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Abstract: The paper reports a technique used to construct a reference time series for the fraction
of absorbed photosynthetically-active radiation (FAPAR) based on remotely-sensed data in the
largest Russian arid wetland territory. For the arid Volga-Akhtuba wetlands, FAPAR appears to be
an informative spectral index for estimating plant cover health and its seasonal and annual dynamics.
Since FAPAR algorithms are developed for multiple satellite sensors, all FAPAR-based models are
suggested to be universal and useful for future studies and long-term monitoring of plant cover,
particularly in wetlands. The model developed in the present work for FAPAR temporal dynamics
clearly reflects the field-observed seasonal and annual changes of plant cover in the Volga-Akhtuba
floodplain wetlands. Various types of wetland plant communities were categorized by the specific
parameters of the model seasonal vegetation curve. In addition, the values derived from the model
function allow quantitative estimation of wetland plant cover health. This information is particularly
important for the Volga-Akhtuba floodplain, because its hydrological regime is regulated by the
Volzhskaya hydropower plant. The ecosystem is extremely fragile and sensitive to human impact,
and wetland plant cover health is a key indicator of regulatory efficiency. The present study is
another step towards developing a methodology focused on arid wetland vegetation monitoring and
conservation of its biodiversity and natural conditions.

Keywords: FAPAR; Volga-Akhtuba floodplain; wetlands; vegetation; temporal dynamics model;
calibration

1. Introduction

1.1. Background

The Volga-Akhtuba floodplain extends for more than 400 km along the Volga River, from the city
of Volgograd and southeast to the Volga delta and the Caspian Sea. Its unique wetland ecosystems are
the foundation of local economies, including electricity generation, agriculture, livestock production,
fishery, chemical industry, recreational tourism, and so forth. Surrounded by desert and dry steppes,
the floodplain is a huge oasis of human activity within three administrative territories of Russia:
the Volgograd region, the Astrakhan region and the Republic of Kalmykia. Ecosystem monitoring
along with the regulation of the hydrological regime in the area allows understanding, predicting
and mitigating various natural and human impacts on ecosystems, particularly those associated
with hydropower dam water discharge. These actions are crucial to preserving the development
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of the region [1]. In recent years, accelerating desertification processes have been observed in the
Volga-Akhtuba floodplain [2]. Local wetlands are extremely sensitive to the hydrological regime in the
arid environment, and their monitoring is essential for biodiversity conservation [3–11]. Because of
the enormous size of the area under study (over 9000 km2), remote sensing techniques represent the
only source of an unbiased and balanced broad view of the problem. In this framework, the vegetation
activity is not only a significant factor in the local economy (e.g., in agriculture, livestock production),
but it is also a good indicator of the integral condition of ecosystems [12–21].

Since the 1930s, studies of plant cover in the Volga-Akhtuba floodplain have been performed
locally in the field using geobotanical methods [17–20] and hydrological research [5,6,22]. The use
of remotely-sensed data only began in recent years. Research on the vegetation index dynamics
using Landsat data has been done in the test areas of the Volga-Akhtuba floodplain mostly for the
summer low-water season [2,23]. However, Landsat time series applicability is methodologically
limited because of the temporal resolution of Landsat data, which does not allow direct comparison of
the behavior of plant cover for different years or for different sources of remotely-sensed data.

1.2. FAPAR Index

The fraction of absorbed photosynthetically-active radiation (FAPAR) is one of the fundamental
terrestrial state variables in the context of global change sciences. FAPAR is recognized as an essential
climate variable by the Global Climate Observing System [24]. FAPAR represents the fraction of
photosynthetically-active radiation absorbed by plant cover for photosynthesis. This index includes
reflectance values in the red and infrared bands because green plants strongly absorb solar radiation in
the red spectral region owing to photosynthesis and strongly reflect and scatter electromagnetic waves
in the near infrared. Thus, the FAPAR index corresponds only to the living elements of the canopy that
are green. Reflectance in the blue band is used to decontaminate the red and the near-infrared bands
from atmospheric effects [21,25–28].

In this framework, FAPAR is an informative index for estimating Volga-Akhtuba wetland plant
cover health and its seasonal and annual dynamics. Since FAPAR algorithms are developed for
multiple sensors, we suggest that FAPAR-based models should be universal and useful for future
studies and long-term monitoring of plant cover, particularly in wetlands [12,21,29]. Many studies on
FAPAR dynamics in various plant ecosystems, including estimation of plant cover health, have been
done in different areas and types of plant ecosystems worldwide. This index has been shown to be
a reliable indicator of the state of a plant ecosystem [12,25,26,29]. However, FAPAR has never been
applied in the Volga-Akhtuba floodplain.

