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Abstract: Target detection is an important task for remote sensing images, while it is still difficult
to obtain satisfied performance when some images possess complex and confusion spectrum
information, for example, the high similarity between target and background spectrum under some
circumstance. Traditional detectors always detect target without any preprocessing procedure, which
can increase the difference between target spectrum and background spectrum. Therefore, these
methods could not discriminate the target from complex or similar background effectively. In this
paper, sparse representation was introduced to weight each pixel for further increasing the difference
between target and background spectrum. According to sparse reconstruction error matrix of pixels
on images, adaptive weights will be assigned to each pixel for improving the difference between target
and background spectrum. Furthermore, the sparse weighted-based constrained energy minimization
method only needs to construct target dictionary, which is easier to acquire. Then, according to more
distinct spectrum characteristic, the detectors can distinguish target from background more effectively
and efficiency. Comparing with state-of-the-arts of target detection on remote sensing images, the
proposed method can obtain more sensitive and accurate detection performance. In addition, the
method is more robust to complex background than the other methods.
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1. Introduction

With the rapid development of remote sensing technology, the spatial resolution, spectral
resolution and time resolution of remote sensing image have greatly improved, which facilitates
a wide range of applications [1–4]. Remote sensing image contains abundant information, of which
the processing and analyzing can help people in not only military but also civilian applications, such
as disaster control, land planning, urban monitoring, traffic planning, target tracking, etc. [5–7]. For all
these applications, target detection is the necessary and key step. The targets are usually large objects,
such as aircraft, ship, building, etc., which can provide more valuable object for further analyzing.
However, the object detection is usually human, animal and other small objects, and the target is not
limited to one specific category. Research of fast identification and precise interpretation on particular
target has very important strategic significance [8,9].

Therefore, target detection has received considerable attention and has always been the research
hotspot in remote sensing in the past decades [10–13]. A number of target detection algorithms
emerged along with the development of remote sensing. Most of these algorithms tend to suppress
background information and highlight target to enhance the target itself, e.g., adaptive coherence
estimator (ACE) [9,14], match filter (MF) [14], adaptive match filter (AMF) [9,15–18], spectral angle
mapper (SAM) [17], independent component analysis (ICA) [18], and constrained energy minimization
(CEM) [19,20]. Stephanie et al. pointed out that ACE is known to be the generalized likelihood ratio
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test (GLRT) in partially homogeneous environments, when the covariance matrix of the secondary
data is proportional to the covariance matrix of the vector under test [21]. Similar to ACE, MF and
AMF, which consider target detection as the problem of hypothesis testing, they often employ the local
background statistics. Actually, target and background usually follow different probability models,
and the generalized likelihood ratio test (GLRT) is used to detect target. The SAM algorithm treats
both spectra of target and background as vector, and then calculates the spectral angle between them.
It is an automated method that can directly compare image spectra to a known spectrum (usually
measured by a spectrometer in the lab or field) or an end member. This algorithm is insensitive to
illumination, because the SAM uses vector direction instead of vector length. William et al. proposed a
CEM algorithm to map the ferruginous sediments. They pointed out that CEM, which is conducted
pixel-by-pixel, could maximize the response of target signature and meanwhile suppress the response
of undesired background signatures, so that the target and background can be discriminated easier [19].
Actually, CEM constructs a finite-impulse response (FIR) filter, which minimizes the output energy
under constraint that the filter’s response to spectral signature of target is unity [22]. Although these
methods have achieved impressive performance and been widely used, more and more complicated
background will make the detection accuracy declined unexpectedly. Therefore, many improved
algorithms are developed for further improving the detection performance under different situation.
Shuo et al. proposed both sparse CEM and sparse ACE algorithms using the l1-norm regularization
term to restrict the output to be sparse [23]. They hope that the output of detection is sparse, since target
of interests usually occupy a few pixels (or even subpixels) in real remote sensing images. Geng et al.
proposed a novel ACEM, and they proved that ACEM is mathematically equivalent to MF (matched
filter). They concluded that the classical MF is always superior to the CEM operator [24]. Zheng et al.
proposed a new hierarchical method called hierarchical CEM (hCEM) to suppress the backgrounds
while preserve the target spectra with the purpose of boosting the performance of traditional target
detector [25]. In practice applications, target spectra are always diverse, and most existing methods
perform a hard constraint on the target spectrum, which will bring more difficulties to detect target
accurately. Consider the situation, Shuo et al. proposed a target detection algorithm by employing
an inequality constraint, which is more robust to spectral diversity, as they made a soft constraint on
target spectrum to cover more styles [26]. Geng et al. also proposed a Clever eye (CE) [27] method
that can automatically search the best data origin to move the data cloud to, and find the optimal
direction to project the data on. Accordingly, CE can always obtain lower output energy than CEM
and MF. Wang et al. proposed a two-time detection scheme by employing principal component CEM
and matrix taper CEM simultaneously [28].

