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Abstract: Object-based change detection (OBCD) has recently been receiving increasing attention
as a result of rapid improvements in the resolution of remote sensing data. However, some OBCD
issues relating to the segmentation of high-resolution images remain to be explored. For example,
segmentation units derived using different segmentation strategies, segmentation scales, feature
space, and change detection methods have rarely been assessed. In this study, we have tested four
common unsupervised change detection methods using different segmentation strategies and a series
of segmentation scale parameters on two WorldView-2 images of urban areas. We have also evaluated
the effect of adding extra textural and Normalized Difference Vegetation Index (NDVI) information
instead of using only spectral information. Our results indicated that change detection methods
performed better at a medium scale than at a fine scale where close to the pixel size. Multivariate
Alteration Detection (MAD) always outperformed the other methods tested, at the same confidence
level. The overall accuracy appeared to benefit from using a two-date segmentation strategy rather
than single-date segmentation. Adding textural and NDVI information appeared to reduce detection
accuracy, but the magnitude of this reduction was not consistent across the different unsupervised
methods and segmentation strategies. We conclude that a two-date segmentation strategy is useful
for change detection in high-resolution imagery, but that the optimization of thresholds is critical
for unsupervised change detection methods. Advanced methods need be explored that can take
advantage of additional textural or other parameters.

Keywords: multiresolution segmentation; WorldView-2; MAD; two-date change detection; OBCD;
high spatial resolution; sensitivity; specificity

1. Introduction

Information on changes in land use and land cover in urban areas is very important for scientific
research into, for example, urban expansion as well as for practical applications such as urban planning
and management. For medium (10 m to 100 m) and low (>100 m) resolution remote sensing images [1],
typical per pixel change detection methods have been able to meet the requirements for change
detection at regional and national levels [2–4], but the increasing availability of high spatial resolution
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data that provide more detailed landscape characterization now allows us to analyse urban areas at a
local level [5,6]. However, change detection using high-resolution images faces additional challenges
due to, for example, small spurious changes [7], high-accuracy image registration, and shadows
resulting from different viewing angles [6,8] (which can be dominant in urban areas). Fortunately,
these effects are reduced by using object-based approaches rather than pixel-based approaches, as has
been demonstrated by many previous researchers [8–10].

Object-based image analysis techniques have recently been more frequently used for change
detection at local levels due to their distinct advantage in overcoming the “salt and pepper” effect of
using high-resolution imagery [3,11–13]. However, assessing the effect that the segmentation scale
has on object-based change detection is a crucial aspect of any particular study [14], when it has been
considered to be a key factor in object-based classification [15,16]. Furthermore, a methodological
challenge faced in the use of an object-based paradigm is whether or not the segmented objects
generated by two-date datasets are perfectly matched [14], since post-classification comparisons
are very popular in change detection [17,18]. In this study we therefore focus on pre-classification
change detection (only identifying “change” or “no change”, and not the type of change [10]),
which generates consistent objects across multi-temporal imageries, in contrast to post-classification
comparisons in which spatial matches between independent segmented objects from two-date datasets
are difficult to establish due either to changes in the objects or to uncertainties in the segmentation [7].
For pre-classification, typical segmentation strategies based on the input bands can be grouped into two
classes: image-object overlay (IOO) strategies in which a second image is overlain directly on objects
segmented from one of the multi-date images for comparison, and multi-temporal image-object (MTIO)
strategies in which images in the entire time series are segmented together [18]. Although Tewkesbury
et al. suggested that MTIO units of analysis might be the most robust, they also indicated that
further investigation is warranted into the use of units of analysis derived from different segmentation
strategies for object-based change detection [18].

Numerous investigations have demonstrated the use of unsupervised change detection techniques
within object-based workflows [12,13,19–23], including the use of Multivariate Alteration Detection
(MAD) [12], Principal Component Analysis (PCA) [24], object multidate signatures [19,20], and direct
detection of differences without feature transformation [23]. However, none of these investigations
provide coherent guidance on the effect of different change detection processes because comprehensive
assessment of such processes is challenging due to the uncertainty in object sizes, the complexity of
segmentation strategies, the diversity of change detection techniques, difficulties in threshold selection,
and the numerous features available [24–26]. In their review, Tewkesbury et al. called for further
investigations into the different methods and units of analysis used [18].

