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Abstract: Finding a way to effectively suppress speckle in SAR images has great significance.
K-means singular value decomposition (K-SVD) has shown great potential in SAR image de-noising.
However, the traditional K-SVD is sensitive to the position and phase of the characteristics in the
image, and the de-noised image by K-SVD has lost some detailed information of the original image.
In this paper, we present one new SAR image de-noising method based on shift invariant K-SVD and
guided filter. The whole method consists of two steps. The first deals mainly with the noisy image
with shift invariant K-SVD and obtaining the initial de-noised image. In the second step, we do the
guided filtering for the initial de-noised image. Finally, we can recover the final de-noised image.
Experimental results show that our method not only has better visual effects and objective evaluation,
but can also save more detailed information such as image edge and texture when de-noising SAR
images. The presented shift invariant K-SVD can be widely used in image processing, such as image
fusion, edge detection and super-resolution reconstruction.
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1. Introduction

Synthetic aperture radar (SAR) technology is high-resolution, works anytime and in any weather,
and allows multi-polarization, variable angle, and so on. SAR is a joint high-tech tool of space
technology, electronics technology, and information technology, and it has been widely used in the
military field for applications in strategy, tactics, and so on [1]. As shown in Figure 1, compared
with the color optical image, the SAR image which is obtained by microwave imaging can reflect the
underground information through covers such as surface vegetation. However, because of the unique
imaging mechanism, there is always some speckle noise [2]. The existence of this noise has greatly
increased the complexity of the image, resulting in a negative influence on the subsequent image
processing. Therefore, finding a way to suppress or remove the speckle effectively is a hot topic for
many scholars.

Traditional SAR image de-noising methods can be divided into two types [3]: image de-noising
method based on spatial domain and image de-noising method based on transform domain. The first
type mainly deals with the noisy image with filters, and the other uses a different filter with
a different function. They realize the de-noising result by convolution filtering the noisy image
with a filter function. Common spatial domain methods include median filtering [4], mean filtering [5],
Wiener filtering [6], and so on. However, the image de-noising method based on transform domain
makes use of the fact that the noise is not sparse. At first, we can represent the image by a fixed
orthogonal transform function and obtain many frequency coefficients. Then, we conduct the
image de-noising by processing these frequency coefficients. Finally, the de-noised image can
be obtained by the inverse transform. For example, SAR image de-noising based on non-local
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similar block matching in NSST domain in [7], synthetic aperture radar image de-noising based
shearlet transform using the context-based model in [8], and scattering-based SAR-Block Matching
3D (SARBM3D) [9]. Common transforms include Fourier transform, discrete cosine transform (DCT),
wavelet and multi-scale multi-directional transform [10]. However, as SAR images contain rich feature
information, an ideal de-noising result can hardly be realized if only by limited orthogonal transform,
which cannot represent all the image features.

Figure 1. Images from different sensors: (a) Color optical image; (b) Synthetic aperture
radar (SAR) image.

The recent development of sparse representation has led to its widespread use in image processing,
such as super-resolution reconstruction [11], edge detection [12], and face recognition [13]. The image
de-noising method based on sparse representation of dictionary learning is applied to suppress the
speckle of SAR images in [14–17]. Compared with the image de-noising method based on transform
domain, these methods adopt a redundant dictionary rather than a fixed orthogonal basis function
to express the noisy image. Since the noise is not sparse, the sparse coefficients do not contain noise,
and the restored image by a linear combination of redundant dictionary and sparse coefficients does not
contain noise either. Finally, we can realize the result of SAR image de-noising. However, the traditional
sparse representation methods (e.g., K-means singular value decomposition, K-SVD) are sensitive to
the position and phase [18], which means that even the same image feature with different position
or phase may lead to different atoms of the training dictionary. It is well known that the image is
shift-invariant; when we use the traditional K-SVD to do the image de-noising, there will be some
Gibbs effects and the training of shift atoms will be time-consuming [19]. As a result, in this paper we
will incorporate shift invariance into sparse representation of the noisy SAR image to prevent Gibbs
effects and improve the sparsity of the coefficient.

