minimizing the energy.

Although the existing methods have done well in ALS filtration, they still need much human
labor to generate DTM based on the filtration results. We want to make full use of the existing
ALS and responding DTM by learning a deep neural network from a big amount of the existing
data. Neural networks has been used in pattern recognition and classification for a long time [11,12].
The deep convolutional neural networks (CNN) [13] are inspired by biological vision systems; these
networks have recently shown their ability to extract high-level representations through compositions
of low-level features [14]. In the present study, we propose a new filtering algorithm based on deep
CNN. First, training samples are obtained from many labeled points. Each image is generated from the
point and its neighboring points; the image can be a positive or negative training sample depending
on the label. Second, a deep CNN model is trained using the labeled data. Images generated from
points are treated as input of the deep CNN model. Then, the input will be processed by several
components being comprised of a convolution layer, a batch Normalization layer, an activation layer
and a pooling layer after some components. At last, the results of the last pooling layer will be
connected to subsequent three fully-connected layers, the last fully-connected layer will produce the
probability for the input to be a ground point or a non-ground point. Detailed construction of deep
CNN model can be seen in Section 2.2. The deep CNN model can learn the important feature of the
input automatically from the huge training data, which usually work better than hand-craft features.
Finally, each point is mapped to an image to classify a raw ALS point cloud; this image is classified as
an image belonging to a ground point or is not used by the trained CNN model.

This paper is organized as follows: Section 2 describes the proposed method. Section 3 presents
the ALS filtration results and analysis. Section 3.3 compares the proposed method with other methods.
Section 4 concludes this study and identifies several aspects for improvement.

2. Methods

The workflow of our approach for filtering is shown in Figure 1. ALS filtering means to find and
delete all non-ground points from ALS data. We treat filtering as a binary classification problem to
classify all the points of ALS data as ground points or non-ground points. The major steps include
the calculation of context information for each point from the neighboring points in a window, the
transformation of the information of the window into an image, and the training and classification
based on the images using the CNN model. Training sample points are selected from a large number of
point clouds with different terrain complexities. A deep CNN model is trained from the labeled images.
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Figure 1. Workflow of the proposed approach. “T” means the samples of ground points and “F” 
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Figure 1. Workflow of the proposed approach. “T” means the samples of ground points and “F” means
the samples of non-ground points.

2.1. Information Extraction and Image Generation

For each ALS point (Pi), its surrounding points within its “square window” are divided into many
cells. The “square window” means a square in (x, y) spatial coordinates. It is a two dimensional window.
In the method, the size of “square window” is 96 m × 96 m, which is divided into 128 × 128 cells.
Each “square window” extracted for a point can be transferred to a 128 × 128 image by mapping each
cell to a pixel with red, blue, and green colors. For each cell, the maximum (Zmax), minimum (Zmin),
and mean (Zmean) of the height among all points within the cell are obtained. Then, the difference
values between Zmax, Zmin, and Zmean and the height (Zi) of point (Pi) are transferred to three integers
within 0 to 255 following Equations (1) and (2); these integers would be the red, green, and blue values
of the corresponding pixel in the image transformed from the cells, as follows:

Fred = b255 ∗ Sigmoid(Zmax − Zi)− 0.5c
Fgreen = b255 ∗ Sigmoid(Zmin − Zi)− 0.5c
Fblue = b255 ∗ Sigmoid(Zmean − Zi)− 0.5c

(1)
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The sigmoid function is expressed in Equation (2), as follows:

Sigmoid(x) = (1 + e−x)
−1 (2)

An example for the point-to-image transformation is shown in Figure 2.
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that come in the form of multiple arrays, such as 1D arrays for signals like language and 2D arrays 
for images or audio spectrograms. CNNs have four key ideas, namely, local connections, shared 
weights, pooling, and use of many layers [24]. More detailed description of CNN can be found in 
[25]. 
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Figure 2. Point-to-image transformation (source: own study in the “FugroViewer”).