In order to address these problems, we concentrated our investigations on object-based
pre-classification change detection and primarily assessed commonly-used unsupervised change
detection techniques within a number of different segmentation strategies by varying the segmentation
scales, thresholds, and features. This kind of systematic analysis had not previously been attempted and
provided an opportunity to synthesize the results obtained from different change detection processes,
allowing us to compare their performances using different segmentation scales, segmentation methods
and features that might affect our ability to detect change. Since this evaluation seemed to be urgent
according to previous review by Tewkesbury et al. [18], it was only conducted for urban area in this
study. Further experiments are needed for a universal recommendation, but our results are a first step
to help practitioners decide which change detection technique to use, to understand how the factors
investigated affect the change detection accuracy, and to clearly conclude which analysis unit will be
the more robust for their particular purposes.

2. Study Areas

The study concentrated on two areas within the city of Changzhou, China, where land use
and land cover are changing rapidly with development of the Yangtze River delta region (Figure 1).
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For our research, we used two Ortho Ready Standard Level-2A bundles of WorldView-2 (WV2) images
acquired on 31 December 2009 and 12 December 2013. Each image consisted of four 2 m multispectral
bands (e.g., red, blue, green and NIR) and one 0.5 m panchromatic band.
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Figure 1. The two study areas located within the city of Changzhou, China.

3. Methods

The workflow used to systematically assess the factors affecting object-based processes involved
four steps, as shown in Figure 2. The first step involved data pre-processing to generate registered,
pan-sharpened image stacks ready for subsequent processing [27]. In the second step, multiresolution
segmentation [28] was applied separately to a number of different band combinations to generate
a variety of different units of analysis even at the same scale (see Figure 2). In the third step, in order to
identify changed objects using feature information (see Section 3.3), chi-square transformation [13],
which has been widely used in object-based change detection workflows, was applied to a number
of different feature difference signatures. Four methods were applied, including original features
(Direct Feature differentiation based chi-square transformation (DFC)), MAD variates [12], the first
three PCA components [24], and object multidate signatures (Mean and Standard deviation signature
based chi-square transformation (MSC)). As the fourth step, a polygon-based accuracy assessment
method was used to calculate the error matrix [29]. This process was repeated for each segmentation
scale and each threshold applied to the chi-square statistic, resulting in different detection accuracies
under different conditions. Finally, we also evaluated how additional basic textural and Normalized
Difference Vegetation Index (NDVI) information affect the change detection performance on the
investigated unsupervised methods.
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3.1. Data Pre-Processing

The Gram–Schmidt (GS) algorithm was used to fuse the panchromatic band with the multispectral
bands [27,30,31], resulting in pan-sharpened 0.5 m resolution images, which were used in the following
analyses. For our investigations, we extracted two subsets of the WV2 imagery to cover two areas
of similar extent: Study site 1 covering 1128 × 1010 m and Study site 2 covering 1130 × 1012 m
(Figure 1). Each of these subsets (hereafter, image pairs) was processed separately using the following
steps, including image registration and relative radiometric normalization. The 2009 imagery was
first automatically registered to the 2013 imagery using the second-order affine polynomial and the
nearest-neighbour resampling method in ENVI 5.0 (Exelis Visual Information Solutions, Boulder, CO,
USA), resulting in a registration error (root mean square error) of less than 1 m (2 pixels), which is an
acceptable error range for high resolution imagery [32,33]. In order to match the spectral responses of
the two-date images, relative radiometric normalization (histogram matching) was then implemented
using the image pair with the largest spectral variance as the reference images. Two-date images were
then loaded into eCognition software 8.7 (Trimble Geospatial, Munich, Germany) in order to perform
segmentation using the different segmentation strategies.

