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Abstract: Tropical forests host at least two-thirds of the world’s flora and fauna diversity and store 25%
of the terrestrial above and belowground carbon. However, biodiversity decline due to deforestation
and forest degradation of tropical forest is increasing at an alarming rate. Biodiversity dynamics
due to natural and anthropogenic disturbances are mainly monitored using established field survey
approaches. However, such approaches appear to fall short at addressing complex disturbance
factors and responses. We argue that the integration of state-of-the-art monitoring approaches can
improve the detection of subtle biodiversity disturbances and responses in changing tropical forests,
which are often data-poor. We assess the state-of-the-art technologies used to monitor biodiversity
dynamics of changing tropical forests, and how their potential integration can increase the detail
and accuracy of biodiversity monitoring. Moreover, the relevance of these biodiversity monitoring
techniques in support of the UNCBD Aichi targets was explored using the Essential Biodiversity
Variables (EBVs) as a framework. Our review indicates that although established field surveys
were generally the dominant monitoring systems employed, the temporal trend of monitoring
approaches indicates the increasing application of remote sensing and in -situ sensors in detecting
disturbances related to agricultural activities, logging, hunting and infrastructure. The relevance of
new technologies (i.e., remote sensing, in situ sensors, and DNA barcoding) in operationalising EBVs
(especially towards the ecosystem structure, ecosystem function, and species population classes) and
the Aichi targets has been assessed. Remote sensing application is limited for EBV classes such as
genetic composition and species traits but was found most suitable for ecosystem structure class.
The complementarity of remote sensing and emerging technologies were shown in relation to EBV
candidates such as species distribution, net primary productivity, and habitat structure. We also
developed a framework based on the primary biodiversity attributes, which indicated the potential of
integration between monitoring approaches. In situ sensors are suitable to help measure biodiversity
composition, while approaches based on remote sensing are powerful for addressing structural
and functional biodiversity attributes. We conclude that, synergy between the recent biodiversity
monitoring approaches is important and possible. However, testing the suitability of monitoring
methods across scales, integrating heterogeneous monitoring technologies, setting up metadata
standards, and making interpolation and/or extrapolation from observation at different scales is
still required to design a robust biodiversity monitoring system that can contribute to effective
conservation measures.
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1. Introduction

Biodiversity decline due to habitat disturbance of tropical forests is increasing at an alarming
rate [1] and has led to growing interest in assessing the changing trend of their biological diversity by,
for example, implementing and monitoring conservation efforts [2]. The reason tropical forests are
in the spotlight is that they host at least two-thirds of the world’s flora and fauna diversity [3] and
store 25% of the terrestrial above and belowground carbon [4]. Moreover, their sustainable existence is
threatened as a result of major anthropogenic and natural disturbances [5]. Yet the complexity of the
biological diversity present and the variety of disturbance factors at work has made the monitoring
process difficult. This situation is primarily attributable to the technological and resource limitations
of tropical developing countries [6,7].

Loss of tropical forests due to deforestation, forest degradation and forest fragmentation alters
the habitat of many flora and fauna species. These threats mainly originate from anthropogenic
pressure, which ranges from small-scale agricultural activities and selective logging practices that
introduce subtle disturbances, to large-scale commercial agriculture, plantations, logging and mining
activities that result in large-scale habitat disturbance and forest fragmentation [8]. When their
habitat is modified, some species manage to adapt, some become threatened, others migrate and
a few go extinct [9]. Such resulting change in biological diversity is a complex process that is
increasingly attracting research attention. This is due to the growing need to assess and report
on the performance of policy regimes, such as those agreed in the Paris Climate Agreement and
on efforts to reduce deforestation and forest degradation [2], and on the Aichi targets set by the
Convention on Biological Diversity [10]. Accordingly, the United Nations (UN) Convention on
Biological Diversity (CBD), the Intergovernmental Platform on Biodiversity and Ecosystem Services
(IPBES), and the Group on Earth Observations and Biodiversity Observation Network (GEO BON)
are among the international initiatives that are addressing the increasing threat to forest biodiversity.
The UNCBD’s Aichi Biodiversity Targets (ABT) have 20 measurable components and are aimed at
reducing the pressure on global biodiversity and halting it by the year 2020 [10]. Countries that ratified
the CBD Convention (Article 6) [11], have since developed National Biodiversity Strategies and Action
Plans (NBSAPs), while countries that have embraced the UN Sustainable Development Goals (SDG)
(goal 15: Life on Land and goal 14: Life below water, notably) [12] have developed national SDGs, with
the result that when planning and executing national activities the impacts on biodiversity and on
environmental sustainability are taken into account [13]. In support of the ABT, GEO BON has defined
the concept of Essential Biodiversity Variables (EBVs) [14] to globally standardise the monitoring
of biodiversity change over time, across taxa and ecosystem types [14]. EBVs are a transposition of
what Essential Climate Variables (ECVs) are for climate change. Such ECVs are defined by Global
Climatic Observation System (GCOS). EBVs aim to address the demand of biodiversity observation
communities for establishing consistent and harmonised studying, reporting and management of
biodiversity change at a global level [14]. It contributes towards policy initiatives at national and global
levels through platforms such as IPBES and UNCBD, as well as towards actual biodiversity change
monitoring practices. The EBVs have six classes (namely: genetic composition, species populations,
species traits, community composition, ecosystem function, and ecosystem structure), with a total of
22 EBV candidates under them. These classes address relevant dimensions of biodiversity change
with measurable parameters at different spatial, temporal, and taxonomic scales. EBV data products
are to be used for deriving suitable indicators, thus EBVs lie between raw data and indicators [15].
Currently, several efforts are being made to assess the suitability of existing and emerging technologies
to produce EBV products, and thus of progress towards the Aichi targets [10].