1.3. FAPAR Temporal Dynamics

When analyzing the temporal dynamics of FAPAR for a particular year, a researcher often
needs a reference model that serves as a “normal”, “regular” curve for examining any deviations.
This reference model should include a time-continuous deterministic formula that provides a reference
value of FAPAR for any point in time. The current work is aimed at presenting a simple version of such
a model that requires no additional information beyond some FAPAR time series (possibly partial) for
one or more reference growing seasons for calibration.

The model is relevant for geographic areas with distinct non-growing and growing seasons and
particularly for arid wetlands. It is based on several physical and mathematical considerations that
seem to be very well-suited for monitoring vegetation activity. These considerations were adjusted
and tested, using remote-sensing and field data for several land sites in the Volga-Akhtuba floodplain.
The model also provides several values that can be used to classify plant cover based on its yearly
vegetation activity pattern. These indicator values may also be useful for comparing land sites
with different environmental conditions and vegetation types. Other studies have applied similar
approaches [30].
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1.4. Test Sites

A detailed overview of test sites used in this study is provided in Table 1, and their spatial
distribution is shown in Figure 1. These 15 land sites have different types of plant cover (from desert
to wetland), and each is approximately 6× 6 km2 in size. Site details are listed in Table 1.

Figure 1. Test sites under study: wetlands, deserts and dry steppes.

Table 1. List of test sites.

Ref. No. Site Name/Land Type Location (N Latitude, E Longitude) Prevailing Plant Cover Type

1 Pahotniy 48◦42′44.9498′′ Woodlands (oakeries, black poplar and ash
runnel vicinage 44◦43′12.6910′′ communities), abandoned agricultural lands

2 Zamora/dried 48◦28′29.4686′′ Woodlands (black poplar and ash communities),
lake vicinage 44◦59′1.2918′′ secondary feather grass-sagebrush steppe

3 Chichera 48◦33′39.7494′′ Steppe meadows and cereal meadowslake vicinage 45◦8′23.6545′′

4 Kaloshi 47◦59′9.0350′′ Cereal meadowslake vicinage 46◦21′7.2180′′

5 Tarpan 47◦45′0.1975′′ Herb and cereal meadows temporally varying
runnel vicinage 46◦36′37.2794′′ in proportions, partially overgrazed

6 Osochniy 47◦48′9.5740′′ Cereal and Glycyrrhiza glabra meadows,
runnel vicinage 46◦41′16.6068′′ partially overgrazed

7 Karasyachiy 47◦42′24.3036′′ Cereal with Glycyrrhiza glabra meadows
Ilmen vicinage 46◦48′44.6429′′ and steppe meadows

8 Maiorskoe 47◦36′6.7570′′ Herb and cereal meadows temporally varying
lake vicinage 46◦44′54.1360′′ in proportions
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Table 1. Cont.

Ref. No. Site Name/Land Type Location (N Latitude, E Longitude) Prevailing Plant Cover Type

9 Akhtuba-Kriusha 47◦14′46.0665′′ Herb and cereal meadows with Glycyrrhiza glabra
interfluve 47◦17′53.5291′′ temporally varying in proportions

10 Sukhaya Akhtuba 47◦02′38.5398′′ Herb and cereal meadows temporally varying
runnel vicinage 47◦43′47.7512′′ in proportions

11 Bolkhuny 48◦7′52.5642” Desert, overgrazeddesert 46◦32′41.8272”

12 Leninsk 48◦44′30.3269′′ Dry steppesteppe 45◦18′30.5118′′

13 Sukhodol 48◦36′42.285” Woodlands (ash and oleaster communities),
crop fields 44◦55′14.4912” settlements and abandoned agricultural lands

14 Seroglazovo 47◦08′11.2606′′ Desertdesert 48◦06′8.1519′′

15 Proran 48◦39′44.0826′′ Marshesrunnel vicinage 45◦9′8.7671′′

2. Methodology and Data

2.1. General Considerations

For further discussion, we will use dimensionless time t, normalized within the growing season:

0 ≤ t =
[DOY− GB]mod 365
[GE − GB]mod 365

≤ 1 (1)

where DOY is the current day of the year and GB and GE are the days at the beginning and end of the
growing season, respectively. Modulo M operation [·]mod M is reasonable for regions where GE is less
than GB, for example, in the Southern Hemisphere.

Because we are focused on the “normal” annual dynamics of vegetation activity, which are
intended to serve as a reference, we assume that the state of the activity is close to some steady
year-to-year life cycle, and nothing happens during the non-growing season. Mathematically speaking,
this assumption means that the FAPAR function is periodic over normalized time with a period of 1.
According to the Fourier series theory, any finite continuous periodic function can be represented as
a converging sum (possibly with an infinite number of summands) over j of elementary harmonic
terms bj cos 2π jt + cj sin 2π jt. A partial sum omits the tail part of the sum with term numbers over
some n. This partial sum yields an approximate result with some predictable accuracy. The greater the
number of terms, the more rapid oscillations are included in the model. In our experience, vegetation
activity does not change too quickly, so oscillations shorter than 1/6 of a growing season can be
neglected in the model. Thus, considering n between 4 and 6, we can write the general form of the
FAPAR model function:

f (t) = a0 +
n

∑
j=1

(
bj cos 2π jt + cj sin 2π jt

)
(2)

where coefficients a0, b1, . . . , bn, c1, . . . , cn are determined in the following sections.