2.2. Convolutional Neural Network

CNNs have been the focus of considerable attention for a wide range of vision-related [15–18],
audio-related [19], or language-related [20] tasks. The existing best-performing models [21–23] on
ImageNet ILSVRC have all been based on deep CNNs since 2012. CNNs are designed to process data
that come in the form of multiple arrays, such as 1D arrays for signals like language and 2D arrays for
images or audio spectrograms. CNNs have four key ideas, namely, local connections, shared weights,
pooling, and use of many layers [24]. More detailed description of CNN can be found in [25].

The architecture of the CNN model used in our approach is shown in Figure 3.
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Figure 3. The architecture of the proposed deep CNN.

Deep CNN model is comprised of 6 kinds of layers, the size of layers can be defined as
width× height× depth in which width× height describes the spatial size and depth refers to the number
of channels of its feature maps. The detailed explanation of the layers in Figure 3 can be seen below:
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(1) An input layer is denoted as Input here. The input layer contains the input data for the network.
The input of the deep CNN model is a three-channel (red, green, blue) 128 × 128 image generated
from an ALS points.

(2) A convolution layer is denoted as Conv here. The convolution layer is the core building block of
a convolutional network that performs most of the computational heavy lifting. Convolutional
layers convolve the input image or feature maps with a learnable linear filter, which have a
small receptive field (local connections) but extend through the full depth of the input volume.
The output feature maps represent the responses of each filter on the input image or feature
maps. Each filter is replicated across the entire visual field and the replicated unit share the same
weights and bias (shared weights), which allows for features to be detected regardless of their
position in the visual field. As a result, the network learns filters that activate when they see a
specific type of feature at some spatial position in the input. In our model, all of the convolution
layers use the same sized 3 × 3 convolution kernel.

(3) A batch normalization layer is denoted as BN here. Given that the deep CNN often has a large
number of parameters, taking care to prevent overfitting is necessary, particularly when the
number of training samples is relatively small. Batch normalization [26] normalizes the data in
each mini-batch, rather than merely performing normalization once at the beginning, using the
following equation:

y =
x− µ√
σ2 + ε

γ + β (3)

The input of BN is normalized to zero mean and unit variance and then linearly transformed.
During training, µ and σ2 are the mean and variance of the input mini-batch. During testing, µ and σ2

are the average statistics calculated from the training data. γ and β are learned parameters which scale
and shift the normalized value. ε is a constant added to the mini-batch variance for numerical stability.

Batch normalization can significantly reduce overfitting, allow higher learning rates and accelerate
the training for deep network.

(1) A rectified linear units layer is denoted as ReLU here. Activation layers are neuron layers
that apply nonlinear activations on input neurons. They increase the nonlinear properties of
the decision function and of the overall network without affecting the receptive fields of the
convolution layer. Rectified linear units (ReLU) proposed by Nair and Hinton in 2010 [27] is the
most popular activation function. ReLU can be trained faster than typical smoother nonlinear
functions and allows the training of a deep supervised network without unsupervised pretraining.
The function of ReLU can be demonstrated as f (x) = max(0, x).

(2) A pooling layer is denoted as Pooling here. Pooling layers are nonlinear downsampling layers
that achieve maximum or average values in each sub-region of input image or feature maps.
The intuition is that once a feature has been found, its exact location is not as important as its
rough location relative to other features. Pooling layers increase the robustness of translation and
reduce the number of network parameters.

(3) A fully-connected layer is denoted as FC here. After several convolutional and max pooling
layers, high-level reasoning in the neural network is performed via fully-connected layers.
A fully-connected layer takes all neurons in the previous layer and connects it to every single
neuron it has. Fully-connected layers are not spatially located anymore, thereby making them
suitable for classification rather than location or semantic segmentation.