Tropical countries have struggled to establish biodiversity monitoring systems and particularly for
providing consistent time series for assessing trends and progress towards targets [7]. Hence the policy
requirements for biodiversity data and monitoring systems are highlighting the need for consistent
observations over time, both from on-the-ground observations and from satellite time series. This is to
enable tracking and quantifying of ecosystem dynamics and the direct and indirect impacts of human
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activities (and related policy measures) that result change in biodiversity (i.e., from land use, climate
change) [14,16]. While this need is becoming more pressing, a key question is how previous research
experiences and evolving technologies can help to better characterise tropical forest changes and the
associated relationships and impacts on biodiversity.

Countries mainly rely on national forest and biodiversity inventories to acquire information
on changes and trends. These inventories mostly use established field survey approaches, such as
counts, transects, trapping and diameter at breast height (DBH) measurements, which yield direct and
generally accurate observations of species status and trends. Such approaches, however, are costly,
laborious, invasive and time-consuming [17,18].

Remote sensing, in situ activity sensors and, more recently, Deoxyribonucleic Acid (DNA)
barcoding techniques are seen as promising tools for designing a new generation of biodiversity
monitoring systems [19–21]. They are assumed to be able to address data gaps and to allow scalable
studies which complement established field survey approaches [22,23]. From the genomics domain,
DNA barcoding presents a new opportunity for establishing a robust biodiversity monitoring system.

From the remote sensing domain, free access to satellite images, the availability of very
high spatial, spectral, and temporal resolution satellite images and of open source analytical
software, and the development of algorithms for analysing and interpreting complex datasets
are providing good opportunities for the ecological community to detect and monitor forest and
biodiversity changes through time [24,25]. Remote sensing based biodiversity monitoring provides
an opportunity of extended spatial and temporal resolution to the existing biodiversity monitoring
systems. This approach not only has the potential to map indirect indicators such as human induced
habitat disturbances [16,26] and forest cover changes [27,28] but it can also be used to measure direct
physical parameters, such as individual trees [29] and large mammals [30]. Moreover, Light Detection
And Ranging (LiDAR) and Synthetic Aperture Radar (SAR) data have demonstrated capabilities for
mapping detailed forest structure and estimating biomass [31]. Thanks to the ongoing advancement
of remote sensing technology, new satellite images with even higher spatial, spectral and temporal
resolutions are often available for free [22,32]. In addition, the availability of remote-sensing -derived
datasets such as the Global Forest Watch [28] are used to derive indirect species occurrence indicators
such as forest fragmentation [33,34].

The recent advances in in situ sensors such as bioacoustics, tags, and camera traps are
providing non-destructive and semi-automated ground surveying opportunities [27,28]. In situ
activity sensors are non-invasive surveying techniques that often provide opportunities for measuring
biodiversity directly, thereby revealing the presence or absence of species, and their behaviour [35].
Recent technological advancements in this field have made possible real-time observation and rapid
collection of biodiversity data [21].

DNA barcoding techniques are emerging as monitoring systems that are rapidly evolving to
further facilitate biodiversity data collection and species identification. This DNA barcoding technology
ranges from using standardised barcodes to identify individual specimens, to identifying multiple
specimens from bulk samples (the latter process is called metabarcoding). Such technology makes rapid
biodiversity assessment possible through bulk sampling, and with automated species identification
processes [18,36]. Furthermore, Environmental DNA (eDNA) technique is being used to extract
cellular and extracellular DNA from environmental samples (water, soil, faeces, etc.), enabling a rapid
assessment of past and present biodiversity [18,37].

Many scholars argue that the recent technologies (i.e., remote sensing and in situ sensors) and
emerging opportunities (i.e., DNA barcoding) have not been well exploited for ecological studies,
regardless of their immense potential to inform on subtle changes and to indicate future directions of
study [20,21,32,38]. This is with regards to the limited application of the state-of-the-art technologies
towards biodiversity studies, as well as the existing gap in exploration of the potential integration of
such technologies for detailed studies and conservation efforts.



Remote Sens. 2017, 9, 1059 4 of 22

Taking into account the increasing need for reliable data to inform international policy processes,
the current status of biodiversity monitoring activities and research, and the potential of new
technologies, this paper aims to:

1. Give an overview of the state of the art and synthesise previous research on biodiversity
monitoring in the context of changing tropical forests;

2. Assess the potential of using evolving technologies and tools to further increase the detail and
accuracy of biodiversity monitoring;

3. Identify remaining gaps and opportunities on biodiversity monitoring approaches through
evaluating their contribution to addressing the primary biodiversity attributes according to
Noss [39];

4. Assess how evolving technologies can help operationalise relevant EBVs for tropical
forest environments.

We have deliberately focused on tropical forests and the issue of assessing changes and trends in
biodiversity. Tropical areas are not only undergoing considerable forest changes of global relevance
but are also particularly data-poor. In this context, we aim to help address these challenges by
assessing new opportunities and to complement other review studies that have had a much broader
scope [21,22,24,38].

2. Analytical Framework and Data Analysis

In this study, in order to categorise biodiversity groups and monitoring elements, we have
adapted the CBD [40] definition of forest biological diversity: “Forest biological diversity is a broad
term that refers to all life forms found within forested areas and the ecological roles they perform.
As such, forest biological diversity encompasses not just trees, but the multitude of plants, animals
and micro-organisms that inhabit forest areas and their associated genetic diversity.”

We performed a systematic search of the scientific literature on the Web of Science platform, using
the paired search terms: tropical forest biodiversity monitoring—forest change; and tropical forest
biodiversity monitoring—forest disturbance. Further screening was made by reading the abstract of the
articles, to identify those that are focusing on disturbed tropical forests and provide detailed description
of their biodiversity monitoring approaches. Based on these search criteria, we identified 153 scientific
papers (Supplementary Materials) that are conducted across 38 tropical countries. Next, an analytical
framework was developed to define systematic criteria for classifying and analysing monitoring
details across essential biodiversity components. We considered six essential biodiversity monitoring
components that align with our research objectives: (1) the spatial scale of the study (i.e., spatial extent
of the study area); (2) the disturbance type reported (i.e., anthropogenic or natural sourced event that
results alteration of natural tropical forest habitat); (3) the targeted groups studied (incl. taxa and their
biotope); (4) the monitoring methods employed; (5) the relationship with EBV classes; and (6) the
primary biodiversity attributes addressed (i.e., compositional biodiversity, functional biodiversity and
structural biodiversity).

