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Abstract: Leaf area index (LAI) is a significant biophysical variable in the models of hydrology,
climatology and crop growth. Rapid monitoring of LAI is critical in modern precision agriculture.
Remote sensing (RS) on satellite, aerial and unmanned aerial vehicles (UAVs) has become a popular
technique in monitoring crop LAI. Among them, UAVs are highly attractive to researchers and
agriculturists. However, some of the UAVs vegetation index (VI)—derived LAI models have relatively
low accuracy because of the limited number of multispectral bands, especially as they tend to saturate
at the middle to high LAI levels, which are the LAI levels of high-yielding wheat crops in China.
This study aims to effectively estimate wheat LAI with UAVs narrowband multispectral image
(400–800 nm spectral regions, 10 cm resolution) under varying growth conditions during five critical
growth stages, and to provide the potential technical support for optimizing the nitrogen fertilization.
Results demonstrated that the newly developed LAI model with modified triangular vegetation index
(MTVI2) has better accuracy with higher coefficient of determination (Rc

2 = 0.79, Rv
2 = 0.80) and lower

relative root mean squared error (RRMSE = 24%), and higher sensitivity under various LAI values
(from 2 to 7), which will broaden the applied range of the new LAI model. Furthermore, this LAI
model displayed stable performance under different sub-categories of growth stages, varieties,
and eco-sites. In conclusion, this study could provide effective technical support to precisely monitor
the crop growth with UAVs in various crop yield levels, which should prove helpful in family farm
for the modern agriculture.

Keywords: UAV; narrowband multispectral image; modified triangular vegetation index; LAI; wheat

1. Introduction

Leaf area index (LAI) is a key parameter that determines the photosynthesis, respiration,
and transpiration of vegetation [1,2]. Real-time monitoring of the LAI for crops can not only help
to obtain the status of health and nutrients, but also provide effective technical support in fertilizer
application and water management [3].

Remote sensing (RS) techniques are widely used in agriculture and agronomy [4]. The common
method of monitoring crops LAI is to use some data (vegetation index, degree of coverage, and so
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on) acquired by remote sensing sensors on ground-based [5], satellite or airborne [6,7] platforms.
However, the ground platform is used at individual locations and thus has low efficiency for
wall-to-wall mapping; satellite data are often difficult in meeting the requirements of spatial and
temporal resolutions [8,9]; manned airborne campaigns can acquire high spatial resolution data
over relatively large areas, but they are costly. Unmanned aviation vehicles (UAVS) have emerged
in the last decades to overcome the deficiencies of the above platforms, especially for precision
agriculture, because UAV can acquire data with high temporal frequency and spatial resolutions at
a low cost [8–10]. A recent study [11] compared three types of data from the ground-based ASD Field
Spec Pro spectrometer (Analytical Spectral Devices, Boulder, CO, USA), UAVs mounted ADC-Lite
multi-spectral sensor, and GaoFen-1 in retrieving soybean LAI. It found that UAVs mostly has the
same high accuracy with the ASD hyperspectral spectroradiometer.

Due to the above advantages, UAVs has been used in an increasing number of studies to estimate
LAI for vegetation, mainly through the vegetation indices (VIs) derived from the reflectance of RGB
digital cameras attached to the UAVs [11,12]. For example, Chianucci [12] calculated the VIS at the
red, green and blue bands from the UAV true color digital image to estimate the beech forest LAI.
Despite those efforts, the accuracy of predicting LAI was not high [11,12]. This could be attributed to
the consumer-grade digital cameras used in these studies. These cameras normally capture true-color
imagery with three bands (blue, green, and red) in the visible spectrum range. However, considerable
research has shown that the vegetation reflectance in the NIR region is more strongly influenced by
LAI than that in the visible region [13]. Therefore, a few studies have attempted to develop sensors
that substitute one of the blue, green, or red bands with a NIR band. For example, Hunt et al. [14]
acquired NIR-green-blue digital photographs from unmanned aircraft, and then proposed the GNDVI
(Green Normalized Difference Vegetation Index) on the green and NIR channels for monitoring crop
LAI. However, their sensor had just three bands.