2.2. Additional Constraints

Presuming that the transitions between non-growing and growing seasons proceed normally,
we consider vegetation activity to have a smooth fade-in at the beginning of the growing season and to
fade out smoothly at the end. This consideration means a derivative of zero as the boundary conditions:
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∂ f
∂t

∣∣∣∣
t=0

=
∂ f
∂t

∣∣∣∣
t=1

= 0,
∂ f
∂t

= 2π
n

∑
j=1

j
(
bj sin 2π jt− cj cos 2π jt

)
(3)

which give:
n

∑
j=1

j cj = 0 ⇒ c1 = −
n

∑
j=2

j cj (4)

Finally, from Equations (2) and (4), we obtain:

f (t) = a0 +
n

∑
j=1

bj cos 2π jt +
n

∑
j=2

cj (sin 2π jt− j sin 2πt) (5)

where a0, b1, . . . , bn, c2, . . . , cn are the best coefficients to approximate the reference FAPAR data, given
a particular number of harmonics n. The number n is a trade-off between formula complexity, reference
data approximation accuracy and reference data availability (because the number of reference points
can be insufficient for determining a large number of coefficients).

2.3. Computing Harmonic Coefficients Using Reference Data and the Least Squares Method

Let some N reference FAPAR values Fi be known for time instances ti. The reference value is
usually accompanied by some estimated standard deviation σi that indicates the accuracy level
of a particular measured FAPAR value Fi. The described dataset can either be available from
special databases as ready-to-use quantities obtained from remotely-sensed data [31], or it can be
manually derived from multispectral satellite imagery (e.g., using special software like ArcGIS, BEAM,
GRASS GIS) [21,26,27,32]. If no estimated standard deviations are available for the whole dataset, all
σi are typically set equal (e.g., σi = 1 for all i). If only a part of σi is unknown, then unknown values
can usually be set to the mean value of known ones.

Thus, we have a set of triplets {ti, Fi, σi}, which are assumed to comply (to a certain extent) with
the model given by Equation (5), so that for every i (from 1 to N):

Fi = a0 +
n

∑
j=1

bj cos 2π jti +
n

∑
j=2

cj (sin 2π jti − j sin 2πti) + ri, E[ri] = 0 E[r2
i ] = σ2

i , (6)

with ri being a (desirably small and generally unbiased) unknown deviation of an observed FAPAR
value Fi from the model, arising from both measurement uncertainties and the model inaccuracy and
E[·] standing for mathematical expectation. The principle criterion for choosing a0, b1, . . . , bn, c2, . . . , cn

is now the minimal sum of residuals squared, with respect to its accuracy indicators σi:

N

∑
i=1

r2
i

σi
=

N

∑
i=1

1
σi

(
a0 +

n

∑
j=1

bj cos 2π jti +
n

∑
j=2

cj [sin 2π jti − j sin 2πti]− Fi

)2

−−−−−−→
a0, bj , cj∈R

min (7)

Strictly speaking, the function minimized in the criterion given in Equation (7) and the particular
weights, which are chosen as 1/σi in our case, both depend on the probability distribution of ri.
The distribution is usually unknown, and thus, it is conventionally assumed to be close to Gaussian
and independent for each ri. This assumption yields the sum of squares in Equation (7). With regard
to weights, we should keep in mind that the estimated values of standard deviation σi are usually not
very accurate, so this quantity should not affect the solution too much. In fact, using weights in the
form of 1/σ2

i depends more strongly on the accuracy of σi and yields apparently worse results with
real data.

Note that the model on the right side of the Equation (6) is linear over unknowns a0, bj, cj;
therefore, it can be rewritten as a matrix equation in the following form:
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z = Hx + r, z = [F1, · · · , FN ]
T, x = [a0, b1, · · · , bn, c2, · · · , cn]

T , (8)

H =

 1 cos 2πt1 · · · cos 2πnt1 sin 4πt1−2 sin 2πt1 · · · sin 2πnt1−n sin 2πt1
...

...
. . .

...
...

. . .
...

1 cos 2πtN · · · cos 2πntN sin 4πtN−2 sin 2πtN · · · sin 2πntN−n sin 2πtN

 (9)

with [·]T meaning matrix transposition. In this notation for obtaining the optimal values of a0, bj, cj, let
us first introduce the goal function J:

J(a0, b1, . . . , bn, c2, . . . , cn) = (Hx− z)TW(Hx− z), (10)

W =


1/σ1 0 · · · 0 0

0 1/σ2 0 0
...