In regards to spatial scales of the study, we deemed studies of sites of <100 ha and transects 10 m to
20 m long as being local; those of 100 ha–500 ha and transects 200 m–500 m long as landscape; and those
of >500 ha with transects >500 m long to be regional-scale studies [41]. Studies were also categorised
according to their source of disturbance, anthropogenic and natural. The types of monitoring
approaches employed were studied in relation to targeted biodiversity groups, and disturbance
types reported. In addition, we used subset of the series of EBVs that are relevant to tropical forests
to frame our review findings, in relation to the use of new monitoring technologies and emerging
opportunities (Figure 1). Finally, we synchronise our findings with two reference studies: the one by of
Noss [39], which identified the three primary attributes of biodiversity (i.e., compositional biodiversity,
functional biodiversity and structural biodiversity). Noss [39] defined compositional diversity as ‘the
identity and variety of elements in a collection’, while structural diversity encompasses ‘physical
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organisation and pattern of a system’, finally functional diversity involves ‘ecological and evolutionary
processes’. Another reference study by Turner (2014), indicated on the role of upcoming technologies
for biodiversity monitoring. These fundamental studies were used to explore and propose avenues of
methodological complementarity and opportunities for integration.Remote Sens. 2017, 9, 1059  5 of 23 
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Figure 1. Criteria and categories defined to set up the review database.

3. Results

3.1. Spatial Scale

The weight of the spatial scale of study sites in determining the choice of an appropriate
biodiversity monitoring approach was revealed by the review. Most of the studies (58%) had been done
at a local scale, followed by regional studies (32%), and with only a few studies (10%) performed at the
landscape scale (Figure 2). Established field surveys had higher application on local and landscape
scales, while remote sensing was used at all scales but found higher applicability in regional-scale
studies. In situ activity sensors had higher association with studies at a local and regional scale, while
its use was limited at landscape scale studies. The use of DNA barcoding methods was only at a local
spatial scale.
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3.2. Disturbance Types

Anthropogenic factors accounted for 82% of disturbances related to biodiversity change, with the
remaining 18% being accounted for natural events. Agricultural activities (32%) and logging (27%)
were among the major anthropogenic drivers, followed by infrastructure (9%); hunting (7%) and
mining (7%). Natural events included events like wildfire, disease outbreaks and extreme weather
events. Established field surveys dominated the monitoring of all disturbance types, especially in the
case of natural events, mining and infrastructure (Figure 3). In situ sensors were used in tandem with
remote sensing, especially for detecting biodiversity changes in relation to infrastructure, agricultural
activities, hunting and logging [42–44]. However, these approaches were also used independently,
remote sensing contributed significantly to detect mining, while in situ sensors showed substantial
capacity for tracking hunting activities. Finally, DNA barcoding was found to contribute to detecting
changes related to agricultural activities and logging.
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Disturbance Types per Country

The disturbance types were further analysed to identify drivers of biodiversity loss at country
and regional scales. The reviewed studies were carried out in 38 tropical countries, distributed across
five regions. The contrast of disturbance factors across the regions can be observed where human
induced land use changes such as agriculture and logging were highly represented in South America,
South East Asia, and East Africa (Figure 4). Infrastructure-related disturbances had their peak in South
America and South Asia, but showed small impact in East African countries. Other disturbance factors
such as hunting and mining had varying occurrence across regions, where the former had considerable
appearance in Africa and the later in South American countries. Finally, the impact of natural events
appeared dominant over the other disturbance factors in Oceania countries.
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Figure 4. Global distribution of forest biodiversity disturbance factors.

3.3. Targeted Groups in Monitoring of Disturbed Tropical Forests

Vegetation and arthropods were the major targeted groups for monitoring in relation to changing
tropical forests, and were also often used as surrogates for other biodiversity groups (Figure 5). Habitat
condition, birds and mammals were studied much more often than herpetofauna and microorganisms.

Overall, established field surveys predominated over the other monitoring methods, except in the
case of habitat monitoring, where remote sensing was applied the most (Figure 5). Similarly, remote
sensing was employed appreciably to monitor vegetation, and to some extent for monitoring
arthropods, birds, and mammals, but it was hardly used to monitor herpetofauna and microorganisms.
Even though the overall application of in situ sensors to the different taxa was limited, they were
employed in all groups except microorganisms. Finally, DNA barcoding was found to have been
applied to only three taxa (i.e., vegetation, arthropods and microorganisms).
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3.4. Monitoring Approaches over Time

The temporal trend of integration of new technologies into the biodiversity monitoring of
disturbed tropical forests has been indicated on the targeted article pool (Figure 6). In all years
except 2015 and 2016, the dominant method was established field surveys. However, the trends show
the growing incorporation of state-of-the-art technologies in to the monitoring system. Remote sensing
approaches are the most consistently employed after established field surveys, and their application
even dominated over the rest in the recent years. In situ sensors and DNA barcoding approaches are
recent additions to the monitoring system.
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Monitoring Approaches vs. Biodiversity Estimation Significance Values

The accuracy results maintained from applying the different biodiversity monitoring approaches
has been investigated looking into the statistical significance and accuracy values reported in the
reviewed paper. These were used to compare the methods accuracy in terms of their estimation
of biodiversity. Majority of the results from established field surveys (59%), and integrated
approaches (i.e., established field surveys coupled with remote sensing) (71%) provide significant
values (i.e., p = 0.01–p = 0.05, R2 = 0.5–R2 = 0.7, classification accuracy = 50–70%), while 26% of
established field surveys, and 21% of integrated approaches had highly significant results (i.e., p < 0.01,
R2 > 0.7, classification accuracy > 70%). Yet, established field surveys also had its high share (16%)
of non-significant results (i.e., p > 0.05, R2 < 0.5, classification accuracy < 50%). Remote sensing
approaches also had majority (35%) of their results as highly significant and significant (47%), but also
with considerable (18%) non-significant values. Even though there are few studies that used in situ
sensors, 25% of the studies had both non-significant and highly significant results, and 50% had
significant results. Finally, all DNA barcoding studies resulted significant values.