The methods described above only concerned one kind of spectrum, which is obviously not
consistent with actual situation. Most remote sensing images, which include multiple targets or
target itself, possess multiple spectrum characteristics. To detect all kinds of targets in a single
image simultaneously, Chein et al. developed several multiple target detection approaches, e.g.,
Multiple-target CEM (MTCEM), Sum CEM (SCEM), and Winner-Take-All CEM (WTACEM) [29].
These methods utilized only the known target spectral information but not the background spectral
information. Considering both target and background spectrum as a priori information, several
detection methods utilized both target and background spectral information were proposed to obtain
better performance. Orthogonal subspace projection (OSP), based on linear mixed model [30], aimed
at eliminating the background signatures. Matched subspace detector (MSD) assumes both target and
background spectrum obey the Gaussian distribution [31], with the same-scaled identity covariance
matrix and differ only in their means [32]. A novel Symmetric Sparse Representation (SSR) method
has been presented to solve the band selection problem in hyperspectral imagery (HSI) classification
by Sun et al. [33]. The above methods analyzed both target and background spectrum, however,
they did not do anything to further increase the difference between target and background spectral
information, which probably lead to the false positive rate unexpectedly increasing as the variability
of spectral information.
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In the state-of-the-arts, the methods based on sparse representation still report satisfactory
performance in recent years, especially in classification and target detection [34–38]. These methods
usually need to construct two dictionaries, the target dictionary and union dictionary that contains
both target and background. Then, they use these two dictionaries to sparsely represent the spectral
information and get the sparse coefficient to obtain reconstruction error. The quality of the dictionaries
plays an important role in the detection performance, especially the background dictionary, which is
always difficult to obtain. An effective way to construct the dictionary is to build a dual concentric
window [37], which is an adaptive local dictionary method. It needs to set the window sizes in advance,
however, there is no specific method to choose the appropriate size. For the purpose of reducing
the impact of target pollution, another method based on learning has been proposed. Although
there are many algorithms about constructing dictionary, how to construct an effective dictionary
is still a difficult problem. The target spectral is always more intuitive with small amount, and the
background spectral is always complicated and large. Thus, the target dictionary is easier to get while
the background dictionary is more difficult to obtain.

To solve the above problems, in this paper, a novel sparse weighted-based constrained
energy minimization (SWCEM) target detection method is proposed. Based on the constrained
energy minimization (CEM) algorithm, the proposed method first introduced the effective sparse
representation to weight the spectral characteristics with sparse information, which can effectively
increase the difference between target and background spectrum. Since the spectrums are always
diverse, target may possess similar spectrum characteristics with background. It will make the target
detection more difficult. Unlike the CEM algorithm, which only uses the spectral information of
original target and background pixels, the proposed SWCEM method adaptively assigned weights
to each pixel according to their reconstruction error matrix of sparse representation. It adaptively
assigned greater weight to target pixel, and smaller weight to background pixel, which can effectively
increase the difference between target pixels and background pixels. Then, comparing with the exist
sparse representation based methods, the SWCEM algorithm only needs to construct target dictionary,
and calculate the similarity between spectrums of pixels and recovery of residual. Since the sparse
weighted procedure could improve the identification degree between target and background, we do
not need to establish the background dictionary that is hard to get. It makes the similarity measure
more scientific and accurate.