. . .
...

0 0 1/σN−1 0
0 0 · · · 0 1/σN

 (11)

that is, of course, the same as in Equation (7). The goal function J then has its optimal value at point
x̃ where:

∇x J|x=x̃ =

[
∂J
∂a0

,
∂J
∂b1

, · · · ,
∂J

∂bn
,

∂J
∂c2

, · · · ,
∂J
∂cn

]∣∣∣∣
x=x̃

= 0 (12)

The latter is a system of linear equations over x, which is resolved by:

x̃ =
(

HTWH
)−1

HTWz (13)

The inverse matrix in Equation (13) exists if and only if there are 2n different ti values in the
reference data. Therefore, reference data must contain FAPAR values for at least 2n different dates
within the growing season. For n = 6, there are 12 values, which are normally available. Typical FAPAR
data series usually contain values for more than 30 different days in each year (10-day composites),
and most of them fall within the growing season.

The desired coefficients for the harmonic model in Equation (6) are just the corresponding
components of x̃ as noted in Equation (8), for example, a0 = x̃1, b1 = x̃2, c2 = x̃n+2, and so on.
The coefficient c1 is then calculated according to Equation (4). All coefficients for the harmonic sum in
Equation (2) are now determined.

2.4. Accuracy Assessment

To validate the model quantitatively, three values were considered. Since the accuracy of
reference FAPAR data varies significantly, direct comparison with the model is not always correct.
Consequently, some weighting should be made when calculating mean values for differences between
the model and data.

The first accuracy measure is a weighted mean of residuals between the model and actual data
(RWM, residuals’ weighted mean):

RWM =
1
N

N

∑
i=1

wi
w

[Fi − f (ti)] , wi =
1
σi

, w =
1
N

N

∑
i=1

wi (14)
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In real terms, this value represents the overall deviation of the model from the reference data, and it
should be as small as possible. The least squares procedure guarantees that it is close to zero.

The second quantity is a weighted root-mean-square deviation of residuals (RWD, residuals’
weighted RMS deviation):

RWD =

√√√√ 1
N

N

∑
i=1

w2
i

w2 [Fi − f (ti)]
2 (15)

Smaller values of RWD show that the appropriate model has been chosen to approximate the
reference data series.

The last accuracy measure is the theoretically-estimated standard deviation (ESD) of the
model predictions derived from a priori estimates of reference data and observability issues in the
approximation problem. Since the uncertainty of the model arises from uncertainties in the estimation
of harmonic coefficients and all of these values are multiplied by factors between 0 and 1, the upper
bound for the standard deviation of the model is estimated to be:

ESD =

√√√√σ̃2
a0 +

n

∑
j=1

(
σ̃2

bj + σ̃2
cj

)
(16)

where σ̃a0, σ̃bj and σ̃cj stand for estimated standard deviations of harmonic coefficients. They are
defined from the least squares procedure as square roots of the diagonal elements of estimation error
covariance matrix P, which in our case is the following:

P =
(

HTWH
)−1

HT H
(

HTWH
)−1

(17)

Thereafter, σ̃a0 =
√

P11, σ̃b1 =
√

P22, σ̃c2 =
√

Pn+2 n+2, and so on, and σ̃c1 is computed according
to Equation (4) as:

σ̃c1 =

√√√√ n

∑
j=2

(
j σ̃cj

)2 (18)

Thus, although ESD is a purely theoretical value that highly depends on a priori quantities, it also
reflects the uncertainty of harmonic coefficients based on the number of reference data points and their
diversity in time within the growing season and on the estimated errors in reference FAPAR data.

2.5. Reference Data

FAPAR products used in the present study are based on SeaWiFS and MERIS satellite sensor
data [26,27] downloaded from the European Commission Joint Research Centre (JRC) website [31].
The data are FAPAR JRC products, spatially averaged over 3× 3 pixel fragments (i.e., about 6× 6 km2),
10-day time composites created according to the time composite algorithm developed by Pinty et al. [32].
Please refer to [21] for more details.

Test areas under study are listed in Table 1 and shown in Figure 1 on the map. They were chosen
to have different types of relatively homogeneous intrinsic plant cover. Detailed descriptions of plant
communities were made in the field at reference points within all test sites. The time span of the data
used extends from 1997–2006. The years 1997–2005 encompassed a period of relatively high Volga
runoff featuring healthy plant communities, so FAPAR measurements for this period were used as
reference data to calibrate the model. In contrast, the year 2006 was extremely dry, and the vegetation
activity and FAPAR dynamics for 2006 differ significantly from those of 1997–2005.