In contrast to ordinary optical images, SAR images contain a great deal of rich texture information
and edge features. A certain point in a SAR image may correspond to one real building, and
misjudgment of it has an inestimable negative influence on the SAR image application. If we conduct
the SAR image de-noising by sparse representation, when we decompose the residual image with
SVD in the step of updating the dictionary [20], we usually give up some smaller singular values
to obtain the atoms. Therefore, information of the original image cannot be completely represented
by the obtained atoms. In other words, some detailed information is misjudged as noise so that it
cannot be represented by dictionary atoms. All of these lead to edge blurring, poor spatial resolution,
and even loss of some important points and edges in the restored de-noised image, and have a very
negative influence on the subsequent image processing. As one fast and non-approximate linear-time
method, the guided filter [21] can serve as one good edge-preserving smoothing method. Therefore,
in this paper we present one new SAR image de-noising method by combining the shift-invariant
K-SVD and guided filter. At first, we de-noise the noisy SAR image with shift-invariant K-SVD
and obtain the initial de-noised image. Then, we make the obtained image as the input image
and guidance image at the same time, and use a guided filter on them to preserve more edge and
detailed information of the original image. Finally, the de-noised image can be obtained by sparse
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representation. Experimental results show that our method is an effective SAR image de-noising
method, due to its de-noising effect and its edge-preserving ability.

The rest of this paper is organized as follows: sparse representation is introduced briefly in
Section 2.1, and the shift-invariant K-SVD is presented in detail in Section 2.2. Then, in Section 3,
we provide some information about the guided filter. The new SAR image de-noising method is
presented in Section 4, and some experiments are conducted in Section 5. Finally, the conclusion is
made in Section 6.

2. Shift Invariant K-SVD

Here, we introduce some detail about the shift invariant K-SVD. In Section 2.1, we present the
basic model of sparse representation. The main contribution of our method is presented in Section 2.2.

2.1. Sparse Representation

Suppose that the over-complete dictionary is D ∈ RM×T , which contains dictionary atoms in
column vector with the number of T; and the noisy image is I ∈ RM×N , which can be a linear
combination of these atoms [19]. Because the dictionary is over-completed, the sparse coefficients
by the linear representation have many solutions. Finding ways to obtain the most sparse solution
to make the de-noised image be as close to the original image as possible has become increasingly
important. This step directly determines the result of the image de-noising. The more similar the
de-noisied image and the original image are, the more information of the original image is preserved
in the de-noisied image. The model of the image de-noising method based on sparse representation
can be calculated as follows [22]:

α̂ = arg min
α
‖α‖0 s.t. ‖I − Dα‖2

2 ≤ ε (1)

where α denotes sparse coefficients of the image, Dα is the linear representation, and ‖‖ 0 is the
l0 − norm. Under most conditions, ‖α‖0 ≤ Lmax � M, Lmax denotes the maximum sparse number,
and ε denotes the limiting error.

Sparse representation can be divided into two steps: sparse coding and dictionary updating.
In general, we make an over-completed DCT dictionary—the Gabor dictionary [23]—as the initial
dictionary, or obtain the over-completed adaptive dictionary by the noisy image itself. On the other
hand, when doing the sparse representation, orthogonal matching pursuit (OMP) and base pursuit
(BP) are adopted to obtain the optical sparse coefficients [1]. For the convenience of calculation by the
sparse representation such as OMP, the model in Equation (1) can be expressed as follows:

α̂ = arg min
α
‖I − Dα‖2

2 + µ‖α‖0 (2)

where µ denotes the penalty factor.