The remainder of this paper is organized as follows: Section 2 introduces the proposed sparse
weighted CEM (SWCEM) method in detail. Section 3 describes the dataset we employed and illustrates
the performance of the proposed method. Then, Section 4 analyzes and discusses the experimental
results. Finally, conclusions are exhibited in Section 5.

2. The Proposed Method

In this section, the original CEM and sparse representation will be introduced firstly, and then the
proposed SWCEM algorithm will be described in detail.

2.1. CEM Algorithm

Assume that X = [x1, . . . xN ] is the spectral information of remote sensing image, N is the number
of pixels, each pixel xi = [xi1, xi2, . . . xi L]

T is a L-dimensional vector, L is the number of band, and
1 ≤ i ≤ N, X is an L× N matrix. Suppose d is the target spectrum as a priori information, the main
idea of CEM is to design a linear FIR (Finite Impulse Response) filter that minimizes the average
energy output under the following constraint:

wTd =
L

∑
i=1

widi = 1 (1)
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where w = [w1, w2, . . . wL] is filter coefficient, which is an L-dimensional vector. Suppose that the
output of the above filter corresponding to input xi is yi:

yi =
L

∑
l=1

wl xil = wTxi (2)

the average output energy from all input [x1, . . . xN ] can be calculated by,

y = 1
N

N
∑

i=1
y2

i = 1
N

N
∑

i=1
(xT

i w)
TxT

i w

= 1
N

N
∑

i=1
wTxixT

i w = wT( 1
N

N
∑

i=1
xixT

i )w

= wT Rw

(3)

where R = 1
N

N
∑

i=1
xixi

T represents the autocorrelation matrix of remote sensing image X, and y =

[y1, . . . , yN ] ∈ R1×N is the output of each pixel. CEM algorithm can be expressed as the following
linear constraint optimization problem. {

min
w

wT Rw

s.t.wTd = 1
(4)

This is an equal constraint optimization problem, which can be solved by Lagrange multiplier [35].
The optimized solution of Equation (4) is:

wCEM =
R−1d

dT R−1d
(5)

so the output of CEM filter is:

y = (wCEM)Tx =
dT R−1

dR−1dT x (6)

The CEM algorithm can detect target of interest, while minimizing the output energy caused by
other unknown signals. The larger the pixel output energy, the greater the probability of the target is.
Otherwise, the pixel has lower probability as target.

2.2. Sparse Representation Algorithm

In sparse representation, the target dictionary can be represented as At, whose columns are
{at

i}i=1,2,...Nt
, and the background dictionary can be represented as {ab

i }i=1,2,...Nb
, where Nt and Nb

are the numbers of atoms in target and background dictionary, respectively. The classical sparse
representation based classification relies on the underlying assumption that a test sample can be
linearly represented by a small number of training samples class [34]. Thus, for a background pixel x ,
it can be better represented as a linear combination of atoms in background dictionary Ab as follows:

x ≈ α1ab
1 + α2ab

2 + . . . + αnab
n

= [ab
1, ab

2, . . . , ab
n][α1, α2, . . . , αn]

T

= Abα

(7)

where α is a sparse vector whose entries are abundances of corresponding atoms in the background
dictionary Ab [39,40].

Similarly, if x is a target pixel, it can be better represented as a linear combination of the atoms
union in background dictionary Ab and the target dictionary At as follows:
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x ≈ (βb
1ab

1 + βb
2ab

2 + . . . + βb
nab

n) + (βt
1at

1 + βt
2at

2 + . . . + βt
mat

m)

=
[

ab
1, ab

2, . . . , ab
n

][
βb

1, βb
2, . . . , βb

n

]T
+
[
at

1, at
2, . . . , at

m
][

βt
1, βt

2, . . . , βt
m
]T

= Abβb + Atβt = Aβ

(8)

where A = [Ab At] is the B× (n + m) union dictionary contains both the background dictionary Ab

and the target dictionary At, β is the sparse coefficient.
Given a pixel X, it can be represented by background dictionary Ab and union dictionary A,

respectively. The sparse vector can be recovered by solving:

_
α = argmin‖Abα− X‖2 subject to‖α‖0 ≤ K0
_
β = argmin‖Aβ− X‖2 subject to‖β‖0 ≤ K1

(9)

where K0 and K1 are given upper bound on the sparsity level, and the sparsity level parameters adopt
the same values as in Zhang et al. [34]. The aforementioned problem has been solved by the orthogonal
matching pursuit (OMP) algorithm [41]. Then, the test pixel X can be reconstructed by these two
dictionaries as follows:

X0 = Ab_α (10)

X1 = A
_
β

The reconstructed spectrum can be determined by comparing the reconstruction error of the mean
squared error under two hypotheses [42–44]. The residuals of recovery [45] can be obtained as:

r0(X) = ‖X− Abα‖2 (11)

r1(X) = ‖X− Aβ‖2

where α and β represent the recovered sparse coefficients corresponding to the background and target
dictionaries, respectively.

Finally, we can get the detector of sparse representation algorithm:

r(X) = r0(X)− r1(X) (12)

If x is a background pixel, the values of r0(X) and r1(X) are similar, then r(X) will be a small
value. If x is a target pixel, the value of r0(X) will be much larger than r1(X), and r(X) will be a bigger
value. Through the above analysis, the larger the value of r(X), the greater the probability of target for
the pixel X is.

2.3. SWCEM Algorithm

Remote sensing images contain very complex information, most of the complex information come
from background and we are not so interested in it. It is difficult to figure out what the background
information exactly is, while target information is relatively easier to get. The SWCEM algorithm only
concerns about the target information. It only needs to construct the target dictionary, rather than
constructing both target and background dictionary, which is more convenient and easier to implement.

Suppose that D = [d1, d2, . . . , dk] is the target dictionary containing all possible target spectral
information. A remote sensing image with N pixels and L bands can be represented as an L × N
matrix X = [x1, . . . , xN ], where xi ∈ RL×1, i = 1, 2, . . . , N. The pixel xi can be represented by the target
dictionary D, like the sparse representation mentioned above:

xi ≈ γ1d1 + γ2d2 + . . . + γkdk

= [d1, d2, . . . , dk]
[
γ1, γ2, . . . γk

]T

= Dγ

(13)
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The sparse vector can be recovered by solving:

_
γ = argmin

∣∣∣∣∣∣Dγ− xi

∣∣∣∣∣∣2 subject to
∣∣∣∣∣∣γ||0 ≤ K2 (14)

where K2 is given upper bound on the sparsity level, the OMP algorithm is used to solve the
problem [41]. Then, we can reconstruct the pixel xi and get the residual of recovery:

x̂i = Dγ̂

ri =||xi − Dγ̂||2
(15)

The recovery residual characterizes the similarity between pixel xi and target. However, some
target pixels possess so similar spectral information with background pixels that the original CEM
often reports weak ability to distinguish them and does not obtain satisfied detection results. To further
increase the discriminated power between target and background, an adaptive weight is assigned
to each pixel based on the recovery residual. According to sparse representation, bigger recovery
residual always announces the higher probability that the pixel xi belongs to the background. Then,
we will assign a smaller weight to these pixels to suppress their contributions. Similarly, we will give a
bigger weight to the pixel with smaller recovery residual, which possess higher probability to be target.
After that, the target spectrum will present more distinct characteristic compared with background.
We employ the exponential style, and design a novel weight function to achieve this purpose. The
proposed weight function is expressed as below and also shown in Figure 1.
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ηi = e−λri (16)

where λ > 0 is a parameter. Equation (16) presents different shape with different λ: the bigger the
parameter λ, the steeper its shape. ri is the recovery residual, ηi is the weight of pixel xi, and then we
can get the new weighted pixel x∗i :

x∗i = ηixi = e−λri xi = e−λ‖xi−D
_
γ‖xi (17)

In the same way, we assign the adaptive weight to each pixel to get a new weighted remote
sensing data, which can be represented by matrix as follows:

X∗ = [x∗1 , . . . , x∗N ] (18)
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where x∗i ∈ RL×1, i = 1, 2, . . . , N. Based on the original CEM, we can get the autocorrelation matrix of
new remote sensing data X∗:

R∗ =
1
N

X∗(X∗)T (19)

so the optimization problem in Equation (4) can be re-expressed as follows:{
min

w
wT R∗w

s.t.wTd = 1
(20)

where w and d express the same meaning as the original CEM, and the solution of Equation (20) can
also be obtained by Lagrange multiplier method [40]:

w∗SWCEM =
(R∗)−1d

dT(R∗)−1d
(21)

Then, the final output of the SWCEM is:

y = (w∗SWCEM)TX∗ =
dT(R∗)−1

d(R∗)−1dT
X∗ (22)

Therefore, we effectively increase the difference between target and background pixels according
to their essential characteristics, and then the detector can distinguish the target from background
more easily. It produces a large output value to target pixels, while a small value to background pixels.
Therefore, the target will be separated from background clearly. The outline of the proposed SWCEM
algorithm can be described in Algorithm 1.

Algorithm 1 SWCEM Algorithm

Input:
spectral matrix X = [x1, . . . xN ] ∈ RL×N , target spectrum d ∈ RL×l, target dictionary
D ∈ RL×K , parameter λ, sparse level δ.

Sparse weighted:
1. Target dictionary D: xi = Dγ

2. Recovery residual ri = ‖xi − Dγ̂‖2 and the weight ηi = e−λri

3. x∗i = ηixi = e−λri xi = e−λ‖xi−D
_
γ‖xi

Constrained Energy Minimization:
4. Get the autocorrelation matrix: R∗ = 1

N X∗(X∗)T

5. min
w

wT R∗w s.t.wTd = 1

6. Solve the optimization problem:

w∗SWCEM = (R∗)−1d
/

dT(R∗)−1d

ri = ‖xi − Dγ̂‖2

Output:

7. final output: y = (w∗SWCEM)T X∗ = dT(R∗)−1

d(R∗)−1dT
X∗

3. Results

In this paper, four remote sensing datasets are used to evaluate the effectiveness of proposed
SWCEM algorithm. These datasets all possess their own distinctive characteristics, i.e., source of
the data, target size, environment around the target, and spatial resolution. The proposed SWCEM
algorithm just adopted two parameters, the λ and sparse level δ. Since there is no specific method
to set the parameter value automatically, we set them manually according to experience. Generally,
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λ ranges 0~10, with the sparse level δ ranges 1~5. We also compare the proposed method with exist
advanced target detection algorithms, such as CEM, SAM, hCEM, CE, and MPCEM. The CEM and
SAM are classic target detection algorithms, and CE, hCEM, and MPCEM are latest improved versions
of CEM. The proposed method employs the parameters setting in hCEM, and the procedure with
results are presented and discussed as follows.

3.1. Experiment on the First Dataset

The first dataset is acquired from SPOT6 satellite, which is provided by Digital Globe Incorporated,
the acquisition time is November 2012. It is a scene of Xianyang Airport in Shanxi Province, China.
It has four spectral bands that include blue band (0.455 to 0.525), green band (0.530 to 0.590), red band
(0.625 to 0.695) and near infrared band (0.760 to 0.890). The spatial resolution is 2 for each band. Most
of the scene is building area, and only a small part of it is the airport runway. We select two scenes
from the data to conduct the experiment, and regard the airplane as the target to be detected. The first
scene is 233× 233 pixels, and the plane stays on the runway; the second scene is 102× 126 pixels, with
plane stays down the parking shed. These two scenes have different interference information: the first
is impacted by lawn pool; and the second is parking shed with a spectrum similar to the plane. The
false color image and reference data of the first scene are presented in Figure 2, while the false color
image and the reference data of the second scene are presented in Figure 3.Remote Sens. 2017, 9, 1190 9 of 20 
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The reference data are the ground truth of targets, which is marked by experts. Usually, the spectral
information of target can be obtained from the spectral library, but it is not available here. Therefore, we
averaged part of the marked target spectrum as the target spectrum d. In Figures 2 and 3, we can see that
the spectrum of wings and back on the plane are obviously different, so the target spectrum d should
cover both the spectra of wings and back on plane. Dictionary D constructed by target spectrum contains
all possible target spectra, so the final target dictionary has 276 atoms consists of target spectrum of these
two scenes. The detection results of these data are presented in Figures 4 and 5.
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algorithm; (f) results of Clever eye (CE) algorithm; (g) results of MPCEM (Matrix principal Constrained
energy minimization) algorithm; (h) results of Sparse weighted-based Constrained energy minimization
(SWCEM) algorithm; and (i) reference data.