Remote Sens. 2016, 8, 762 8 of 16

3. Results

3.1. FAPAR Yearly Temporal Dynamics Model

The complete methodology underlying the derivation of the model and its rationale are given
in Section 2. Let F be the value of the fraction of absorbed photosynthetically-active radiation
(FAPAR index). Its model (reference) value F∗ for a given day of the year is then calculated as follows:

F∗(DOY) ≡ f (t) = a0 +
n

∑
j=1

(
bj cos 2π jt + cj sin 2π jt

)
, t =

[DOY− GB]mod 365
[GE − GB]mod 365

∈ [0, 1] (19)

where:

• DOY is Day Of Year;
• GB is the beginning of a growing season; for the Volga-Akhtuba floodplain, we assume GB = 60

(i.e., the beginning of March);
• GE is the end of a growing season; for the Volga-Akhtuba floodplain, we accept GE = 330 (i.e., the

end of November);
• t is the relative (dimensionless) time within the growing season;
• n is the total number of harmonics; currently, we suppose n is in the range from 4–6; for all 15 test

sites, the sixth harmonic has an amplitude of less than 0.01, which is definitely beyond the
accuracy of the determination of the FAPAR index itself [26];

• j is the number of the harmonic terms;
• a0, bj, cj are the harmonic coefficients computed using an almost standard (except for some

additional constraints and weighting described in Section 2) least squares methodology for the
reference FAPAR time series;

• small f is used instead of F∗ just to clearly distinguish between the function of DOY and the
function of relative normalized time t;

• [·]mod M means modulo M operation, which is reasonable for regions where GB is greater than GE
(e.g., in the Southern Hemisphere); M = 365 in our case because 365 is the longest time interval
between two different days within a year.

3.2. Model-Based Indicators

The model-derived quantities listed below may be used for the classification of a land site based
on its yearly vegetation activity pattern.

• a0, a yearly mean FAPAR value.
• AMP, amplitude of the main harmonic and peak-to-peak amplitude (main harmonic overall

span) PP:

AMP =
√

b2
1 + c2

1, PP = 2 AMP (20)

• MAXF, maximum value of the FAPAR model function:

MAXF = max
t∈[0,1]

f (t) (21)

• WAVFL−FH , weighted active vegetation period (expressed in days), which is defined as the
integral of a special weighting function, wFL−FH( f ), over time. This function has two parameters,
FL and FH, which are physically interpreted as the “FAPAR value of definitely low vegetation
activity” and the “FAPAR value of definitely high vegetation activity,” respectively.

WAVFL−FH = (GE − GB)

1∫
0

wFL−FH ( f (t)) dt, wFL−FH( f ) =


1, f ≥ FH,

f−FL
FH−FL , FL ≤ f < FH,
0, f < FL.

(22)
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For all days with a FAPAR value higher than FH, that is, the “high vegetation activity” threshold,
WAVFL−FH just counts these days (since weighting function equals one). All days having a
FAPAR value lower than FL, that is, the “low vegetation activity” threshold, are ignored (because
the weighting function is zero). Finally, days with transition values of FAPAR between FL and
FH are counted with weights proportional to the difference between the day’s FAPAR value and
the threshold. This approach allows avoiding a leap between vegetation period estimates for
FAPAR time series that are close to the threshold, but slightly lower or higher. Without weighting,
given only one threshold parameter FH, a vegetation activity with FAPAR of 0.31 on a 100-day
period, for example, will be considered high for FH = 0.3. However, the same vegetation activity
with FAPAR 0.29 will be considered low. Meanwhile, the accuracy of the FAPAR estimation is
often off by several hundredths; thus, the practical difference between 0.31 and 0.29 is completely
negligible. Therefore, weighting is required to obtain adequate estimates without leaps like those
shown above. For the test sites under study, FL and FH are accepted as 0.2 and 0.3, respectively.

If AMP > AMP0, then FAPAR dynamics are high enough to compute additional characteristics.
If the main amplitude AMP is not high enough, the rest of the indicators below are not informative
and are poorly conditioned. Currently, AMP0 = 0.05 is accepted.

• PHASE, the phase of the main harmonic,

ϕ = − arctan
c1

b1
∈ [0, 2π], PHASE =

[
GB +

ϕ

2π
[GE − GB]mod365

]
mod365

(23)

• SHIR, the secondary harmonics’ intensity ratio (i.e., the ratio between the cumulative amplitude
of all secondary harmonics and the amplitude of the main harmonic). It represents how “wobbly”
the reference FAPAR curve is.