Some studies attempted to increase the number of bands by integrating several cameras in one
platform, which, however, can pose challenges in image preprocessing. For example, Lelong et al. [15]
adapted filters on commercially-available digital cameras (Canon EOS 350D and Sony DSC-F828) to
design a new four-spectral-bands sensor (blue, green, red, and NIR), and they acquired the better
prediction with RMSE = 0.57 and R2 = 0.82. However, they reported that the data pre-processing was
quite complex, and the data quality needs to be improved.

These studies mostly examined only the NIR band at the high reflectance “plateau”
(around 720–850 nm) and developed corresponding VIs for estimating LAI. However, other NIR
bands, especially the red-edge bands, could also be highly useful for predicting LAI [13]. An urgent
need exists to test the ability of the UAVs with sensors of more bands, especially with red edge
and NIR bands, to estimate LAI. Only a few studies have used UAV multispectral imagery that
include red edge and NIR bands for applications such as the seed management [9], olive disease
monitoring [10], pasture variations identification [16], and conifer forest carotenoid content
estimation [17]. Furthermore, UAVs is a promising remote sensing platform that gained more and
more attention for crops. For example, Jin et al. [18] estimate wheat plant density from UAV RGB
images. Zhou et al. [19] predicting grain yield in rice using multi-temporal vegetation indices from
UAV-based multispectral and digital imagery.

The LAI of crops at the mature stage can reach as high as 7, and the LAI level near which
optical remote sensing imagery usually have the saturation problem [19]. Another research gap is that
some previous studies in UAV-based estimation of crop LAI often focused on a few growth stages.
For example, Hunt et al. [14] only acquired the image of winter wheat on 4th May at the flowering
stage. To the best of our knowledge, except Lelong [15] and Potgieter [20], no studies have used
UAVs to estimate crops LAI across the whole critical growth period, which can span a large LAI range.
In addition, most of the researchers often estimate wheat LAI using normalized differential vegetation
index (NDVI). It is well-known that NDVI is one of the most extensively applied VIs for estimating
LAI, but merely effective at relatively low LAI values [21]. Later, many studies proposed some effective
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VIS to estimate LAI, e.g., the enhanced vegetation index (EVI) [22], the modified triangular vegetation
index (MTVI2) [23], the (optimized) soil adjusted vegetation index (SAVI and OSAVI) [24,25], but these
VIs were mostly developed using satellite or airborne sensors. In addition, it is very essential when
aiming to use an empirically-optimized VIs model to estimate growth parameters such as LAI using
UAV images. There is an urgent need to assess the performance of commonly used VIs from UAV
narrow multispectral sensor for estimating crop LAI across all different growth stages.

Wheat is the main cereal crop in the world. The number of large wheat family farms is rapidly
increasing in China, which need the accuracy and frequent monitoring of growth status to guide the
management of fertilizer and water [26]. UAV, due to its low cost, high efficiency, flexible altitude and
on-demand adjustment of the testing time, has certainly evolved as the appropriate tool in modern
family farms [27].

Our study has the following objectives: (1) to quantify the relationship between wheat LAI and
various VIs from the narrowband multispectral imagery; (2) to infer the most powerful VIs over the
wide range of growth conditions; (3) to examine the sensitivity of the VIs to LAI at the middle to high
levels; (4) to evaluate the generality of VIs for LAI estimation when using independent test dataset
with different cultivars, densities, and nitrogen rates during the critical growth period, which would
provide the potential technical support for effectively monitoring crop growth in the management and
tactics of decision-Nitrogen on the farm scale.

2. Materials and Methods

2.1. Experimental Design

Two field experiments were conducted involving different N application rates, planting densities
and winter wheat cultivars (Triticum aestivum L.) in two growing seasons in the town of Baipu town,
Rugao city, Jiangsu province, China (120◦45′E, 32◦16′N) (Figure 1). The detailed experimental design
is described below:

Experiment 1 was conducted in a single season from 2013 to 2014 with the sowing date of
28 October 2013. Two winter wheat cultivars, ‘Shengxuan 6’ and ‘Yangmai 18’, were selected to
represent different canopy structure (planophile and erectophile types), respectively. Three N
application rates (0, 150 and 300 kg/ha as urea) and two planting densities (3.0 × 106 plants ha−1,
and 1.5 × 106 plants ha−1) were applied. A split design was used with three replications for all
36 plots with every plot size of 35 m2. Other agronomic management was conducted according to the
local wheat production practices. Soil organic matter was 24.60 g/kg, available N was 150.41 mg/kg,
total nitrogen was 1.87 g/kg, available phosphorus was 57.84 mg/kg and available potassium was
96.32 mg/kg. The basal fertilizer was applied on 26 October 2013, including 120 kg/ha P2O5, 120 kg/ha
K2O and three N application rates (0, 75 and 150 kg/ha as urea). Compound fertilizer was applied on
8 March 2014, including three N application rates.