In the experiment, the hCEM converged in the third layer. The first row in Figures 4 and 5 shows
the detection results of hCEM on each layer during iteration. The second row shows the detection
results of CEM, SAM and CE, respectively. The third row shows the detection results of latest MPCEM,
the proposed SWCEM, and the ground truth, respectively. We can find that hCEM indeed gradually
improves the detection performance when layer increasing. While, if the original detection was
inaccurate, it will result in more inaccurate results on following layers. The spectrum of lawn pool in
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first scene and spectrum of parking shed in second scene are all similar to the target spectrum, so the
hCEM, CEM, SAM, CE, and MPCEM all failed to suppress the complex background. For the proposed
SWCEM algorithm, the small weight is assigned to background pixel and a larger weight is set to
target pixel according to the adaptively sparse weighting. In this case, the spectrum characteristics of
target and background will present great difference, and the method could effectively suppress the
background while highlight the target. Then, obviously, we can see from the detection results that
the proposed SWCEM algorithm could obtain more clean background. We also find that SWCEM
only detected the plane back while missed the plane wings, this is because the target spectrum d was
selected from the plane back only. However, there is a big difference between the spectrum of plane
wing and plane back, so the SWCEM suppressed the plane wing as background. On the other hand,
the results also show that the proposed method can well suppress the spectrum that is different from
the target spectrum, and obtain more clean detection results.
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3.2. Experiment on the Second Dataset

We also test the proposed SWCEM algorithm on the second dataset, which is acquired from
SPOT6. The data were captured in Chanba, Xi’an City, Shanxi Province, China, in 2011. It has four
spectral bands that include blue band (0.455 µm to 0.525 µm), green band (0.530 µm to 0.590 µm),
red band (0.625 µm to 0.695 µm), and near infrared band (0.760 µm to 0.890 µm). The spatial resolution
is 2 m for each band. We selected one scene from the data, which has 258×261 pixels, containing a
large area of water. The target we selected here is bridge pier surrounded by water. In this scene,
targets account for very few pixels, and we should precisely separate the target from water. The false
color image and reference data are presented in Figure 6. We randomly selected one pixel from the
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target spectrum as target spectrum d, and we constructed the target dictionary D with all the target
spectrum. The detection results of these data are presented in Figure 7.
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The first row in Figure 7 also shows the detection results of hCEM from the first to third iterate
layer. The second row shows the detection results of CEM, SAM and CE. The third row in Figure 7
presents the detection results of MPCEM, the proposed SWCEM and the reference data. The hCEM
algorithm converged on the twelfth layer in this test, but the detection results seem not improves
anymore from the third layer. Thus, we only show the results about first three layers. We can find that
without background suppression, the detection results still reserved many backgrounds, which makes
the results more confused for understanding. By contrast, the proposed SWCEM algorithm produces
relatively clean and better detection result. This should be attributed to the adaptively weighting
procedure, which suppress the undesired background spectrum and simultaneously ensure the target
spectrum more significant.