3.2. Multiresolution Segmentation

In order to ensure a strict separation of analysis units, we followed three strategies for segmentation
using a multiresolution segmentation algorithm [28], as implemented in the eCognition software
package, with segmentation scales ranging from 20 to 200 at intervals of 10. We first imported
8 pan-sharpened (composited multi-spectral (MS)) bands and 2 original panchromatic bands of the
two different dates into the eCognition software and then implemented three segmentation strategies in
eCognition, assigning different weightings to each of the input bands (i.e., 0 or 1, with bands involved
in segmentation processes assigned a weighting of 1 and those not involved in segmentation processes
assigned a weighting of 0). In Strategy 1, the IOO method as mentioned above, only 4 pan-sharpened
bands from the 2013 image were input for the image segmentation (the weightings for pan-sharpened
MS bands in 2013 were set to 1 and for the others to 0). In Strategy 2, the image segmentation
process was performed for a total of 8 pan-sharpened bands from the bi-temporal image datasets
(the weightings for the pan-sharpened MS bands were set to 1 and those for the two panchromatic
bands to 0). In Strategy 3, image segmentation was conducted from the stacked images for a total of
8 pan-sharpenend bands plus 2 panchromatic bands (an equal weighting was assigned to each of the
input bands), since the panchromatic bands possibly contained more detailed textural information.
Both Strategies 2 and 3 are MTIO methods as defined in the introduction. For all three of the strategies,
the features from the 2009 and 2013 images were then calculated based on the same objects for change
comparison. The different weightings on the input bands for segmentation meant that different units
derived from different segmentation strategies could be produced for further change detection analysis,
in order to explore the best segmentation strategy. Multiresolution segmentation typically optimizes the
object homogeneity (which is determined by the compactness parameter) using the colour weighting in
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addition to the shape weighting. Previous research has suggested that a higher colour weighting yields
better segmentation results as it gives greater emphasis to spectral information [15,34]. The colour and
shape parameters were therefore set to 0.9 and 0.1, respectively, in this study. Both smoothness and
compactness were assigned the same weighting (0.5) in order to avoid the bias introduced by compact
or non-compact segments [15,35].

3.3. Feature Calculation

Object size and shape features could not be compared between two-date images using IOO or
MTIO segmentation strategies due to the consistent segmented objects obtained for both dates [18].
We therefore calculated a number of spectral and texture features, together with NDVI values, for
our study, rather than using meaningless geometric features. An NDVI band was calculated for
each pixel as the difference between the near-infrared and red bands divided by their sum [36].
The spectral and NDVI parameters for each object were generated by calculating the means from
the four multispectral bands and the NDVI band. In addition, four textural parameters (gray-level
co-occurrence matrix (GLCM) homogeneity, GLCM angular second moment, GLCM mean, and GLCM
entropy) that have been shown to be important for object-based classification [15,34] were derived
from individual panchromatic bands because we wanted to retain original textural information and
avoid any compositing effect.

3.4. Identifying Changed Objects Using Four Different Methods

Differentiating between images for OBCD, based on a pair of co-registered images, was performed
through object-by-object rather than pixel-by-pixel comparisons, using object statistics (spectral mean
values per object). The chi-square transformation has previously been applied to remote sensing
change detection and has proved to be efficient at detecting both per pixel and per object changes [2,37].
In this study, we used four common methods based on a chi-square transformation for the recognition
of changed objects because of the advantage that this offered of simultaneously taking into account
multiple variables, as reported in previous reviews [2]. Each method was applied repeatedly in order to
detect any changes in objects, using various parameters (e.g., segmentation scale and confidence level 1-α)
in order to evaluate the effects that they have on change detection accuracy. Although these methods
have been widely used in previous studies for a variety of applications, they have often been presented
with different names due to the flexibility of the multivariate statistical techniques. As in some of these
previous studies, we also used some variables derived by PCA and MAD in addition to the direct
spectral and textural features. We named these methods Direct Feature differentiation based chi-square
transformation (DFC), Mean and Standard deviation signature based chi-square transformation (MSC),
PCA based chi-square transformation, and MAD variates based chi-square transformation (Table 1).
A detailed summary of four methods is provided from Section 3.4.1 to Section 3.4.4.

Table 1. Four input differencing variables and their chi-square transformations, and the respective
mean Mahalanobis number (Mn). Detailed explanations can be found in Sections 3.4.1–3.4.4.