2.2. Shift Invariant K-SVD

It is well known that the image is shift invariant, and so only when the over-completed dictionary
to represent the image also is shift invariant can we obtain the optimal sparse representation of the
image. Suppose the dictionary atom in Section 2.1 is at (1≤t≤T). After a series of shifts of these atoms,
we can obtain the atom family At = (Sτat)τ , and Sτ denotes the shift operator, τ denotes the shift
amount [19]. Therefore, the shift invariant dictionary D can be made up of these atom families,
which can be formulated as follows:

D = (At)t = (Sτat)τ,t (3)

As a result, the acquisition of dictionary D can be translated into the acquisition of atom family At.
The sparse model in Equation (2) can be expressed as follows:
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α̂ = arg min
α

∥∥∥∥I −∑
t

∑
τ

aT(t− τ)αt,τ

∥∥∥∥2

2
+ µ‖α‖0

= arg min
α

∥∥∥∥I −∑
t

∑
τ

SτaT
t αt,τ

∥∥∥∥2

2
+ µ‖α‖0

(4)

Since the dictionary is efficient only for image blocks with smaller size, if we do the dictionary
learning by the noisy SAR image, the sparsity of the image must be broken so that we cannot
get the optimal coefficients, and the robustness of the method has been greatly reduced [1].
Therefore, in this paper, at first we process the noisy image with image blocking. To prevent a blocking
effect, we overlap blocks with the step length of one. In addition, the image block p must satisfy
Equation (5) for unbiased reconstruction of the original image [19].

∀ τ ∈ σk, S∗τ ( ∑
ς∈σt

Sς pς) = S∗τ I (5)

where σt = {τ |αt,τ 6= 0}, and S∗τ denotes the adjoint matrix of Sτ . More detail about the derivation
can be found in [19].

The sparse model of the image block family Pt = (pt,τ)τ can be calculated as:

α̂P = arg min
αP

∑
τ∈σt

∥∥∥∥∥pτ −∑
t

SτaT
t αt,τ

∥∥∥∥∥
2

2

+ µ‖αP‖0 (6)

Normally, the noisy SAR image satisfies the following multiplicative noise model [24]:

I(x, y) = IR(x, y) ∗ S(x, y) (7)

where (x, y) denotes azimuthal and distance coordinates of the center pixel. I(x, y) denotes the
SAR image polluted by speckle noise, and IR(x, y) denotes the real landscape in the actual scene.
S(x, y) denotes the speckle noise, a multiplicative noise which obeys Γ distribution, has second-order
stability, and a mean value of one. In addition, the variance of speckle noise and equivalent number of
looks (ENL) is inversely proportional.

In the model above, the relationship between the image and noise is multiplicative, and the noise
exists and disappears with the image. When we use the image de-noising method based on spatial
domain, we usually get the de-noised pixel by the surrounding pixels. Thus the multiplicative noise
model is ok, and this kind of methods can be regarded as modifing the value of every pixel in the
image. But for the methods based on transform domain and sparse representation, we need to decide
whether the pixel is useful or not. Especially, the sparse coefficient is one or zero. When we still use the
multiplicative model, the results must be bad. Therefor, we cannot de-noise the image directly. In this
paper, before de-noising the noisy SAR image, we change the noisy model in Equation (7) into the
additive noise model shown in Equation (8) by logarithmic transform [8].

I = IR + S (8)

If all of the image block of the noise-free SAR image IR meets the model of Equation (6), the image
de-noising model can be expressed as:

(α̂P, P̂) = arg min
αP ,P

λ ‖P− PI‖2
2 + ∑

τ∈σt

∥∥∥∥∥pτ −∑
t

SτaT
t αt,τ

∥∥∥∥∥
2

2

+ µ‖αP‖0 (9)

where λ ‖P− PI‖2
2 denotes the similarity of noisy image block family PI and the real image block

family P, which can be realized by ‖P− PI‖2
2 ≤ Constσ2, and σ2 denotes the noise variance. µ‖αP‖0

and ∑
τ∈σt

∥∥∥∥pτ −∑
t

SτaT
t αt,τ

∥∥∥∥2

2
are the priori conditions of the conformance between the sparsity and
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image decomposition, which can ensure all the reconstructed image blocks have minimum error of the
original image blocks.