A BN and a ReLU are applied after every conv layer and the first two FC layers. Thus, layers 1
to 6 are composed of Conv→ BN → ReLU and layers 7 and 8 are composed of FC → BN → ReLU .
Pooling layers are applied after layers 1, 2, and 6. The output of the last FC layer is fed to a 2-way
softmax, which produces a distribution over the 2 class labels. Our network maximizes the multinomial
logistic regression objective.
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To train the model of the deep CNN, over 150 million parameters need to be learned.
Two measures are taken to avoid overfitting: huge amount of training data and batch normalization
layers which are proven to be effective.

3. Experimental Analysis

3.1. Experimental Data

A total of 17,280,000 labeled points are sampled evenly from 900 airborne ALS datasets in south
China to be used to train a general model tested in variety types of terrains to evaluate the proposed
approach. Each dataset has an area size of 500 m by 500 m and an average density of 4 points/m2.
Moreover, 40 scenes outside the training areas and the International Society for Photogrammetry and
Remote Sensing (ISPRS) benchmark datasets provided by the ISPRS Commission III/WG2 [28] are
classified to validate the trained CNN model. The 40 scenes have the same area size as the training
data and approximately 40 million points. All training and testing ground truths are produced by a
procedure of DTM production, including automatic filtering by TerraScan software and post manual
editing. Examples of the training dataset and feature maps of the training samples are shown in
Figures 4 and 5, respectively.

It is easy to see from Figure 5 that as the ground points usually being lower than their surrounding
points while non-ground points more probable being higher than their surrounding points, most of
the Fred, Fgreen and Fblue calculated from surrounding cells of ground points by Equation (1) are much
bigger than non-ground points, which causes that the feature images of ground points are much
brighter than non-ground points.
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Figure 5. Training samples of the feature images corresponding to: (a) ground points; and
(b) non-ground points.

3.2. Training

Batch gradient descent with a batch size of 256 examples, momentum of 0.9, and weight decay of
0.0005 to estimate the CNN parameters is used for the training. To find a local minimum of a function,
gradient descent takes steps proportional to the negative of the gradient (or of the approximate
gradient) of the function at the current point. In batch gradient descent, the gradient is approximately
estimated by the mini-batch in each iteration.

The loss function of the CNN model can be calculated as:

L = − 1
m

 m

∑
i=1

k

∑
j=1

1{y(i) = j}log
ewT

j x(i)

∑k
l=1 ewT

l x(i)

, (4)

where m is the size of batch 256, and k is the number of classes (in here k = 2 because there are 2 classes,
ground points and non-ground points), w is the parameters of the model, x is the output of the upper
layer and for the first hidden layer, and x is the input layer. y(i) is the label of training sample i. The
value of 1

{
y(i) = j

}
equals 1 while y(i) = j and 0 otherwise.

The update rule for weight w was:

vt+1 := 0.9 · vt − 0.0005 · ε ·Wt − ε ·
〈

∂L
∂w

∣∣∣
Wt

〉
Dt

Wt+1 := Wt + vt+1

(5)

where t is the iteration index, mini-batch Dt is the m training samples which will be used to estimate

the gradient in this iteration, v is the momentum variable, ε is the learning rate, and
〈

∂L
∂w

∣∣∣
Wt

〉
Dt

is

the average over the t th batch Dt of the derivative of the objective loss function with respect to W,
evaluated at Wt [21].

The training of the CNN model takes approximately three weeks on a PC with Intel i7-4790 CPU,
32 GB RAM, and a NIVIDIA GTX TitanX GPU.
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3.3. Results and Comparison with Other Filtering Algorithms

We compare the deep CNN model with the popular commercial software TerraSolid TerraScan,
Mongus’s parameter-free ground filtering algorithm in 2012 [1], SGF [10], Axelsson’s algorithm,
and Mongus’s connected operators-based algorithm in 2014 [29] on the ISPRS benchmark dataset.
TerraScan uses the TIN-based filtering method; this software produces a significantly low average total
error when a set of tunable parameters of the data is processed using the algorithm. The classification
that CNN used for this test over two datasets is the one trained by the 900 airborne ALS datasets in
south China to challenge the versatility of the CNN.