Method Difference Detection Value Distribution

DFC Original features difference X Chi square (Mn) χ2 (p)
MSC Xi = (Mi1, · · · , Mib, Si1, · · · , Sib)

T Chi square (Mn) χ2 (2p)

MAD MADi = aT X− bTY
p
∑

i=1

(
MADij
σMADi

)2
χ2 (p)

PCA PCA—first 3 components Chi square (Mn) χ2 (3)

Abbreviations used in this table: DFC: Direct Feature differentiation based chi-square transformation;
MSC: Mean and Standard deviation signature based chi-square transformation; MAD: Multivariate Alteration
Detection; PCA: Principal Component Analysis.
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3.4.1. DFC

For direct differentiation of features, we used the original features of the objects without any
feature transformation for the DFC method. We defined the digital value of the object in the “changed”
dataset (Mahalanobis number (Mn)) as Y, the vector of the difference between all of the features
considered between the two dates for each object as X, the vector of the mean residuals of each feature
as M, the transposition of the matrix as T, and the inverse covariance matrix of all features considered
between the two dates as ∑ −1. We then define a chi-square transformation formula as

Y = (X−M)T ∑−1
(X−M) (1)

where Y is distributed as a chi-square random variable with p degrees of freedom and p is the number
of variables [2]. We can then write that

P
(

Yi < χ2
1−α (p)

)
= 1− α (2)

where the value of χ2
1−α (p) is the changed/unchanged threshold (which can be directly acquired by

referring to the chi-square distribution table [2,23]), and the object Oi is labelled as “changed” only
when Yi exceeds this threshold. The Mahalanobis number for the object Oi, which is termed Yi, is in
this study considered to exceed the threshold χ2

1−α (p) with a confidence level of 1− α.

3.4.2. MAD

We also tested the Multivariate Alteration Detection (MAD) technique, which has often been
used for per-pixel change detection [38–41] and also recently for segmented object recognition [12].
Given two multivariate images with variables at a given segmented object written as X =

[
X1 · · ·Xp

]T

and Y =
[
Y1 · · ·Yp

]T , then difference D between the images is simply defined as aTX − bTY, and
the aT and bT are a set of coefficients from a standard canonical correlation analysis [41], in order to
determine the linear combinations of X and Y with maximum variance (corresponding to minimum
correlation). Therefore, MAD first calculates the canonical variates (aTX and bTY) and subtracts them
from each other, as in Equation (3), and then uses these canonical variates instead of the original
features. The MAD variates are linear combinations of the measured variables and will therefore have
an approximately Gaussian distribution because of the Central Limit Theorem [41]. The dispersion
matrix of the MAD variates [39] is

MADi = aTX− bTY (3)

where MAD variates are orthogonal with respect to variance [40,41]

α2
MADi

= 2
(
1− ρp−i+1

)
(4)

where ρ are eigenvectors of canonical coefficients. Assuming that the orthogonal MAD variates are
independent, we can expect that the sum of the squared MAD variates, with standardization to
unit variance for object j, will approximately follow a χ2 distribution with ρ degrees of freedom [41].
This can be expressed as

Tj =
p

∑
i=1

( MADij

αMADi

)2

∈ χ2 (p) (5)

Similarly, we can label the object j as “changed” if the observed Tj value exceeds the threshold
χ2 (p) with a specific confidence level of 1− α. Here, Tj actually refers to the Mahalanobis number,
as in Equation (1), with the only difference being that the input vector consists of MAD variates instead
of the original features of the objects.
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3.4.3. MSC

Desclée et al. [19] and Bontemps et al. [20] developed a similar method using a chi-square
transformation, which, in this study, we refer to as a mean and standard deviation signature
based chi-square transformation (MSC). For this method, the mean (M) and standard deviation (S),
corresponding, respectively, to measures of feature difference and heterogeneity, were calculated for
use as an input signature instead of using a direct input of the original feature difference, in order to
improve the change detection capability [19]. The multiple-date signature Xi of each object is then
defined as

Xi = (Mi1, · · · , Mib, Si1, · · · , Sib)
T (6)

where b indicates the number of features, i is the object number, Mib is the mean of feature b for object i,
and Sib is the standard deviation of feature b for object i. The same chi-square transformation formula
(Equation (1) in Section 3.4.1) was used to compute the Mahalanobis number C using the multiple-date
signature Xi (which is chi-square distributed with 2b degrees of freedom [19], because of the extra
difference in standard deviations). Thus, for a confidence level of 1− α.