3.5. Recent Technologies and New Opportunities for EBVs

Satellite remote sensing techniques were found to be dominantly employed for three of the EBV
classes, namely species population, ecosystem function and ecosystem structures but its application
was limited in the classes of species traits and community composition (Figure 7). Hyperspectral and
LiDAR remote sensing were found to be appropriate for species population and ecosystem function
classes, while LiDAR also contributed substantially to assessing ecosystem structure and community
composition. Similarly, in situ sensors were applied to all EBV classes except for genetic composition,
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and notably applied for monitoring of the species population. Finally, DNA barcoding was found
appropriate for addressing genetic composition, species population, ecosystem function and ecosystem
structure classes.Remote Sens. 2017, 9, 1059  9 of 23 
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4. Discussion

4.1. State of the Art

The monitoring of biodiversity changes is scale-sensitive: the biodiversity elements to be
monitored, indicators to be used and monitoring methods employed appeared to be determined
by the spatial scale of the study areas (i.e., geographical coverage of the study area), the temporal scale
(i.e., availability of longitudinal biodiversity data), and the thematic scale (i.e., targeted groups for
monitoring and disturbance types). Different observation scales provide varying insight into changes,
at times yielding contrasting outlooks [45]. Even though established field surveys are assumed to
be the most accurate sources of information on biodiversity data, ecological data acquired through
this method are mostly collected at local spatial scale, which often makes it challenging to extrapolate
results. In contrast, biodiversity indicators based on remote sensing have been demonstrated to
be easily up-scalable by virtue of the nature of the data [20], which is why species distribution
models are now using remote-sensing-based environmental datasets to scale up ground observations.
Rocchini [46] and Pettorelli et al. [47] indicated that the use of remote sensing data has opened up new
opportunities for predicting the effect of anthropogenic activities and environmental conditions on the
spatial distribution of species. Moreover, apart from the role of remote sensing in monitoring forest
cover-change related habitat disturbances and its indication on biodiversity dynamics [28,48], very
high spatial resolution satellite images [49] and airborne remote sensing [50] are being used to estimate
the occurrence and abundance of mammals, and large birds.

In situ activity sensors were found to have been used in multiple spatial scale studies (Figure 2)
and across different taxa (Figure 5), allowing real-time observation. Such method allows insight
into the spatial and temporal scales over which individuals and populations interact. It also allows
a remote and non-invasive opportunity to survey on species, detect anthropogenic disturbances,
assess social dynamics of species, and track responses to factors such as climate change and habitat
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disturbance [51]. The drawbacks of this method (e.g., signal recognition across taxa) are being resolved
with the development of automated visual and sound identification software [52].

Finally, DNA barcoding was found to be suitable for studies at a local level, and in general it
appears to have been used only in few studies for monitoring changing tropical forests. However, it has
been increasingly incorporated and tested in biodiversity studies of other ecosystem types, such as
subtropical forest [53], temperate woodland [54] and the Arctic [55]. Such a technology provides
a unique opportunity for collecting and analysing mass biodiversity samples and rapid estimation of
the total biodiversity. However, the use of this technology, especially in developing tropical countries,
could be restricted due to high installation and processing costs as well as limited human resource.
The drawbacks of this technology were reported to be high cost, contamination, errors during DNA
amplification and a lack of high-quality taxonomic reference databases [18,37,56]. However, with the
ongoing intensive research and technological advancements in the field, it seems likely to evolve into
a valuable tool for measuring and monitoring of tropical biodiversity [19].

The temporal aspect of scale relates to the building and obtaining of longitudinal biodiversity
monitoring datasets (Figure 6). This allows consistent estimation of changes in biodiversity and
their drivers. Crucial for this is the availability of local, national, continental and global biodiversity
data. In reality, such data are scarce due to inconsistency in monitoring approaches, data storage
and sharing policies and shortcomings in the technical capacity of countries, as well as financial and
human resource limitations [57]. Established field surveys have great potential to provide historical
data (Figure 6), while Landsat missions (dating back 40 years), the Copernicus Sentinel constellations
(recently launched), as well other commercial satellite data providers provide long term, free, and
open access data. The potential of emerging technologies is also important to populate biodiversity
observation data. There is, however, a need for researchers, institutions and countries to systematically
archive and share such datasets. There have been several independent initiatives to build long-term
time series of biodiversity data. Ji et al. [36] presented available databases for DNA sequence data, while
GEO BON provides accessible datasets for EBVs through its portal (https://boninabox.geobon.org/) .
Similarly, in the case of the in situ activity sensors, open databases are becoming available through
the Tropical Ecology Assessment & Monitoring (TEAM) Network Education Portal [58], TRY plant
trait database [59] and through the Bioacoustica online repository and analysis platform [60]. Overall,
the temporal trend also shows the growing inclusion of tropical biodiversity studies towards new
monitoring techniques.

The thematic aspect of scale relates to the complexity of disturbance types and targeted
biodiversity groups for monitoring. Overall, the major sources of tropical forest disturbance with
associated impact on biodiversity are anthropogenic pressures [61]. The two main sources of
anthropogenic forest disturbance (i.e., agricultural activities and logging) produce features that can be
detected by all monitoring methods examined in our review. While large-scale agricultural activities
and mining show a clear signal of change with canopy cover loss, other disturbance types that
often take place below canopy (e.g., selective logging, and surface fire) introduce subtle changes.
The role of remote sensing and in situ sensors in monitoring such drivers of change is especially
noteworthy. Large-scale changes that result from deforestation and forest fragmentation have been
well picked up by Landsat and other medium to coarse spatial resolution satellite images [28,62,63].
However, when it comes to understory disturbances and those that do not have spatially quantifiable
features (such as hunting), there is a data gap. Peres et al. [64] similarly described the nature of
such disturbances in tropical forests and advised on the use of new technologies for identifying the
‘almost undetectable’ disturbance types such as hunting, selective logging, sub-canopy roads and
invasive species. Newbold et al. [16] discussed how such habitat alteration influences local richness
and total abundance of species, and hence affects ecosystem functions and services. Our review
indicated that vegetation and arthropods are the groups most studied in disturbed environments,
while herpetofauna and microorganisms are poorly investigated. Most importantly, vegetation and
arthropods embrace sensitive species that can quickly respond to habitat alteration and environmental
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changes, thus making them good to be used as surrogates. Our review revealed that arthropods were
the major surrogates for other biodiversity groups. Yet, criticism occurs regarding the choice and
use of surrogates and therefore systematic ways of selecting suitable indicators have been proposed
to promote cost-effective and efficient biodiversity monitoring [65]. In general, the identification of
country specific biodiversity loss drivers and potential indicators can lead to e the design of targeted
mitigation and conservation programs (Wintle, Runge, and Bekessy 2010).