The filtering accuracy is measured based on the Type I error, which is the percentage of rejected
bare ground points; Type II error, which is the percentage of accepted non-ground points; and total
error, which is the overall probability of points being incorrectly classified. The results are shown in
Table 1 and Figures 6–8. The classification using deep CNN model takes approximately 200 s on a test
ALS dataset with a million points using a computer with an i7-4790 CPU and a TitanX GPU.

We also compare deep CNN model with TerraScan on 40 cases from the test ALS data with
various terrain complexities in the aspects of both error rates and root mean square error of DTM.
The comparison of error rates is shown in Figure 7 and comparison of root mean square error (RMSE)
between the generated DTM with the ground truths is shown in Figure 8.

Table 1. Comparison of deep CNN model and other methods on the ISPRS dataset.

Type I Error (%) Type II Error (%) Total Error (%)

TerraScan 11.05 4.52 7.61
Mongus 2012 3.49 9.39 5.62

SGF 5.25 4.46 4.85
Axelsson 5.55 7.46 4.82

Mongus 2014 2.68 12.79 4.41
Deep CNN 0.67 2.262 1.22
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The comparison of total error over 40 various complex terrains can be seen in Table 2 below and
the detailed comparison of several examples with different terrains are shown in Figures 9–12.

Table 2. Comparison of total error over 40 various complex terrains between TerraScan and deep
CNN model.

Error TerraScan Deep CNN

type I 10.5% 3.6%
type II 1.4% 2.2%
total 6.3% 2.9%
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Figure 9. Comparison of the proposed method and TerraScan on the detailed difference of the DTM. 
Column (a) is the ground truth TIN-rendered gray image of the test data. Columns (b,d) are the results 
of filtration by TerraScan and Deep CNN, respectively; the white points denote correctly classified 
ground points, the green points denote correctly classified non-ground points, the red points denote 
accepted non-ground points, and the blue points denote rejected ground points. Columns (c) and (e) 
are TIN-rendered DTM extracted from the results of filtration by TerraScan and deep CNN model, 
respectively. In Column (c), blue ellipses denote type I error and red ellipses denote type II error. 

Figure 9. Comparison of the proposed method and TerraScan on the detailed difference of the DTM.
Column (a) is the ground truth TIN-rendered gray image of the test data. Columns (b,d) are the results
of filtration by TerraScan and Deep CNN, respectively; the white points denote correctly classified
ground points, the green points denote correctly classified non-ground points, the red points denote
accepted non-ground points, and the blue points denote rejected ground points. Columns (c) and (e)
are TIN-rendered DTM extracted from the results of filtration by TerraScan and deep CNN model,
respectively. In Column (c), blue ellipses denote type I error and red ellipses denote type II error.
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Figure 12. Comparison of the proposed method and TerraScan on the details of the complex area: (a) 
raw ALS data; (b) ground truth; (c) result of TerraScan; and (d) result of deep CNN model. 

Figures 10 and 12 show that deep CNN model does well in some big scale non-ground situations 
which are hard for TerraScan such as buildings and farmlands. Figure 11 shows that deep CNN 
model conserve the terrain feature well even in the mountains which often has little ground points 
caused by the shield of trees. The ground hit density in mountain area of Figure 11 is about 1–2 
ground points per square meter while the ground hit density in plain area in the same data is about 
4–6 ground points per square meter. 

However, there are still some cases that deep CNN model cannot deal with very well, as shown 
in Figure 13. 
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Figure 12. Comparison of the proposed method and TerraScan on the details of the complex area:
(a) raw ALS data; (b) ground truth; (c) result of TerraScan; and (d) result of deep CNN model.

The tests strongly indicate that the CNN model produces significantly low Type I error; this
result indicates only a slightly tedious manual post-editing for DTM production because removing the
non-ground points (Type II error) is usually easier than finding the incorrectly rejected ground points.
The proposed CNN-based classification can generate high-quality DTM, particularly to retain subtle,
micro, and steep terrains; existing handcrafted algorithms may produce more Type I error.