P
(

Ci < χ2
1−α (2b)

)
= 1− α (7)

The “changed”/”unchanged” threshold, therefore, becomes χ2
1−α (2b) [13].

3.4.4. PCA

PCA is another data transformation method; it converts a set of interrelated variables into
uncorrelated variables through orthogonal transformation to reduce the dimensionality of the data, and
has been widely used in remote sensing to detect changes in a variety of ways [24,42,43]. A correlation
matrix of data variables is first calculated and the eigenvectors and eigenvalues of the correlation
matrix are then computed in order to find the principal components [44]. A principle component is
generally defined as the eigenvector with the highest eigenvalue, which indicates the greatest variation.
The eigenvectors are ordered by eigenvalues, from the highest to the lowest, and the components with
lower eigenvalues and hence low significance can be ignored. We applied standardized PCA to the
differencing feature vector of the object, thus reducing the dimensionality of a data set while as far
as possible retaining any variation [43]. The first three components from the whole data set, which
were generally considered to retain most of the information, were then selected as input variables
for calculating the Mahalanobis number so that changed objects could be automatically detected.
Following chi-square transformation, the Mahalanobis number derived from Equation (1) follows a χ2

distribution, with 3 degrees of freedom.

3.5. Accuracy Assessment

In this study, manual interpretation was used to recognize true change/no change polygons for
further assessing the performance of the change detection comparison, and the area was delineated
as a true change polygon when visual difference of colour or texture was significant between both
date images. We assessed the four described common unsupervised change detection methods in
terms of their overall accuracy, sensitivity, and specificity, which were derived from an error matrix
calculating by the areal proportions [29]. The performances of the different change detection methods
and segmentation strategies were compared at 19 image segmentation scales for 5 confidence levels
(i.e., 0.90, 0.95, 0.975, 0.99 and 0.995) on the basis of their overall accuracy by calculating the proportion
of the total area that was correctly identified as either “changed” or “unchanged” [45]. Given the
reference R with m + n polygons {R1, R2, . . . , Rm+n} and labelled segmentation objects S, the accuracy
measures are calculated by matching {Si} to each reference object Ri. The overall accuracy is defined as:
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Overall accuracy =

m
∑

i=1
∑

j=1

∣∣∣Rchange_i ∩ Schange_j

∣∣∣+ n
∑

i=1
∑

j=1

∣∣∣Rnochange_i ∩ Snochange_j

∣∣∣
m+n
∑

i=1
|Ri|

(8)

where m denotes the number of true change polygons in reference layer; n is the number of true
no change polygons in reference layer; |∗| denotes overlapping area; Rchange_i indicates i-th true
change polygon in reference layer; Schange_j denotes j-th recognized change object overlaying with
i-th true change polygon Rchange_i; Rnochange_i indicates i-th true no change polygon in reference
layer; and Snochange_j denotes jth recognized no change object overlaying with i-th true no change
polygon Rnochange_i.

In addition to the overall accuracy, the accuracy of a binary classification is often described in
terms of sensitivity and specificity [46]. The sensitivity is the proportion of an area for which a detection
method correctly identifies change, while the specificity is the proportion of an unchanged area that is
correctly identified as such [46]. They are defined as:

Sensitivity =

m
∑

i=1
∑

j=1

∣∣∣Rchange_i ∩ Schange_j

∣∣∣
m
∑

i=1
|Ri|

(9)

Speci f icity =

n
∑

i=1
∑

j=1

∣∣∣Rnochange_i ∩ Snochange_j

∣∣∣
n
∑

i=1
|Ri|

(10)

and, for explanation, see Equation (8).
We therefore also calculated the sensitivity and specificity at each segmentation scale using different

change detection methods and segmentation strategies, in order to explore the relationship between
sensitivity and specificity. Finally, we compared the performance of the different change detection
methods and segmentation strategies, with and without adding textural and NDVI information.