Over all, the role of biodiversity in ecosystem services needs to be properly assessed and
understood in order to mainstream biodiversity across governments and society. Such a complex
topic can only be clearly understood when the necessary data are acquired and analysed using proper
tools. Unravelling of changes and trends in biodiversity can help us to understand not just about
species composition and abundance but it can also inform on how forests adapt to pressures, indicates
on the resilience of the forest ecosystem, and the impact of mitigation and adaptation actions on the
environment. Many argue that biodiversity conservation is placed in the background of climate change
mitigation actions and carbon reduction efforts. However, Mant et al. [66] pointed out that adaptation
and mitigation actions that do not consider the role of, and potential impacts on, biodiversity can
have adverse consequences. Therefore, such possible impacts on biodiversity must be measured and
monitored alongside forest status and carbon stock assessments. Contrasting results appear when
looking in to the relationship between carbon and biodiversity in tropical forest. Talbot [67] found
complex and limited correlation between the two, while Poorter et al. [68] proved diversity’s positive
role in enhancing carbon storage of tropical forests. Even though there is a need for continuous
research in the area, there are already promising steps towards promoting an all-inclusive measuring
and monitoring of degrading tropical forest environments. Here, the role of remote sensing is especially
recognised where same data that is collected to report on forest and carbon stock status can also be
used to derive direct and indirect indicators of biodiversity status [38,69].

4.2. Potential and Progress of Evolving Technologies

To detect and monitor changes at different spatial, temporal and thematic scale not only a variety
of monitoring approaches is required but also their integrated deployment. The application of remote
sensing has been limited to deriving indirect indicators of biodiversity; mostly through using coarse
to high spatial resolution satellite images for habitat analysis. However, advances in the field are
bringing opportunities to develop direct indicators, e.g., using very high spatial resolution satellite
images to identify large trees and animals [70,71], using hyper spectral sensors to ascertain vegetation
biochemistry [72], and using LiDAR sensors to map the three-dimensional vegetation structure [73,74].
Moreover, such scale-related limitations can be overcome by coupling remote sensing with in situ
sensors and DNA barcoding [19]. The ability of in situ based sensors to provide real-time observation
and automated data acquisition could overcome the limitations that emerge when established field
survey methods are used independently [75]. Moreover, the role of DNA barcoding is crucial for
studying species that are elusive, and to acquire insight into ancient environments [18]. The accuracy
of biodiversity estimation is expected to benefit from the integration of monitoring techniques as
can be observed from the results of the review. However, one should be cautious of publication bias
towards reporting only positive and significant results [76,77].

4.3. Gaps and Opportunities

4.3.1. Monitoring of Primary Biodiversity Attributes

Based on our review, we map the actual and optimal application of biodiversity monitoring
approaches (Table 1) specified by Turner [38] in relation to primary biodiversity attributes specified by
Noss [39].
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Table 1. Complementarity of monitoring methods for assessing biodiversity change in tropical forests
along primary biodiversity attributes. Brown: suitable, Orange: very suitable, Green: ideal; up
arrow: well exploited potential, horizontal arrow: potential reasonably exploited, down arrow: used
insufficiently. Note: Monitoring methods are classified between in situ and remote sensing based on
their data acquisition technique.