Experiment 2 was conducted with the sowing date of 31 October 2014, and it was a duplicate of
Experiment 1 in the 2014–2015 seasons. The soil type is loam soil, and we measured the soil conditions
before sowing. soil organic matter was 18.90 g/kg, available N was 100.41 mg/kg, total nitrogen was
2.07 g/kg, available phosphorus was 34.00 mg/kg and available potassium was 90.00 mg/kg. The basal
fertilizer was applied on 30 October 2014, including 120 kg/ha P2O5, 120 kg/ha K2O and three N
application rates (0, 75 and 150 kg/ha as urea). Compound fertilizer was applied on 5 March 2015,
including three N application rates.

In this study area, the average annual temperature was 16.59 ◦C with the highest and lowest
annual temperature as 38.10 ◦C and−5.57 ◦C, respectively. The average annual rainfall was 927.53 mm,
and we did not consider the effect of water, because rainfall could meet the needs of wheat growth.
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Figure 1. The UAV imagery with two winter wheat varieties (V1, V2), two densities (D1, D2), three 
nitrogen rates (N0, N1, N2) (A), location of our field pilot trial with 36 plots (B). 

2.2. Data 

2.2.1. The UAV System 

The UAV system (UAV) used in this study includes the ARF-MikroKopter UAV with eight 
rotors, an MC-32 remote controller, a Thinkpad laptop, and a six-channel narrowband multispectral 
camera (MiniMCA-6, Tetracam, Inc., Chatsworth, CA, USA), as shown in Figure 2. The specific 
parameters of the UAV and the sensor are shown in Tables 1 and 2. 

 
Figure 2. The UAV and sensor (A) Graupner MC-32, (B) ARF-MikroKopter UAV, (C) Multispectral 
sensor, (D) Ground control point. 

  

Figure 1. The UAV imagery with two winter wheat varieties (V1, V2), two densities (D1, D2),
three nitrogen rates (N0, N1, N2) (A), location of our field pilot trial with 36 plots (B).

2.2. Data

2.2.1. The UAV System

The UAV system (UAV) used in this study includes the ARF-MikroKopter UAV with eight rotors,
an MC-32 remote controller, a Thinkpad laptop, and a six-channel narrowband multispectral camera
(MiniMCA-6, Tetracam, Inc., Chatsworth, CA, USA), as shown in Figure 2. The specific parameters of
the UAV and the sensor are shown in Tables 1 and 2.
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Table 1. The parameters for the UAV of ARF-MikroKopter.

Parameter Value

Weight 2050 g
Size 73 × 73 × 36 (W × L × H) cm

Battery 4s/5000 520 g
Maximum payload 2500 g

Flight period 8~41 min
Temperature range −5 ◦C~35 ◦C

Table 2. The parameters for the sensor of Tetracam Mini-MCA6.

Channel Wavelength (nm) Band Width (nm) Exposure Proportion (%)

Master (0) 550 10 70
Slave 1 ILS 130
Slave 2 490 10 120
Slave 3 671 10 100
Slave 4 700 10 100
Slave 5 800 10 80

2.2.2. Data Acquisition and Processing

Imagery from UAV: the ARF-Mikro Kopter UAV flighted with the Mini-MCA6 multispectral
sensor was performed to take images with spatial resolution of 8.125 cm at 150 m altitude. We took
the image of the wheat at the five critical stages including the jointing (15 March 2014 and
13 March 2015), booting (9 April 2014 and 9 April 2015), heading (15 April 2014 and 17 April 2015),
anthesis (23 April 2014 and 24 April 2015) and grain filling (6 May 2014 and 9 May 2015) stages.