4. Results

The primary aim of this study was to investigate the effects that segmentation strategies,
commonly used supervised change detection techniques, segmentation scale, and feature space have
on object-based frameworks. The images (a), (b), (d), and (e) in Figure 3 show two-date composited
images for both urban study sites, while (c) and (f) are reference maps from manual interpretation,
which only show either “change” or “no change” but do not specify the type of change because of
the use of the unsupervised methodology. Based on previous assumption by Foody [46] that the
prevalence of change (the amount of change in the confusion matrix) had an impact on the accuracy of
results, Foody found that a balance between sensitivity and specificity was generally achieved at a
prevalence of approximately 50% [46]. On the basis of our specified accuracy objectives [29], we chose
almost equal areas of “change” and “no change” as reference polygons for validation (14.08 ha of
“change” and 17.16 ha of “no change” for Study site 1, and 9.02 ha of “change” and 11.32 ha of “no
change” for Study site 2), when delineating the changed and unchanged areas within the very high
resolution images by manual interpretation.
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Figure 3. Study sites: (a,b) are WorldView-2 true-colour images for Study site 1; and (c) shows the
reference polygons from manual interpretation; (d,e) are WorldView-2 true-colour images for Study
site 2; and (f) shows the reference polygons for Study site 2. In the ground reference maps, the red
patches indicate changed areas while blue patches indicate unchanged areas.

4.1. Responses of Detection Accuracy to Segmentation Strategy and Scale

The effects that different segmentation strategies and segmentation scales had on the overall
detection accuracy of four unsupervised change detection methods are summarized in Figures 4 and 5,
for both urban areas. Similar patterns of change in overall accuracy with increasing segmentation
scale and increasing confidence level were observed for segmentation strategies that used either eight
pan-sharpened bands combination or eight pan-sharpened bands +2 panchromatic bands combination
(at segmentation scales from 20 to 200). The overall accuracy for the segmentation strategy that used
four bands appeared to be lower than that for the other two segmentation strategies, at the same
confidence level and segmentation scale. This may be attributable to the fact that the strategies that
used eight bands or 10 bands generally yielded smaller objects and any change was therefore more
significant for these objects. Irrespective of the unsupervised change detection method employed,
the results also suggested that the change detection method that used a four-band segmentation
strategy would require a lower confidence level to achieve a comparable detection accuracy to the
other two strategies (see Figures 4 and 5). Our results also showed that the overall detection accuracy
was sensitive to changes in the segmentation scale, for all of the tested methods. The overall accuracy
in all four change detection methods increased rapidly with an increase in the segmentation scale from
fine to medium, followed by a more gradual increase (or even a decrease in some cases) with further
increases in scale (for example, a decrease occurred at a scale of about 100 using the MAD change
detection method).
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In addition to the factors discussed above, the relationship between change detection accuracy
and confidence level was also investigated by generating separate “changed” images at five different
confidence levels (i.e., 0.995, 0.99, 0.975, 0.95 and 0.9). The results indicated that the overall accuracy
of all of the unsupervised change detection methods considered increased by different amounts as
the confidence level was reduced. A rapid increase in overall accuracy generally occurred between
confidence levels of 0.995 and 0.95: the overall accuracy at confidence levels below 0.95 remained
relatively stable compared to the overall accuracy at higher confidence levels. There were, however,
very large differences between the accuracy levels of the four change detection methods when using the
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same parameters (i.e., the same confidence levels, segmentation scales, and segmentation strategies).
Comparisons between the four change detection methods indicated that MAD outperformed all of the
other methods tested, especially when a medium segmentation scale was used (for example, a scale of 100).