Compositional
Biodiversity
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Biodiversity
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Biodiversity
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However, the role of citizen science on conservation efforts was demonstrated through various 
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In the synthesis table (Table 1), we quantified how many of the reviewed articles used a certain 
method to monitor the biodiversity attributes that are defined by Noss [39]. This was further related 
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In the synthesis table (Table 1), we quantified how many of the reviewed articles used a certain 
method to monitor the biodiversity attributes that are defined by Noss [39]. This was further related 
to the potential application that the methods can provide according to key literatures in the field 
[21,22,24,38]. It appears that none of the monitoring methods presented here are in themselves 
sufficient to properly address the three primary biodiversity attributes. However, this overview 
shows that there is complementarity between methods. As can be observed, in situ approaches 
perform well in biodiversity composition, while remote sensing based approaches are powerful for 
addressing structural and functional biodiversity. It can also be observed that despite their 
remarkable potential, these tools are underexploited. For instance, DNA barcoding, TLS and citizen 
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However, the role of citizen science on conservation efforts was demonstrated through various 
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In the synthesis table (Table 1), we quantified how many of the reviewed articles used a certain 
method to monitor the biodiversity attributes that are defined by Noss [39]. This was further related 
to the potential application that the methods can provide according to key literatures in the field 
[21,22,24,38]. It appears that none of the monitoring methods presented here are in themselves 
sufficient to properly address the three primary biodiversity attributes. However, this overview 
shows that there is complementarity between methods. As can be observed, in situ approaches 
perform well in biodiversity composition, while remote sensing based approaches are powerful for 
addressing structural and functional biodiversity. It can also be observed that despite their 
remarkable potential, these tools are underexploited. For instance, DNA barcoding, TLS and citizen 
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In the synthesis table (Table 1), we quantified how many of the reviewed articles used a certain 
method to monitor the biodiversity attributes that are defined by Noss [39]. This was further related 
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In the synthesis table (Table 1), we quantified how many of the reviewed articles used a certain 
method to monitor the biodiversity attributes that are defined by Noss [39]. This was further related 
to the potential application that the methods can provide according to key literatures in the field 
[21,22,24,38]. It appears that none of the monitoring methods presented here are in themselves 
sufficient to properly address the three primary biodiversity attributes. However, this overview 
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perform well in biodiversity composition, while remote sensing based approaches are powerful for 
addressing structural and functional biodiversity. It can also be observed that despite their 
remarkable potential, these tools are underexploited. For instance, DNA barcoding, TLS and citizen 
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In the synthesis table (Table 1), we quantified how many of the reviewed articles used a certain 
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In the synthesis table (Table 1), we quantified how many of the reviewed articles used a certain 
method to monitor the biodiversity attributes that are defined by Noss [39]. This was further related 
to the potential application that the methods can provide according to key literatures in the field 
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perform well in biodiversity composition, while remote sensing based approaches are powerful for 
addressing structural and functional biodiversity. It can also be observed that despite their 
remarkable potential, these tools are underexploited. For instance, DNA barcoding, TLS and citizen 
science were among the methods least employed (not used in >80% of the reviewed studies). 
However, the role of citizen science on conservation efforts was demonstrated through various 
successful projects such as the breeding bird survey in the United States [78], global bird observation 
network—eBird [79], the Dutch phenological network [80], and ranger’s forest and biodiversity status 
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In the synthesis table (Table 1), we quantified how many of the reviewed articles used a certain
method to monitor the biodiversity attributes that are defined by Noss [39]. This was further
related to the potential application that the methods can provide according to key literatures in
the field [21,22,24,38]. It appears that none of the monitoring methods presented here are in themselves
sufficient to properly address the three primary biodiversity attributes. However, this overview shows
that there is complementarity between methods. As can be observed, in situ approaches perform
well in biodiversity composition, while remote sensing based approaches are powerful for addressing
structural and functional biodiversity. It can also be observed that despite their remarkable potential,
these tools are underexploited. For instance, DNA barcoding, TLS and citizen science were among the
methods least employed (not used in >80% of the reviewed studies). However, the role of citizen science
on conservation efforts was demonstrated through various successful projects such as the breeding bird
survey in the United States [78], global bird observation network—eBird [79], the Dutch phenological
network [80], and ranger’s forest and biodiversity status observation in Ethiopia [81]. Neither were
in situ sensors, LiDAR, SAR, and hyperspectral sensors that are ranked from very suitable to ideal
for monitoring some biodiversity attributes used to their full potential in tropical forest biodiversity
monitoring studies. Such shortcomings can lead to the development of monitoring techniques that
produce under-or overestimations of biodiversity metrics. Whereas remote sensing data can be
used to detect changes, provide a stratified sampling scheme for efficient monitoring and to identify
certain species characteristics, in situ methods can be used for calibration and validation. While it is
advantageous to have various methods of detecting biodiversity changes, a difficulty arises when trying
to combine the different types of data for modelling the characteristics of species, their association with
their environment and their response to changes [82]. For instance, differences among datasets in terms
of spatial/temporal/taxonomic resolution, extrapolation, data standardisation, calibration and data
format can be an obstacle. Thus, practicable spatial and ecological models need to be developed to map
species distribution and ecosystem services, as well as to make projections. For these purposes, there is
a pressing need to establish and strengthen networks such as GEO BON, which promote dialogue and
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collaboration between ecologists, biologists, remote sensing experts, modellers and statisticians. Such
platforms can be used not only to overcome technological limitations and domain segregation, but also
to address technical issues such as big-data processing capabilities and the skills needed to implement
methods. Here, we can mention exemplary platforms, such as the Biodiversity Observation Network
in a Box (BON in a Box), which provide information and access to biodiversity-relevant remote sensing
datasets, protocols, and tools (https://boninabox.geobon.org/). Similarly, in situ data sources and
analytical tools are provided by the Global biodiversity Information Facility (https://www.gbif.org/).

4.3.2. Operationalising EBVs with State-of-the-Art Technologies

EBVs are expected to promote standardised data workflows for harmonised monitoring and
reporting of biodiversity change at a global scale, as a means to achieving the Aichi biodiversity
targets [10]. However, biodiversity monitoring methods operate at different spatial, temporal,
and taxonomic scales [15]. The operationalisation of EBVs requires a statement of measurable
EBV candidates that can be matched with multiple monitoring tools. Several studies assessed the
possibilities of putting EBVs to practice and investigated how relevant indicators can be derived
from them. Kissling [15] investigated the necessary data and tools in order to operationalise
species distribution and species abundance EBV candidates at a global level. Here, the requirement
for multiple data sources was acknowledged, and limitations in the process of harmonizing and
integrating observations from different data sources were indicated. Satellite remote sensing-based
EBVs (SRS-EBVs) are being researched to provide scalable, rapid, and cost efficient global monitoring
solutions towards operationalising EBVs [32]. However, SRS-EBVs are proven to contribute towards
direct derivable of only few EBVs, as most of them require higher resolution (in terms of spatial,
temporal, and taxonomic details) datasets [19].