LAI from LI-3000: To be synchronous with the imagery, we took 30 wheat stems from each plot
as one sample, separated the green leaves, used a LI-3000 leaf area meter to scan the green leaf area.
We total have 36 plots, which the length and width are 7 m and 5 m. The number of stems in one
meter length in each plot was counted manually. Based on the Formula (1), the LAI of population
was calculated.

LAI = 1/D × B × A/C × 10−4 (1)

D was the distance between two rows of wheat; B was the number of stems in one meter; A was
the leaf area of sample; C was the number of stems of sample.

Pre-processing of the image: We pre-processed the imagery by conducting: (1) noise
elimination [28], (2) vignette reduction [28], (3) lens distortion correction [29–31], (4) band
registration [32], (5) radiometric calibration [33], and (6) background removal [34]. We set 30 ground
control points in the experimental area, and used X900 GNSS to determine the geographic coordinates.
The horizontal direction of the error can be controlled within 1 cm, the vertical error can be controlled
within 2 cm.

Calculation of VIs: We randomly combined every two of the 5 wavebands (490 nm, 550 nm,
671 nm, 700 nm, and 800 nm) to construct VIs, and the bands were selected based on the relationship
between the vegetation index and the LAI with higher coefficient of determination, the selected
vegetation indices were shown in Table 3.
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Table 3. Algorithms and references of all the possible VIS.

VIS Algorithm Ref.

RVI R800/R700 [35]
NDVI (R800 − R700)/(R800 + R700) [36]
MTVI2 1.5 × (1.2 × (R800 − R550) − 2.5 × (R700 − R550))/(2 × (R800 + 1)2 − (6 × R800 − 5 × R700)0.5 − 0.5)0.5 [23]
SAVI 1.5(R800 − R700)/(R800 + R700 + 0.5) [24]

GBNDVI R800 − (R550 + R490)R800 + (R550 + R490) [37]
RDVI (R800 − R700)(R800 + R700)0.5 [38]

GNDVI (R800 − R550)/(R800 + R550) [39]
MSR (R800/R700 − 1)/(R800/R700 + 1)0.5 [40]
EVI 2.5 × (R800 − R700)/(1 + R800 + 6 × R700 − 7.5 × R490) [22]
DVI R800 − R700 [41]

2.3. Data Analysis and Application

The quantitative relationship between the VIs and the LAI was analyzed, and the optimal LAI
model was selected based on the regression of the linear, power or exponent functions on the coefficient
of determination (Rc2), and the new developed model was calibrated with the data from Experiment 2.
The constructed LAI model was validated with the data from Experiment 1. The relative root mean
square error (RRMSE) (Equation (2)) and coefficient of determination in the validation (Rv2) were
calculated to assess the accuracy of the VI-derived model. The sensitivity of all combinations of VIS

versus LAI was evaluated by the index of noise equivalent (NE∆LAI) [42] (Equation (3)). A higher
NE∆LAI value indicates the lower sensitivity with LAI, while a lower NE∆LAI value indicates the
higher sensitivity.

RRMSE =

√
1
n
×

n

∑
i=1

(Pi−Qi)2 × 1
Qi

(2)

NE∆E∆L =
RMSE{VIvs.LAI}

d(VI)/d(LAI)
(3)

bias =
∑n

i=1 (Qi− Pi)
n

(4)

where n is the number of LAI samples, Pi is the estimated LAI value, Qi is the observed LAI value,
and VIs is all the possible represented vegetation indices, RMSE {VI vs. LAI} is the root mean square
error of the second-order polynomials function and the actual LAI value, and d(VI)/d(LAI) is the first
derivative of this function.

3. Results

3.1. Changes of Canopy Reflectance and LAI at Different Growth Stages under Varied Nitrogen Rates

The data from Experiment 2 were taken as an example to demonstrate the variation of the canopy
spectral reflectance (Figure 3) and the LAI (Table 4) with the five critical growth stages of wheat.

The results showed that the canopy reflectance varies with the five critical growth stages for all the
5 wavelengths. The NIR waveband of 800 nm, the maximum value of reflectance, was with the greatest
variation among the 5 narrow bands. Furthermore, the wavelength at 800 nm demonstrated the trend
of initial increase and later decrease with the highest reflectance at the booting stage. The other 4 bands
(490 nm, 550 nm, 671 nm, and 700 nm) had small variation from the jointing to grain filling stage with
the reflectance values low less than 0.12.
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Figure 3. Canopy spectral reflectance of the narrowband multispectral image at various growth stages
and days after sowing (DAS). (a) jointing stage, DAS = 133; (b) booting stage, DAS = 158; (c) heading
stage, DAS = 166; (d) anthesis stage, DAS = 173; (e) grain filling stage, DAS = 186; (f) the five critical
growth stages.