4.2. Relationship between Sensitivity and Specificity

We evaluated the relationship between sensitivity (true positive—change) and specificity
(true negative—no change) using a fixed confidence level of 0.9, at which the best overall accuracy was
likely to be observed using the same segmentation scales and strategies, as shown in Figures 4 and 5.
The results revealed a slight decrease in sensitivity as the segmentation scale increased (Figure 6a,b), while
the specificity increased rapidly (Figure 6c,d). The sensitivity thus appeared to be less influenced by
segmentation scale than the specificity. In addition, the sensitivity when using two-date segmentation
strategies was lower than that when using single-date segmentation strategies. Note that, for each
segmentation scale, the lowest sensitivity was observed for two-date segmentation using the MSC
method and this was 10% lower than that for single-date segmentation (Figure 6a,b). In contrast,
two-date segmentation strategies with eight bands or 10 bands had consistently higher specificities at
most segmentation scales than single-date segmentation strategies with four bands. Unlike single-date
segmentation, similar patterns of change were observed in the sensitivity and specificity at different
segmentation scales for both spectral and spectral-plus-PAN (PANchromatic) two-date segmentation
(Figure 6c,d). Figure 6c,d also show that MAD had better specificity than the other methods considered,
while PCA frequently had slighter higher sensitivity.
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Figure 6. Sensitivity and specificity at each segmentation scale using four change detection methods
and three segmentation strategies, for both study sites: (a) sensitivity for Study site 1; (b) sensitivity
for Study site 2; (c) specificity for Study site 1; (d) specificity for Study site 2. The value of the
y-axis indicates the proportion of true positive/negatives, where 0 is completely inaccurate, while 1 is
completely accurate.

4.3. The Effect of Additional Parameters on Detection Accuracy

The results of further investigations into the effect of including additional textural and NDVI
information in each segmentation strategy using these four methods (at a fixed confidence level of
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0.9 and a segmentation scale of 140) are shown in Figures 7 and 8. The results indicate that adding
individual object-level textural or NDVI information did not generally lead to better accuracy in
the different method and segmentation strategy combinations than using only spectral parameters.
On the contrary, the three measures of accuracy frequently yielded worse results with the additional
information than with spectral parameters alone; the magnitudes of changes with the additional
information were also inconsistent between the different features, change detection methods, and
segmentation strategies. Improvements in accuracy with the addition of textural or NDVI information
only occurred in a few cases, and these occasional improvements amounted to no more than 5%,
whereas reductions in accuracy were common and were up to 50%. In most cases, PCA was the
method most sensitive to the extra textural and NDVI information, followed by MAD; the DFC and
MSC methods were both influenced to a similar degree.
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Figure 7. Changes in the three measures of accuracy for Study site 1 (0.1 indicates 10%) following
the addition of object-level textural and Normalized Difference Vegetation Index (NDVI) information.
Scale: 140.
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Figure 8. Changes in the three measures of accuracy for Study site 2 (0.1 indicates 10%) following the
addition of object-level textural and NDVI information. Scale: 140.

5. Discussion

This study has evaluated the effects of segmentation strategy, scale, feature space and
unsupervised method for object-based change detection within an urban area (Changzhou, China).
The validation procedure has demonstrated that the change detection accuracies were impacted by the
uncertainty of parameters and methods in OBCD, where the segmented object was considered as the
change detection unit instead of pixel.

5.1. The Utility of OBCD and Segmentation Scales

Our results demonstrate the utility of an object-based change detection and confirm the importance
of the selected segmentation scale in such an approach. The highest accuracies in most cases did not
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occur at the fine segmentation scales (close to pixel size) but in the coarser segmentation scale range
from 100 to 200. The lowest accuracies were observed at segmentation scales close to the pixel size.
For Study site 1, the accuracy of the change map at a scale of 100 (88.2%) was better than that at a scale
of 20 (83.02%) (Figure 9e) when using the MAD method. We assumed that this was related to “sliver
objects”, i.e., spurious polygons generated within an area that is easily identified as having changed
due to slightly different delineations of the same entity [47], which may occur because of difficulties in
achieving high accuracy co-registration for high-resolution imagery and also because quite diverse
information can be obtained on the same object from bi-temporal images due to off-nadir viewing
angles [8]. These phenomena are more common at fine segmentation scales (Figure 9c), while the
merging of objects at coarse segmentation scales allows these effects to be more or less eliminated by
smoothing the local object-level variability (Figure 9b), although some sub-objects are likely to remain
undetected. In other words, object-based methods are capable of providing improved performance
over pixel-based methods for change detection in high-resolution imagery [9], since more slivers and
gaps are likely to occur at pixel level.
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Figure 9. Change maps were produced for Study site 1 using the Multivariate Alteration Detection
(MAD) method and segmentation Strategy 2; the segmentation scale was fixed at 20 or 100 to show the
effect of “sliver objects”. (a) A example result of segmentation at scale 100; (b) Change objects detected
for the segments of (a); (c) A example result of segmentation at scale 20; (d) Change objects detected for
the segments of (c); (e) Change map at scale 20 and 100 respectively for area 1.