SHIR =

√
n
∑

j=2
b2

j + c2
j√

b2
1 + c2

1

(24)

• DOYMax, the day when the FAPAR model function reaches its maximum:

DOYMax =

[
GB + [arg max

t∈[0,1]
f (t)] · [GE − GB]mod365

]
mod365

(25)

3.3. Application to Test Sites

The following charts (see Figure 2) depict several comparisons between the derived model and
actual FAPAR data. FAPAR data from 1997–2005 correspond to the high Volga runoff period [23].
These values served as reference information. Summarizing the interpretation of the numerical results
for test sites as compared to in situ data given in Section 4, from the ecological point of view, the
model-derived quantities listed above seem to represent the ecological traits of particular land sites.
Given the consistency between the model, actual FAPAR data and vegetation activity observed in
the field, use of the model as a reference for analyzing and interpreting deviations from the model
is reasonable. The complete set of charts and numerical results for all 15 test sites is given in Figures
S1, S2 and S3 and Table S1 in supplementary materials.
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(a) Proran runnel: marshes (#15) (b) Pahotniy runnel: woodlands (#1)

(c) Kaloshi lake: cereal meadows (#4) (d) Seroglazovo: desert (#14)

Figure 2. Model curves of the fraction of absorbed photosynthetically-active radiation (FAPAR)
temporal dynamics along with theoretically-estimated 2-σ corridors and numerical results, including
model-derived indices, compared to actual data for land sites with different types of plant cover,
with the anomalous 2006 given using distinct markers and color: (a) marshes near Proran runnel,
(b) woodlands near Pahotniy runnel, (c) cereal meadows around Kaloshi lake, (d) desert near Seroglazovo.

4. Discussion

4.1. A Comparison of the Model with Reference Data and Vegetation Activity Observed in the Field

First of all, the plots clearly show that the model function in Equation (19) matches the actual
reference data well. Therefore, the chosen model function is adequate, and a sufficient number of
harmonics n is accepted. The order of Fourier partial series (n = 6) might seem relatively high, but
that is justified by the particular location of the area under study. The hydrological regime throughout
the Volga-Akhtuba floodplain is regulated by a hydropower plant dam located near Volgograd (see the
map in Figure 1). Spring water discharge from the power station dam leads to partial inundation
of the Volga-Akhtuba floodplain. The length of inundation differs greatly by location [5,22], and in
some places, the inundation can induce a local peak in vegetation activity in April or May, particularly
in meadow areas. In addition, the local climate usually features a hot and dry summer, during
which vegetation activity gradually declines. A relatively wet fall season follows, giving another
potential local peak in vegetation activity in September or October. A clear example of these kinds of
variations is shown in Figure 2c. These fluctuations imply that the model FAPAR function should have
several harmonics.

By analyzing the model-derived indicators, one can categorize the type of plant cover. In particular,
the marshes at Test Site #15 (Figure 2a) are characterized by the highest AMP, MAXF and DOYMax
values and the lowest PHASE among all test sites considered. This pattern of values indicates that over
moistened areas, like the one under consideration, they have the highest vegetation activity. Since they
are completely inundated during the special hydropower plant discharge (generally occurring in
May–June [22]), MAXF cannot be reached before the flooding ends, which results in a high DOYMax.
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Field data also suggest that marsh vegetation begins its active growth only after the flooding ends
because of the long local inundation period. The data also show that marsh vegetation sustains active
growth because of the wet conditions throughout the summer. Composed mostly of sedges or common
cane, the vegetation develops high projective coverage (up to 100%) and high biomass [16,18,19] in the
middle of the growing season, which is maintained until fall. The model is consistent with these data.

The woodlands alternating with abandoned agricultural lands at Test Site #1 (Figure 2b) provide
a different indicator pattern: relatively low AMP, MAXF and DOYMax values and high WAV
and PHASE values. A remarkably long vegetation period (WAV) can be explained as follows.
Weed vegetation on abandoned agricultural lands is relatively active in the spring and gradually
weakens in the summer, whereas woodland vegetation activity increases at the beginning of
summer. A relatively long growing season is the result. The beginning of active plant growth at
Site #1 is explained by rising groundwater levels, which initiates tree leaf emergence and a growth
burst in grass weed communities, which nonetheless never reach high projective coverage and
biomass [16,18,19]. Woodlands occupy approximately 15% of Test Site #1 (which is quite high coverage
for the Volga-Akhtuba floodplain), and because weed community vegetation ends by the middle of
June or earlier, the overall vegetation activity never reaches high values. Because areas of that kind are
not inundated, the maximum vegetation activity is observed during the flood period and is then kept
at the average level.