Table 4 showed that the LAI tended to first increase and then decrease along the growth stage,
reaching the maximum at booting stage. And the similar trend displayed in varied nitrogen rates of
N0, N1, and N2. LAI increased in the increasing nitrogen rate with N2 as the maximum, which is
consistent in two varieties.

Table 4. The variation of LAI at different growth stages under varied nitrogen rates.

Growth Stage
LAI at N0 LAI at N1 LAI at N2

Min. Max. Ave. Min. Max. Ave. Min. Max. Ave.

Jointing 0.80 1.63 1.15 1.44 2.76 2.14 1.56 3.25 2.63
Booting 1.17 3.26 2.16 3.88 7.04 5.25 5.51 7.99 6.71
Heading 1.07 2.75 1.74 3.82 6.73 5.10 5.28 7.98 6.81
Anthesis 0.98 2.55 1.69 3.78 6.65 5.00 5.09 7.64 6.29

Grain filling 0.84 2.25 1.38 2.63 4.80 3.82 3.24 7.35 4.93

Note: Min. stands for minimum value; Max. stands for maximum value; Ave. stands for average value. N0, N1 and
N2 represent three N application rates, 0, 150 and 300 kg/ha as urea, respectively.

3.2. Quantitative Relationships between LAI and VIS in Wheat

Based on the data of Experiment 2, 10 commonly used VIs for LAI estimation were selected
to calculate the quantitative relationship, then the most powerful VIs with higher coefficient of
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determination (Rc2) were selected in Table 5. Finally, the LAI model was validated and tested by the
data of Experiment 1. The calibration indicated that the optimal two-band VIs of 800 nm and 700 nm
have better performance with Rc2 of 0.79, while the optimal three-band MTVI2 was superior to others
with Rc2 as 0.79. Further, the validated results showed that two bands-RDVI and three bands-MTVI2

have better performance in monitoring of LAI on the UAVS, with MTVI2 as the best.

Table 5. Quantitative relationship between LAI and VIs from UAVs image.

Number of Bands VIs Equation Rc2 Rv2 RRMSE

Two bands

RDVI (800, 700) y = 16.79x − 4.44 0.79 0.78 26
DVI (800, 700) y = 18.32x − 2.25 0.79 0.65 32

NDVI (800,700) y = 0.08e4.97x 0.79 0.68 31
GNDVI (800, 550) y = 0.03e6.30x 0.78 0.53 40

RVI (800, 700) y = 0.61x − 0.94 0.78 0.66 34
SAVI (800, 700) y = 17.01x − 6.54 0.78 0.78 59
MSR (800, 700) y = 2.65x − 2.04 0.75 0.67 33

Three bands
MTVI2 (550, 700, 800) y = 12.10x − 1.93 0.79 0.80 24

EVI (490, 700, 800) y = 13.15x − 2.86 0.78 0.82 25
GBNDVI (490, 550, 800) y = 0.10e4.75x 0.77 0.42 47

Note: Rc2 and Rv2 indicate the coefficient of determination in calibration and validation, respectively. RRMSE
stands for relative root mean square error.

3.3. Evaluation of the Constructed LAI Model in Wheat

3.3.1. Comparison with the Ground Hyperspectral LAI Model

Furthermore, we compared the UVAs derived model with that from the ground based Field Spec
4 ASD spectrometer (Table 6). The result indicated that the difference of accuracy for the model was
not substantial in the coefficient of determination (Rc2), which indicated that the method on UAV was
feasible not only with the higher efficiency, but also with the same higher accuracy.

Table 6. Quantitative relationship between LAI and VIs from Field Spec 4 ASD.