3.3. Experiment on the Third Dataset

Then, to further evaluate the proposed method, we test the SWCEM algorithm on another kind of
dataset, a famous hyperspectral dataset. It was collected by the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS), and presents the scene of the airport in San Diego, CA, USA. The data have
224 spectral channels in wavelengths ranging from 370 nm to 2510 nm. After removing the bands that
correspond to water absorption regions, low SNR, and bad bands (1–6, 33–35, 97, 107–113, 153–166,
and 221–224), the remaining 189 available bands are retained in the experiments. The spatial resolution
is 3.5 m for each band. From this hyperspectral dataset, we selected one scene to test. The scene is
150 × 182 pixels, which can be seen in Figure 8. The pseudo color image of the hyperspectral and the
reference data are presented in Figure 8. The reference data are also the ground truth of targets marked
by experts. In Figure 8, we can see that there are three planes in the scene, which are selected as the
target to be detected. The target spectrum and dictionary are selected and constructed similarly with
the former tests, and the detection results are presented in Figure 9.
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In Figure 9, we also compared the exist methods as the above tests. The detection results of
hCEM still employed the first to third iterated layer. Comparing with CEM, SAM, and hCEM that
have open source code, we tried the best to implement CE and MPCEM based on original CEM by
ourselves. As for hyperspectral image data, all the methods performed better than they conducted
detect on multispectral data. This might be due to the abundant spectral information of hyperspectral
image data. In Figure 9, almost all these methods detected targets satisfied, except the SAM. The
proposed method detected the target more effectively, by which the detected target was clearer and
more complete for further analyzing. The hCEM can also remove most background, but the target was
blurred at the same time. CEM and CE can present more significant target, while still reserving slight
background. The MPCEM can extract the most clear and complete target, but the background was
also significantly enhanced. The proposed method obtained the most clean background with relative
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clear and complete target, which performed more effectively on both multispectral and hyperspectral
image data.Remote Sens. 2017, 9, 1190 14 of 20 
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3.4. Experiment on the Fourth Dataset

Then, to further evaluate the proposed method, we test the SWCEM algorithm on another
hyperspectral image data, which also come from AVIRIS. The spectral channels and available bands
are all the same as Section 3.3. The spatial resolution is also 3.5 m for each band. From these
hyperspectral data, we selected the scene with 53 × 122 pixels. Figure 10 presents the pseudo color
image and reference data of the hyperspectral data. Since the targets in this scene are not so obvious,
the selected part is relative small.

The detection results about the scene are presented in Figure 11. The first row is also the detection
results of hCEM from first to third layer. As we can see, hCEM can hard detect target on this scene, as the
resolution is not so satisfied. The same situations emerge in Figure 11d,f in the second row: the targets
are almost lost by background noise. The SAM performed relatively better, because it is not sensitive to
resolution and illumination, though it still reserved too many backgrounds. For MPCEM in Figure 11g,
we find that it indeed presented good detection results. MPCEM can detect more clear targets than
other methods on this scene. The proposed method performed impressively, as it can effectively
suppress the background and detect more complete target. Although the hyperspectral image has
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higher spectral resolution, and the variability of spectral seems more complex, the proposed method
can also effectively increase the difference between background and target spectrums. Furthermore,
according to the fourth dataset, even if the image resolution is not satisfied, the proposed method is
still robust and effective.
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4. Discussion

To further discuss the detection performance objectively, the receiver operating characteristic
(ROC) [27,42] curves are employed to evaluate and analyze the experimental results. Several popular
detection methods are also employed to validate the performance of the proposed method.

The ROC curves describe the varying relationship of detection probability and false alarm rate [27],
i.e., describe the value of detection probability and false alarm rate corresponding to different threshold
condition. The ROC curves provide a more intuitive and comprehensive performance evaluation
method for target detection algorithms. The false alarm rate (Fa) and the probability of detection (Pd)
are defined as follows:

Fa =
N f

Nb
, Pd =

Nc

Nt
(23)

where N f is the number of false alarm pixels, Nb is the total number of background pixels, Nc is the
number of correct detection target pixels, and Nt is the number of total true target pixels. The larger
the area surrounded by the ROC curve is, the better the detection performance is.
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For more comprehensively, the evaluate procedure is still conducted on the above datasets, and
the proposed method is compared with several classical and popular detection methods. Figure 12
shows the ROC curves of different algorithms on first dataset with two scenes. The ROC curves are
built based on the same scene and hypothesis. The classical CEM, improved hCEM, popular SAM,
and recently proposed CE, MPCEM are employed here to compare with the proposed methods. We
can see that the proposed algorithm can obviously obtain higher detection probability at lower false
alarm rates, and the ROC curves further prove that the SWCEM algorithm outperforms the other
popular algorithms. For more intuitively, we calculated the area under ROC curves, which are shown
in Tables 1 and 2. We can conclude that the proposed method indeed achieves the highest area value,
which means more significant performance.
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Table 1. The area surrounded by ROC curves of different algorithms on the first scene.