Cereal meadows at Test Site #4 (Figure 2c), along with herb meadows at Sites #5, 8, 9 and 10
(Figures S1e, S2b, S2c and S2d, respectively, in supplementary materials), are the most common
plant communities in the Volga-Akhtuba floodplain. These communities develop in inundated areas
with a medium inundation period from about two weeks to a month [18–20,23]. In terms of FAPAR
dynamics, cereal meadows provide the highest SHIR values and low AMP and WAV values, but
intermediate MAXF values, which are shown in the chart. This pattern reflects the behavior of the
plant communities observed in the field. The first secondary wave represents ephemeral spring
vegetation that is quite active in areas of that kind. The main harmonic represents the primary peak in
annual vegetation. Given cereal grass phenology, however, maximum vegetation activity never reaches
high values and never lasts for very long, which is normal for such communities. However, again, the
peak is reached no earlier than when flooding ends because of inundation. The autumn peak (third
secondary wave) occurs during a relatively cool period with a traditional increase of precipitation.
Herb meadows at Sites #5, 8, 9 and 10 represent a similar vegetation pattern, but typically with the third
autumn local vegetation wave being significantly smoothed or even eliminated [20,23], which is also
reflected by FAPAR model curves. Field observations prove that the cereal meadow vegetation curve
has three waves, which correspond to spring pre-flood vegetation with ephemeral plant communities;
a summer maximum (post-flood), when the highest coverage (up to 80%) and biomass are developed;
and an autumn intensification, which occurs at the end of the growing season after the temperature
decreases and the precipitation increases.

As expected, at most wetland sites, the FAPAR curve for the extremely dry growing season of 2006
(shown using a distinct line style) deviates significantly from the model, as in Figure 2c. This deviation,
however, is insignificant for marshes near Leninsk (#15) (Figure 2a), which are always well inundated,
including during the low hydropower plant water discharge in spring 2006. The other example
comprises non-inundated sites in the upstream segment of the floodplain, such as Pahotniy runnel
vicinage (#1) (Figure 2b), representing woodlands and abandoned agricultural lands, which are not
typical for floodplain territory and depend on inundation to a lesser degree.

During the growing season of 2006, significant decreases in projective coverage and biomass were
observed in water meadow plant communities [16,18–20]. These decreases may be explained by the
drastic reduction in inundated areas and the shorter duration of inundation [22]. This explanation is
also reflected by FAPAR dynamics if compared to the model function.



Remote Sens. 2016, 8, 762 12 of 16

The test sites representing dry steppe and deserts outside the floodplain, including Site #14
(Figure 2d), are non-sensitive to the 2006 anomaly in terms of FAPAR dynamics. All values are
minimal, with extremely low AMP and MAXF, which differ greatly from the sites located inside the
Volga-Akhtuba floodplain. The dry sites have plant communities with very low projective coverage [23].
Such communities are likely to increase their activity in response to precipitation (mostly in spring), and
there is not any relation to the flood period. This pattern is also reflected by the FAPAR model function.

Comparing model-derived indicators like AMP, SHIR, DOYMax, and so forth, for different
yearly vegetation activity patterns, one can see that the values differ considerably for various types
of vegetation cover. Consequently, they can be used as objective indicators. For example, a marsh
plant community in Figure 2a has high AMP and MAXF values. The more dynamic vegetation
activity of cereal meadows in Figure 2c has a higher value of SHIR than the plant communities in
Figure 2b, which have weaker dynamics. Very low MAXF values characterize the desert ecosystem
in Figure 2d. This observable distinction between the indicators for significantly different vegetation
activity patterns means that these indicators can be used for the classification of wetland plant cover
and for the objective, quantitative estimation of its health.

It is important to note that all relations described above are rarely clear on an actual FAPAR curve
for a particular year, because it is affected by many factors being in play during a particular period of
time. The model curve has an advantage from averaging, while still retaining important features of the
annual dynamics of vegetation activity.

4.2. Model Accuracy and Limitations

The main advantage of the derived model is that no additional data beyond the FAPAR time series
(which is possibly incomplete) are needed, but this advantage is also its main limitation. If any factors
like anomalous temperature, precipitation, runoff, and so forth, significantly affect photosynthesis,
they can bias the model (if data are used as the reference) or divert FAPAR values from it. Thus, the
model is not expected to match actual measurements exactly because real FAPAR values are always
affected by deviations of the environment from its “normal” state; that is, even an ideal model would
not precisely fit the data in our case. Nevertheless, the only way to assess the practical usefulness of
the model is to compare it to the actual data. With this information in mind, three quantities were
selected to serve as indicators of accuracy (please see Section 2.4 for their explicit definitions).

1. RWM, weighted mean of residuals between the model and actual data, indicating whether the
model is biased from the actual data. For all test sites, this value appeared to be effectively zero,
as expected.

2. RWD, weighted root-mean-square deviation of residuals between the model and actual data,
showing the degree of its consistency. RWD appeared to be 0.04–0.05 in all cases, which
corresponds well to the uncertainty of FAPAR observations themselves. Some evident examples
of errors in reference FAPAR observations with the magnitude of 0.05–0.1 are seen in Figure 2a,b,d
in winter (between Days of Year 0 and 50).