Figures 10 and 12 show that deep CNN model does well in some big scale non-ground situations
which are hard for TerraScan such as buildings and farmlands. Figure 11 shows that deep CNN model
conserve the terrain feature well even in the mountains which often has little ground points caused by
the shield of trees. The ground hit density in mountain area of Figure 11 is about 1–2 ground points per
square meter while the ground hit density in plain area in the same data is about 4–6 ground points
per square meter.

However, there are still some cases that deep CNN model cannot deal with very well, as shown
in Figure 13.

The CNN model generates some wrong results (type II error) as shown in Figure 13. This is mainly
because these wrong non-ground points belong to very low (down to 10 cm) man-made structures,
which are too close to the ground. Modifying points-image transformation to represent shape and
structure information may improve the accuracy in the similar cases.
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Figure 13. (a) Area that deep CNN model accept many wrong ground points, where the white points 
denote correctly classified ground points, the green points denote correctly classified non-ground 
points, the red points denote accepted non-ground points, and the blue points denote rejected ground 
points; (b) the profile of that area; (c) DTM of that area by deep CNN model; and (d) ground truth 
DTM of that area. The root mean square error (RMSE) between the DTM by deep CNN model with 
the ground truth DTM in this section shown below is 0.1 m. 

The CNN model generates some wrong results (type II error) as shown in Figure 13. This is 
mainly because these wrong non-ground points belong to very low (down to 10 cm) man-made 
structures, which are too close to the ground. Modifying points-image transformation to represent 
shape and structure information may improve the accuracy in the similar cases. 

4. Conclusions 

To the best of our knowledge, this study is the first one that reports using deep CNN-based 
classification for DTM extraction from ALS data. Relative elevation differences between each point 
and its surrounding points are extracted and transformed into an image representing the point 
feature. Then, the deep CNN model is used to train and classify the images. Each point to be 
processed can be classified as a ground or non-ground point by the trained deep CNN. A total of 40 
ALS point clouds with 40 million points and the ISPRS benchmark dataset with various scene 
complexities and terrain types are tested using one CNN trained by 17 million labeled points. The 
results show the high accuracy of the proposed method. The developed method provides a general 
framework for ALS point cloud classification. 

However, the drawback of deep-learning-based methods is that they usually require large 
labeled data and powerful computational resources. Future work should focus on better point-image 
transformation and making more compact classification through the deep CNN model to improve 
the training and classification. Future work should also perform tests on larger datasets. 
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Figure 13. (a) Area that deep CNN model accept many wrong ground points, where the white points
denote correctly classified ground points, the green points denote correctly classified non-ground
points, the red points denote accepted non-ground points, and the blue points denote rejected ground
points; (b) the profile of that area; (c) DTM of that area by deep CNN model; and (d) ground truth
DTM of that area. The root mean square error (RMSE) between the DTM by deep CNN model with the
ground truth DTM in this section shown below is 0.1 m.

4. Conclusions

To the best of our knowledge, this study is the first one that reports using deep CNN-based
classification for DTM extraction from ALS data. Relative elevation differences between each point
and its surrounding points are extracted and transformed into an image representing the point feature.
Then, the deep CNN model is used to train and classify the images. Each point to be processed can
be classified as a ground or non-ground point by the trained deep CNN. A total of 40 ALS point
clouds with 40 million points and the ISPRS benchmark dataset with various scene complexities and
terrain types are tested using one CNN trained by 17 million labeled points. The results show the
high accuracy of the proposed method. The developed method provides a general framework for ALS
point cloud classification.

However, the drawback of deep-learning-based methods is that they usually require large
labeled data and powerful computational resources. Future work should focus on better point-image
transformation and making more compact classification through the deep CNN model to improve the
training and classification. Future work should also perform tests on larger datasets.
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9. Błaszczak-Bąk, W.; Janowski, A.; Kamiński, W.; Rapiński, J. ALS Data Filtration with Fuzzy Logic. J. Indian
Soc. Remote Sens. 2011, 39, 591–597.