5.2. Effects of Different Segmentation Strategies

We were somewhat surprised that, in this study, single-date segmentation using the four bands
strategy generally had a higher sensitivity than two-date segmentation strategies, although it was
assumed that changes on a sub-object scale might remain undetectable in single-date segmentation
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using the same confidence level [18]. We attributed the improved sensitivity to the integrality of
changed objects in the single-date segmentation strategy, whereas two-date segmentation produced
more fragmented patches. For instance, a change from fragmented bare land to a building could be
more easily detected using single-date segmentation than using two-date segmentation. Unfortunately,
the improvement in overall accuracy seems to be largely driven by the specificity, with there being
a smaller probability of being wrong due to the reduced number of objects considered to have
changed [20]. Two-date segmentations are therefore suggested to contribute more to the unsupervised
change detection method than expected because the specificity benefitted more from the two-date
segmentation strategies.

5.3. Effects of Different Unsupervised Change Detection Methods

Since the same detection technique (based on a chi-square statistic) was used for four input
differencing vectors, the measures of accuracy were strongly related to the threshold determined by the
confidence level and the degree of freedom. None of the four methods were found to have a dominant
advantage over the others since the same accuracy level could be achieved by considering different
confidence levels, and it was noted that threshold selection was critical for all of these methods.
However, the good performance of MAD with the same parameters can be attributed to its use of
the uncorrelated variables from canonical correlation analysis [37]. For PCA, the largest change in
magnitude was commonly observed when additional textural and/or NDVI information was used
to calculate the principle components. We assumed that this was related to the fixed three degrees
of freedom because PCA always lost some information more or less with the first three components.
Subsequently, it can be concluded that MAD seems to be a superior unsupervised change detection
method for an OBCD scheme.

5.4. The Lack of Accuracy Improvement with Additional Features

It should be noted that, in most cases, the unsupervised change detection methods considered
in this study were unable to benefit from the investigated additional features other than spectral
parameters. The lack of improvement in accuracy with the inclusion of additional features may be
attributable to the low capability of these change detection methods for dealing with multi-dimensional
data [18]. However, the extra features certainly provide more information that should improve the
accuracy of change detection in remote sensing imagery (e.g., for NDVI see Ward et al. [48] and for
textural features see Im et al. [49], even though different methods were used). An improvement
in overall accuracy with additional information on entropy was observed by Yang et al. [13] using
an object-based method, although adding NDVI had a detrimental effect on the accuracy. Further
improvements in OBCD would therefore require an improved change detection method that was able
to take advantage of additional information such as textural information.

6. Conclusions

This paper presents a systematic analysis of object-based change detection to explore the effects
that segmentation strategies, segmentation scales, feature space, and the choice of four unsupervised
change detection methods have on the accuracy of change detection. We found that object-based
methods at medium segmentation scales yielded a far higher level of overall accuracy than the same
methods at fine segmentation scales close to the pixel size, with the segmentation scale that yielded
maximum accuracy varying with the change detection method. The use of two-date segmentation
for object generation was found to improve change detection with the tested methods. Choosing the
optimal threshold appeared to improve the accuracy of each method, but MAD was still found to
be superior to the other tested methods, under equivalent conditions. The inclusion of additional
textural and NDVI information failed to improve the accuracies of these four unsupervised change
detection methods. Future work will need to be directed towards the development of improved change
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detection methods that are able to take advantage of textural and other information derived from the
segmented objects.
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