CEM hCEM SAM CE MPCEM SWCEM

AUC 0.7937 0.7534 0.7063 0.8174 0.7741 0.8492

Table 2. The area surrounded by ROC curves of different algorithms on the second scene.

CEM hCEM SAM CE MPCEM SWCEM

AUC 0.7937 0.7534 0.7063 0.7957 0.7105 0.8474

Then, the ROC curves of different algorithms tested on the second dataset are presented in
Figure 13. From the curves, we can obviously see that the proposed algorithm also can obtain better
detection result than the other methods, with a flatter with more stable detection probability rate. We
calculated the area under the ROC curves similarly, and recorded them in Table 3. In Table 3, the
proposed method also covers the largest area, which effectively improves the detection performance of
the classical CEM and outperforms the other methods.

We then present the ROC curves of all the methods on the third and fourth dataset in
Figures 14 and 15. All the curves are nearer the upper left corner in Figure 14, as the third dataset
possesses relatively more obvious target characteristics. Furthermore, we find that the proposed
SWCEM algorithm can still achieved the best detection result coherently with the first two datasets,
and the ROC curve of the proposed method presents more competitive detection rate under the same
false alarm rate. Under the same condition, the areas under the ROC curves of these methods are
shown in Tables 4 and 5. These area values can further verify the effectiveness of the proposed method,
which report highest value in the table.
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Table 3. The area surrounded by ROC curves of different algorithms on the Chanba Area data.

CEM hCEM SAM CE MPCEM SWCEM

AUC 0.9306 0.8361 0.8709 0.9197 0.9005 0.9756

Table 4. The area surrounded by ROC curves of different algorithms on the AVIRIS Dataset 1.

CEM hCEM SAM CE MPCEM SWCEM

AUC 0.9578 0.9571 0.9637 0.9578 0.9619 0.9765

Table 5. The area surrounded by ROC curves of different algorithms on the AVIRIS Dataset 2.

CEM hCEM SAM CE MPCEM SWCEM

AUC 0.8847 0.8832 0.9069 0.7020 0.8541 0.9845
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According to the above discussion, we can find that these statistical results give the perspective
that the proposed SWCEM is more effective and robust on detection task comparing with the exist
works. It can achieve significant performance on different datasets under uniform hypothesis and
parameters setting. The ROC curves and area value demonstrate the high detection sensitivity of
the proposed method. Considering its complexity, we also analyzed the detection time of these
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methods, and the proposed SWCEM also reports competitive computation time compared to the
existing methods, while only a little more than original CEM. This is because of the introduction of
sparse weighted item, which needs to adaptively calculate and assign.
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The method we proposed can be easily extended to multiple target detection tasks, with only a
few constraints added. In our experiments, airplanes are very representative of the target, because the
plane’s wing and back on the plane’s spectrum information is not very similar. It is like a multitasking
detection task, and we have introduced two of different sparse constraints to accommodate this
problem. These constraints can be manually labeled or acquired from labeled data, and the proposed
method adaptively computes multiple weights by using sparse encoding constraints from different
destinations. Once the constraint is changed, the target function should be rebuilt and recalculated
to achieve different target detection results. How to balance these constraints is a problem to be
considered in the future. In addition, the detection efficiency can be further improved by introducing
some fast optimization methods.

5. Conclusions

This paper presents a new sparse weighted-based constrained energy minimization (SWCEM)
algorithm for target detection in remote sensing images. The sparse representation is introduced
to obtain the recovery residual of each pixel, which can describe the similarity between pixels and
target. Then, the exponential weighting function is designed to generate adaptive weights for pixels
based on recovery residual. Weighted pixels generate a new image data to the detector, which can
effectively suppress the complex background while keeping the target significant, and the proposed
detection procedure will more significantly detect the target from complex background. A series
of experiments is conducted on different datasets with the proposed SWCEM algorithm, and the
experimental results illustrate more competitive performance when compared with both classical and
recent target detection methods.
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