Number of Bands VIs Equation Rc2 Rv2 RRMSE

Two bands

RDVI (800, 700) y = 14.37x − 3.03 0.79 0.83 22
DVI (800, 700) y = 16.15x − 1.46 0.82 0.88 19

NDVI (800,700) y = 0.16e4.29x 0.81 0.75 27
GNDVI (800, 550) y = 0.06e5.44x 0.80 0.71 35

RVI (800, 700) y= 0.68x − 0.83 0.81 0.77 26
SAVI (800, 700) y = 13.68x − 4.09 0.77 0.83 49
MSR (800, 700) y = 2.69x − 1.56 0.78 0.75 26

Three bands
MTVI2 (550, 700, 800) y = 12.10x − 1.93 0.79 0.83 22

EVI (490, 700, 800) y = 11.62x − 2.08 0.81 0.85 22
GBNDVI (490, 550, 800) y = 0.24e4.05x 0.81 0.71 42

Note: Rc2 and Rv2 indicate the coefficient of determination in calibration and validation, respectively. RRMSE
stands for relative root mean square error.

3.3.2. Ability of Mitigating the Saturation of VIs under Middle to High LAI Levels

Using the sensitivity index of NE∆LAI, the ability of mitigating the saturation for the above
mentioned VIS and the corresponding models in this paper was tested under the different LAI range
(Figure 4). The results showed that when LAI < 4.5, there is no significant difference for all the selected
VIS according to the value of NE∆LAI. However, when 7 > LAI > 4.5, the NE∆LAI of the selected VIS
increased differently with the increasing LAI value. Moreover, NE∆LAI of NDVI was the fastest and
largest, and that of MTVI2 was the slowest and the smallest. Further, when LAI is >7, the NE∆LAI
of MTVI2 was still the smallest value which indicated that MTVI2 was very suitable for monitoring
the LAI at the high nitrogen nutrient field in today’s farming. In summary, the ability of MTVI2 on
mitigating the saturation under the different LAI range was better than other VIs.
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3.4. LAI and the Error Destribution Maps

We have applied the relationship derived over the five critical growth stages to the five dates,
and it resulted in time series of LAI maps over the five growing seasons at the farm scale (due to
the limited space, the figure omitted). The overall time-variation seemed coherent with expected
evolution through the five critical growth stages: increased until the end of April (at the anthesis
stage), followed by a strong decrease due to maturity at the grain filling stage. Values also seemed in
accordance with what were generally observed in wheat fields. Such maps were proven temporally
and spatially coherent. Indeed, it showed relevant information about the plot variability that was
explained by farms fertilizer practices.

In order to analyze the accuracy of LAI maps, we made the bias distribution mapping (Figure 5)
between the measured and the estimated values of LAI. And the figure displayed that the plot with
higher N treatment have smaller bias error than that with lower N treatment one.Remote Sens. 2017, 9, 1304  10 of 14 
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4. Discussions

4.1. Performance of Diverse VIs on Estimating Wheat LAI

In this study, 10 commonly used VIS (RVI, NDVI, MTVI2, SAVI, GBNDVI, RDVI, GNDVI, MSR,
EVI, and DVI) for estimating LAI acquired from the narrowband multi-spectral imagery at five critical
growth stages were analyzed systematically in wheat, and the optimal VIS with the best performance
was determined as MTVI2 on carefully considering the performance of the higher accuracy, stability and
sensitivity, which was consistent with Smith [43].

MTVI2 was originally constructed by three wavebands (800 nm, 550 nm, and 670 nm) [23]. In this
paper, we used 800 nm, 550 nm and 700 nm to calculate the value. 700 nm and 800 nm were located in
the red edge region and the near-infrared range, respectively. Previous studies showed that the red
edge wavebands index (680 nm–760 nm) were sensitive to the LAI and chlorophyll [13,44–47], and the
near-infrared short-wave (780 nm–1100 nm) was sensitive to the structure and water, which can deeply
explore the canopy under higher biomass status [48,49]. Therefore, that was why MTVI2 had strong
performance in this paper.

Other VIs, such as RDVI (800, 700), DVI (800, 700), NDVI (800,700), GNDVI (800, 550), RVI (800,
700), SAVI (800, 700), MSR (800, 700), EVI (490, 700, 800), and GBNDVI (490, 550, 800), also had better
performance, but some of these had the limitation of saturation under the moderate-to-high LAI levels
as often found in high-yielding wheat crops.