We developed a synthesis matrix that indicates the relevance of the state-of-the-art technologies
in operationalising tropical forest-relevant EBV candidates (Tables 2 and 3). These synthesise are
developed based on GEO BON strategy for EBVs [83] (Table 3) and studies [15,19,32,84,85] that
assessed avenues for multi sensor approaches in EBV product development (Table 2), especially
focussing on remote sensing. In Table 2, the suitability of remote sensing in relation to multiple EBVs
as well as Aichi biodiversity targets is presented. Most importantly, the application of the range of
remote sensing techniques in relation to specific candidates is presented. Most remote sensing tools are
applied towards vegetation and habitat-related EBV candidates. Here EBV products such as vegetation
types and land use/cover maps can be produced using spectral characteristics’ of the remote sensing
data. These maps are often produced with medium or high spatial resolution images such as those
from Landsat or Sentinel 2 sensors, respectively. Remote sensing can also be used in relation to EBV
candidates that require finer details such as taxonomic diversity and population structure by age/size
class. In the latter case, data sources with higher spectral and spatial resolution are required from
the remote sensing domain such as hyperspectral and LiDAR remote sensing; however, associated
costs could hamper their applicability in several countries from the tropics. Alternative approaches
to deriving species diversity indices from satellite remote sensing datasets exist;, however, acquiring
a reliable estimation of beta-diversity and gamma-diversity is challenging [86]. Remote sensing
application is especially limited for EBV classes such as genetic composition and species traits that
require monitoring at genetic (e.g., co-ancestry, population genetic differentiation) and species level
(e.g., body mass, demographic traits). The spatial and spectral resolution of satellite remote sensing
products limits the ability to identify individual trees or animal species. Very high spatial resolution
images that can help identify large mammals are costly [15] and often have high cloud coverage over
tropical forests, which makes them unsuitable for deriving tropical forest EBVs. The use of remote
sensing is, however, suitable for ecosystem structure EBV class (i.e., habitat structure, ecosystem extent
and fragmentation EBV candidates), where EBV data products can be directly derived from medium
to high spatial resolution data sources (e.g., Landsat, Sentinel 2) that are often freely available, while
habitats’ three-dimensional structure can be accurately mapped using LiDAR. The role of SRS for

https://boninabox.geobon.org/
https://www.gbif.org/
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ecosystem function classes is also recognised. Pettorelli et al. [87] and Mora et al. [88] listed EBV
products that can be derived from current and future SRS datasets.

Table 2. State-of-the-art monitoring tools for tropical forest-relevant EBV candidates and related Aichi
targets. SR: spatial resolution.

EBV Classes EBV Candidates Aichi Target [10] Remote Sensing Emerging Opportunities

Species
Populations

Species distribution 4–12, 14, 15 High to very high SR [49],
Hyperspectral [89]

In situ activity sensors [90]
DNA barcoding [36]

Population abundance 4–12, 14, 15 High to very high SR [49],
Hyperspectral [89] In situ activity sensors [90]

Population structure by
age/size class 4–12, 14, 15 LiDAR [91]

Species Traits Phenology 10, 15
High to very high SR [92],
coarse to medium SR [93],

hyperspectral [72]

Migratory behaviour 5, 6, 10, 11, 12 In situ activity sensors [35]

Community
Composition Taxonomic diversity 8, 10, 12, 14 Hyperspectral [29] In situ activity sensors

DNA barcoding [36]

Ecosystem
Function

Net primary
productivity 5, 8, 14

High to very high SR [94],
coarse to medium SR [95],

hyperspectral [96]
In situ activity sensors [97]

Nutrient retention 5, 8, 14 Hyperspectral [96]

Disturbance regime 5, 7, 9, 10, 11, 14, 15 High to very high SR [98],
coarse to medium SR [99] In situ activity sensors [100]

Ecosystem
Structure

Habitat structure 5, 11, 14, 15
High to very high SR [101],
coarse to medium SR [102],

LiDAR [103], SAR [104]
In situ activity sensors [105]

Ecosystem extent and
fragmentation 5, 7, 10, 14, 15 coarse to medium SR [106]

Even though several SRS and Earth observation datasets are being identified as suitable for
monitoring of EBVs, there is still remaining work to be done towards a better definition of some
EBV classes such as the ecosystem function class [87]. In addition, testing the suitability of methods
across scales, integration of heterogeneous monitoring technologies, setting up metadata standards,
and making interpolation and/or extrapolation from observation at different scales is required [15,19].
This is especially true for EBV classes such as genetic composition and species traits where little data
are directly available.

Finally, using the GEO BON strategy for development of EBVs [83], the integration of remote
sensing with emerging tools appear as necessary to operationalise EBVs (Table 3). The complementary
nature of the monitoring approaches highlights that synergy is required between the approaches to
up/downscale observations between different spatiotemporal and taxonomic scales. EBV candidates
such as species distribution, population abundance, net primary productivity, and habitat structure will
benefit from such synergies. However, issues related with data standards, uncertainties, documentation
of protocols and guidance, data sharing, as well as consensus on the usability of EBV derived products
need to be dealt with to enable consistent global reporting of biodiversity changes using EBVs.
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Table 3. The relevance of state-of-the-art monitoring approaches in the context of GEO BON strategy
to operationalise EBVs. Colours represent readiness level for each subcategory. Brown = low level,
Orange = medium level, Green = high level (adapted from GEO BON strategy for development
of EBVs).

EBV Criteria
Components Remote Sensing In Situ DNA Barcoding

Spatial extent Global [57]

Global with gaps. Example: TEAM
network
(http://www.teamnetwork.org/),
http://bio.acousti.caBioacoustics [60]

Local/regional [107]

Spatial resolution

Optical satellite: coarse spatial resolution
250–1200 m (e.g., MODIS), Medium to
high spatial resolution: 5–30 m (e.g.,
Landsat, sentinel 2, RapidEye), Very high
spatial resolution (e.g., Ikonos, GeoEye):
0.5–4 m.
Airborne Hyperspectral: 1–2 m
(according to flight height).
Active remote sensing (radar): 1–100 m
[108]. Upcoming: GEDI (satellite LiDAR):
25 m footprint, EnMAP (satellite
hyperspectral): 250 narrow bands [88]

Field based. Example: TEAM has 23
tropical forest sites (120–200 km2

resolution) [15]

Requires physical
sampling [107]

Periodicity

Continuous long term time-series data,
with high revisit-time period for
high-resolution data (e.g., Landsat: every
16 days, Sentinel 2: every 10 days,
RapidEye: Daily ) [108]

From real-time to different times of
the day and seasons [109]

No clear
understanding [107]

Taxonomic coverage Multiple taxa can be covered [110] Multiple taxa can be covered [110] Multiple taxa can be
covered [110]

uncertainty Imperfect detections, data uncertainties,
model uncertainties [111]

Measurement error, detection
algorithms [112], spatial
mismatches [69]

Reference datasets [15],
variation in primer use,
amplification steps and
sequencing platforms [113]

Operational
definition

Several demonstrations are made to
derive EBVs [85,87,114,115]