3. ESD, theoretically-estimated standard deviation of the model, based on the accuracy of
reference data and observability properties of the estimation problem for harmonic coefficients.
This measures the theoretical predictive power of the model for situations in which no significant
anomalies are present, as compared to the reference dataset. Anyway, ESD strongly depends
on a priori estimated values for the uncertainty of FAPAR observations, which are typically not
very accurate in the reference data. Thus, ESD should be viewed a bit like an order-of-magnitude
measure for what it is intended to indicate. These quantities turned out to be around 0.02–0.05.
In Figure 2, the estimated 2-σ corridors around the model are shown in yellow. They mean 95%
probability to fit for the Gaussian distribution of errors.
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In theory, because the model does not account for annual variations of significant factors like
temperature, precipitation, flooding, and so forth, the straightforward comparison of RWD and ESD
makes no sense. However, for a useful model, RWD and ESD should agree on the order of magnitude;
that is, the model itself should adequately estimate its predictive power. This estimation was always
the case for reference data.

It is also important to note that estimated standard deviations of the reference data come from
the spatial root-mean-square deviation of FAPAR values throughout the specific territory. Thus, they
mostly reflect not the real accuracy of FAPAR assessment, but its spatial heterogeneity (i.e., the plant
cover variation inside the test site). These quantities directly affect the theoretically-estimated standard
deviation of the model (ESD) and consequently have the same effect in terms of accuracy.

Vegetation dynamics, and particularly FAPAR, are obviously highly correlated with physical
parameters of the environment (e.g., temperature, humidity, river runoff). This correlation explains
some significant deviations in the actual data from the reference model. Despite their requirement for
additional data on the physical state of the ecosystem, the models for the relation between vegetation
dynamics and these physical parameters are of great interest. This research is planned for the future.

5. Conclusions

Applying conventional interpretation techniques that use remotely-sensed data to wetlands
is often challenging because of the intrinsic heterogeneity and temporal variability of the area.
These factors require researchers to develop new methods of data processing, and the described simple
model for the fraction of absorbed photosynthetically-active radiation (FAPAR) yearly dynamics is
one of them. The model is designed as an approximation by harmonic time series of a priori chosen
order (currently n = 6) with some natural restrictions, along with model-derived values to identify
important traits of local ecosystems.

The developed reference model and model-derived quantities have predictive power, which
is limited to years with environmental conditions (including hydroelectric power plant dam water
discharge) similar to reference years. The model goes together with several accuracy and quality
measures. It is spatially and temporally scalable; that is, it can be used from pixel-level to larger
local areas with relatively homogenous ecosystems, and from yearly series to decades in time. The
results of its application to 15 test sites in the Volga-Akhtuba floodplain for a period of nine years from
1997–2006 show the following.

1. The designed model function matches well with actual data. All quality measures are consistent
and acceptable. The predicted and validated accuracy of the model is at a level of several
hundredths (typically 0.02–0.05, compared to a full FAPAR range of one).

2. Model-derived indicators can be used for plant cover and ecosystem type classification.
3. Indicators can also serve as an objective measure of plant cover health and its seasonal and

interannual dynamics. They allow quantitative description of anomalies, which is illustrated
for the degradation of ecosystems in 2006, which was abnormally dry. The efficiency of runoff
regulations can be estimated by comparison of model-derived quantities to reference values.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/8/9/762/s1: Figure
S1: Model curves of the fraction of absorbed photosynthetically-active radiation (FAPAR) temporal dynamics
along with theoretically-estimated two-sigma corridors and numerical results, including model-derived indices,
compared to actual data for land sites with different types of plant cover, with the anomalous 2006 given using
distinct markers and color, for test sites #1–6: (a) site #1; (b) site #2; (c) site #3; (d) site #4; (e) site #5; (f) site
#6; Figure S2: Model curves of the fraction of absorbed photosynthetically-active radiation (FAPAR) temporal
dynamics along with theoretically-estimated two-sigma corridors and numerical results, including model-derived
indices, compared to actual data for land sites with different types of plant cover, with the anomalous 2006
given using distinct markers and color, for test sites #7–13: (a) site #7; (b) site #8; (c) site #9; (d) site #10; (e)
site #11; (f) site #12; (g) site #13; Figure S3: Model curves of the fraction of absorbed photosynthetically-active
radiation (FAPAR) temporal dynamics along with theoretically-estimated two-sigma corridors and numerical
results, including model-derived indices, compared to actual data for land sites with different types of plant cover,
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with the anomalous 2006 given using distinct markers and color, for test sites #14, #15: (a) site #14; (b) site #15;
Table S1: Numerical results in a single table.
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DOY Day of year
GIS Geographic Information System
GRASS Geographic Resources Analysis Support System
MERIS MEdium-spectral Resolution Imaging Spectrometer
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