4.2. Saturation of VIs under Varied LAI Leves in Wheat

Saturation of VIs is one of the major limitations in estimating the biophysical parameters on the
linear regression. Some previous studies demonstrated that NDVI was accurate and robust in LAI
estimation for various vegetation types; however, NDVI is limited by the low accuracy related to
saturation occurring in relatively dense canopies (LAI > 2 m2 m−2) [50,51]. Smith, et al. [43] also showed
that NDVI will demonstrate saturation status when the LAI reaches 3~4. And, the NDVI-derived model
was underestimated during the grain filling period. Later, NDVI was proven to monitor the growth
status on the canopy imagery by the UAVs, but serious saturation phenomenon appeared [14,15].
Hunt [52] also found that TGI (670, 480, 550) was not sensitive to changes in LAI > 2.0. Recently, a new
index mNDSI (ρ940, 0.8ρ950, ρ730) which was more sensitive under the LAI conditions from
2 to 8 m2 m−2 was proposed from the author’s lab [51]. This paper did not specifically solve the
saturation issue, but we fully assessed the saturation of those selected VIS, and the result showed
that the new model on MTVI2 had higher sensitivity under different LAI ranges. What is more, the
model could be applied in the LAI range of 2 to 7 m2 m−2, which would greatly enlarge the range of
application compared to previous models.

4.3. Effect of LAI Estimation on the Application of the Methodology

The leaf area index is an important descriptor of many biological and physical processes of
vegetation. Most of the currently available ground-based methods to estimate the LAI include
either direct contact destructive sampling and point contact sampling, or indirect light transmittance
(2000 Plant Canopy Analyzer) or spectral reflectance (Analytical Spectral Devices) methods. They are
difficult to move from one site to another with a small-extent mapping capability. On the other
hand, it appeared that satellite sensors did not meet the requirements in increasing image temporal
frequency and spatial resolution for agricultural application like crop monitoring. However, remote
sensing sensors placed on unmanned aerial vehicles represent a promising option to fill this gap,
providing low-cost and high efficiency approaches to meet the critical requirements of spatial, spectral,
and temporal resolutions.

Fortunately, in this research, we found that the LAI model with MTVI2 has better accuracy
with higher efficiency and lower error and is sensitive under various LAI values (from 2 to 7).
Developing simple but efficient methods to monitor vegetation across a wide range of LAI is urgently
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needed for precision agriculture in China, where most of the field is with high LAI. In recent years,
the application of nitrogen fertilizer increase year by year to meet the need of high production,
which brings out the larger LAI than before. Therefore, the monitoring of LAI under medium and high
level is important in practical production. In addition, the high cost of the equipment used here may
be afforded by the owners of larger farms, or farmers associations that can share the benefits and also
the costs, which is also important in China, since the farmer are not rich.

5. Conclusions

In this study, the major findings show that MTVI2 (800, 700, 550) has the best performance in
monitoring wheat LAI during the five critical growth stages, and the new developed LAI model
demonstrated higher stability in the sub-strategies (including varied growth status) which could
broaden the applied range (the maximum LAI reaches 7), when compared to the existing LAI model.
The map of spatial distribution represents the dynamic change of wheat LAI, which shows relevant
information for fertilizer practices. In summary, the UAVs technology is feasible in the monitoring of
crop LAI for higher nitrogen nutrient fields at farm-scale in modern China. Accurate monitoring of
wheat LAI is not only important in acquiring the growth status, but also provides crucial technical
support to manage fertilizer applications for family farms. Previous studies have shown that critical
N concentration curve on LAI can be an effective approach to diagnose the nutrient state and optimize
N management in precision agriculture [53,54].

In practical use, a farm with the area of 5–10 ha could be fully covered with only 6–12 images
at the flight altitude of 150 m. and the time will last an hour for the flight and pre-processing of
imagery, which is high efficiency and low cost. However, there is still some work to be done to make
the technology easy and simple, before we guide the addressing fertilization. It is still difficult to apply
this technique to calculate the LAI for a general farmer, since not all the farmers can operate the UAV
and pre-process image (vignette reduction, lens distortion correction, band registration, radiometric
calibration and background removal), only if we could train them. So, we should develop a simple and
easy LAI estimation software system on UAVS in the future research. In addition, we should consider
research on carrying hyperspectral sensors on UAVs to obtain important information, fully taking
advantage of the textural information to enhance the accuracy, stability and universality of the model.
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