The technology has been identified as
candidate [57]

The technology has been
identified as
candidate [19,116]

Documentation Documentations is available [85,87,115] Lack of documentation and
established protocols

Lack of documentation
and established protocols

Abstraction Few to several steps involved in
derivation of products [85,87]

Few steps involved in derivation of
products [110]

Several steps in derivation
of products [116]

Measurement and
sampling schema

Sampling and measuring strategies are
often well defined [87]

Limited sampling and measuring
strategies are available [14].
Camera traps:
www.teamnetwork.org/protocols

Few sampling and
measuring strategies are
available [116] (www.
biocodecommons.org/,
www.gensc.org/)

Automatisation Automation of data acquisition and
processing is possible [115]

Automation of data acquisition,
processing, and management are
possible. Example: automated and
semi-automated sound recognition
[117,118], automated camera traps
and image recognition [119]

Automated DNA
extraction is possible [120]

Interoperability

Global standards and protocols exist for
harmonised data and metadata formats
(e.g., http://docs.opengeospatial.org/is/
10-157r4/10-157r4.html)

Camera traps: individual initiatives
exist [121], Bioacoustics: metadata
standards are proposed [122]

Data standards are
defined [123]

Data availability

Data available for multiple EBVs [85,87].
(e.g. https:
//scihub.copernicus.eu/dhus/#/home,
https://gcmd.nasa.gov/,
https://boninabox.geobon.org/)

Data mobilisation opportunities exist
www.TEAMNetwork.org,
http://bio.acousti.ca/,
https://boninabox.geobon.org/,
https://www.movebank.org/

Data mobilisation
opportunities exist http:
//www.barcodinglife.org,
https://www.ncbi.nlm.
nih.gov/, https:
//boninabox.geobon.org/

Temporal
sustainability

Data have been available from satellite
agencies for 40 years now (e.g., Landsat)
and is secured until the end of the
2020’s [108,114]

Data availability and methods are
evolving [124]

Data availability and
methods are evolving [18]

Baseline Historical satellite datasets are available:
e.g., Landsat program (since 1972) [108]

Baselines can be made from past field
inventories [112]

Ancient DNA (e.g., from
museum collections) [125],
https://www.ncbi.nlm.
nih.gov/

http://www.teamnetwork.org/
http://bio.acousti.ca Bioacoustics
www.teamnetwork.org/protocols
www.biocodecommons.org/
www.biocodecommons.org/
www.gensc.org/
http://docs.opengeospatial.org/is/10-157r4/10-157r4.html
http://docs.opengeospatial.org/is/10-157r4/10-157r4.html
https://scihub.copernicus.eu/dhus/#/home
https://scihub.copernicus.eu/dhus/#/home
https://gcmd.nasa.gov/
https://boninabox.geobon.org/
www.TEAMNetwork.org
http://bio.acousti.ca/
https://boninabox.geobon.org/
https://www.movebank.org/
http://www.barcodinglife.org
http://www.barcodinglife.org
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://boninabox.geobon.org/
https://boninabox.geobon.org/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
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Table 3. Cont.

EBV Criteria
Components Remote Sensing In Situ DNA Barcoding

Relevancy Relevance for multiple EBVs has been
demonstrated [87,108]

Relevance for multiple EBVs has been
demonstrated [110,112]

Relevance for multiple
EBVs has been
demonstrated [107,110]

Consensus Large consensus exists [85] Consensus underway [110] Consensus underway [107]

Scalability Robust to scalability (e.g., diversity
indices) [86]

Robust to scalability (e.g., Wildlife
Picture Index) [75]

Robust to scalability using
statistical models (e.g.,
species distribution
models) [19]

Institutional support

Several institutions are contributing.
Example: GEO BON
(http://geobon.org/essential-
biodiversity-variables/monitoring/),
GOFC-GOLD:
(http://www.gofcgold.wur.nl)

Several institutions are contributing.
Example: GEO BON [14], Map Of Life
(https://mol.org/), Move bank
(https://www.movebank.org/)

GEO BON
(http://geobon.org/
essential-biodiversity-
variables/monitoring/),
GOFC-GOLD: (http:
//www.gofcgold.wur.nl)

5. Future Directions and Recommendations

Our review has shown that the potential of some of the most recent technologies for monitoring
biodiversity dynamics in tropical forests has been initially investigated but still needs to be explored
further—notably their operational synergy across biophysical scales and extended taxonomic levels.
This underlines the need to support further research and development activities to demonstrate the
added value of such technologies; and learn from existing efforts such as the National Ecological
Observatory Network (http://www.neonscience.org). Networks like GEO BON could, for instance,
influence the formulation of research calls targeted specifically at closing such research and
development gaps. To this end, the development of a Technology Readiness Level (TRL) framework
could be initiated. Such TRLs could also be used to monitor scientific and technical progress and
provide guidance to countries for the development of their monitoring systems. For instance, the GEO
BON could build on the assessment framework for tropical forest monitoring developed by the Global
Forest Observations Initiative (GFOI).

The lack of integration of the novel technologies also stresses the necessity to link up the different
research communities that work on tropical forest environments. Different policy contexts with
overlapping requirements co-exist, such as climate change mitigation and adaptation from the United
Nations Framework Convention on Climate Change, but also the UN SDGs. More particularly, experts
in the fields of genomics, Earth observation and information technology fields need to strengthen
collaborations to tackle the challenges of the big-data era. In this context, successful efforts from
the research community to incentivise free and open access to Earth observation data need to be
maintained. Finally, guidance documents synthesising the operational monitoring methods and
reviewing the state-of-the-art research should be developed. An appropriate platform for achieving this
is the BON-in-a-Box concept tool (https://boninabox.geobon.org/) supported by the GEO initiative.
One recent bon-in-a-box release is the sourcebook for biodiversity monitoring in tropical forests with
SRS developed by GOFC-GOLD and the GEO BON presents techniques related to EBVs relevant to
tropical forests [85].

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/9/10/1059/s1. List
of systematically reviewed articles and their biodiversity monitoring details across the essential biodiversity
components considered.
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