10. Hu, X.; Ye, L.; Pang, S.; Shan, J. Semi-Global Filtering of Airborne LiDAR Data for Fast Extraction of Digital
Terrain Models. Remote Sens. 2015, 7, 10996–11015. [CrossRef]

11. Kubik, T.; Paluszynski, W.; Netzel, P. Classification of Raster Images Using Neural Networks and Statistical
Classification Methods; University of Wroclaw: Wroclaw, Poland, 2008.

12. Meng, L. Application of neural network in cartographic pattern recognition. In Proceedings of the 16th
International Cartographic Conference, Cologne, Germnay, 3–9 May 1993; Volume 1, pp. 192–202.

13. LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation
applied to handwritten zip code recognition. Neural Comput. 1989, 1, 541–551. [CrossRef]

14. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and
semantic segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Columbus, OH, USA, 24–27 June 2014; pp. 580–587.

15. Tompson, J.; Goroshin, R.; Jain, A.; LeCun, Y.; Bregler, C. Efficient object localization using convolutional
networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA,
USA, 7–12 June 2015; pp. 648–656.

16. Taigman, Y.; Yang, M.; Ranzato, M.; Wolf, L. Deepface: Closing the gap to human-level performance in face
verification. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Columbus, OH,
USA, 24–27 June 2014.

17. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. arXiv Preprint, 2015.
arXiv:1512.03385.

http://dx.doi.org/10.1016/j.isprsjprs.2011.10.002
http://dx.doi.org/10.1109/TGRS.2003.810682
http://dx.doi.org/10.1016/S0924-2716(98)00009-4
http://dx.doi.org/10.1080/01431161.2015.1041617
http://dx.doi.org/10.3390/rs70810996
http://dx.doi.org/10.1162/neco.1989.1.4.541


Remote Sens. 2016, 8, 730 16 of 16

18. Sermanet, P.; Eigen, D.; Zhang, X.; Mathieu, M.; Fergus, R.; Lecun, Y. Overfeat: Integrated recognition,
localization and detection using convolutional networks. In Proceedings of the International Conference on
Learning Representations, Banff, AB, Canada, 14–16 April 2014.

19. Waibel, A.; Hanazawa, T.; Hinton, G.E.; Shikano, K.; Lang, K. Phoneme recognition using time-delay neural
networks. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 328–339. [CrossRef]

20. Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.; Kavukcuoglu, K.; Kuksa, P. Natural language processing
(almost) from scratch. J. Mach. Learn. Res. 2011, 12, 2493–2537.

21. Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet classification with deep convolutional neural networks.
In Proceedings of the Advances in Neural Information Processing Systems 2012, Lake Tahoe, NV, USA,
3–8 December 2012.

22. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Columbus, OH, USA, 24–27 June 2014.

23. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition.
In Proceedings of the International Conference on Learning Representations, Banff, Canada, 16 April 2014.

24. LeCun, Y.; Yoshua, B.; Geoffrey, H. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
25. Ian, G.; Yoshua, B.; Aaron, C. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
26. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal

covariate shift. In Proceedings of the International Conference on Machine Learning (ICML), Lille, France,
6–11 July 2015.

27. Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the
27th International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010.

28. WG III/2: Point Cloud Processing. Available online: http://www.commission3.isprs.org/wg2/ (accessed
on 1 September 2016).

29. Mongus, D.; Zalik, B. Computationally efficient method for the generation of a digital terrain model from
airborne LiDAR data using connected operators. IEEE J. Sel. Top. Appl. Remote Sens. 2014, 7, 340–351.
[CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/29.21701
http://dx.doi.org/10.1038/nature14539
http://www.commission3.isprs.org/wg2/
http://dx.doi.org/10.1109/JSTARS.2013.2262996
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods 
	Information Extraction and Image Generation 
	Convolutional Neural Network 

	Experimental Analysis 
	Experimental Data 
	Training 
	Results and Comparison with Other Filtering Algorithms 

	Conclusions 