There are two kinds of algorithms for calculating the optimal solution based on over-completed
dictionary and sparse representation: greedy algorithm and global optimal algorithm [22].
Greedy algorithms mainly include the matching pursuit (MP) and orthogonal matching pursuit
(OMP) algorithms, while global optimal algorithms include the basis pursuit (BP) algorithm and so on.
Because the obtained shift-invariant dictionary atoms have little difference when they are in the same
atom family, the selected algorithm should do well in a highly coherent dictionary with big size [19].
However, MP in [19] is not the most optimal because its residuals are only perpendicular to the current
projection direction, which leads to project on the same direction in next projection. Compared with MP,
OMP also converges faster with the same precision. In this paper, we adopt OMP to solve the sparse
model in Equation (9). Additionally, since the over-completed dictionary D in the aforementioned
model is fixed, it may make the image edge blur, produce Gibbs phenomenon, and so on when
de-noising the image. In this paper, we fuse a Bayesian framework into the dictionary updating,
and use the noisy SAR image to train the adaptive dictionary for the sparse representation [25].
The objective function can be formulated as:

(D̂, α̂P, P̂) = arg min
D,αP ,P

λ ‖P− PI‖2
2 + ∑

τ∈σt

∥∥∥∥∥pτ −∑
t

SτaT
t αt,τ

∥∥∥∥∥
2

2

+ µ‖αP‖0 (10)

When updating the dictionary by SVD, the detailed steps can be seen below [19]:
Step 1: Initialize the dictionary D, and solve the sparse coefficients {α} by OMP.
Step 2: Update one column ak of the atom family At at a time, which is shown in Equation (11).∥∥∥∥∥pτ −∑

t
SτaT

t αt,τ

∥∥∥∥∥
2

2

=

∥∥∥∥∥pτ −∑
t 6=k

SτaT
t αt,τ − SτaT

k αk,τ

∥∥∥∥∥
2

2

=
∥∥∥Rk − SτaT

k αk,τ

∥∥∥2

2
(11)

When we update ak, the residual Rk = pτ − ∑
t 6=k

SτaT
t αt,τ in Equation (11) is fixed. Considering the

limitation in Equation (5), we update the dictionary atoms by multiplying S∗τ into Equation (11).
Since the shift operator Sτ is unitary, S∗τSτ = |Sτ | E = E. Then, Equation (11) can be expressed
as follows.

S∗τ
∥∥∥Rk − SτaT

k αk,τ

∥∥∥2

2
=

∥∥∥S∗τ Rk − aT
k αk,τ

∥∥∥2

2
(12)

Step 3: Solve Equation (12) by SVD, and we can obtain ak and αk.

3. Fast Guided Filter

As one kind of edge-preserving smoothing filter, a guided filter can not only retain the ability
of edge preserving smoothing like a bilateral filter [26], but can also overcome the gradient reversal
artifacts [8]. It is also a linear filter, and its computational complexity—which is O(N) in the image
with the number of pixel N—does not rely on the filtering kernel size. In this paper, we adopt the fast
guided filter in [27], which speeds up from O(N) to O(N/s2) for a subsampling ratio s.

Suppose the guidance image is I, input image is p, and the output image is q. Then, the guided
filter can be modelled as [21]:

qi = ak Ii + bk, ∀i ∈ ωk (13)

where ωk denotes the square window centered at k with a radius i. Additionally, because ∇q = a∇I
in the local window, the output image has the same edge as the guidance image. However, not all of
the image edges can be obtained by the gradient of the image. By calculating the linear coefficients ak
and bk, we can obtain the output image with richer edges as shown in Figure 2. Figure 2a is the initial
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de-noised image by sparse representation, and Figure 2b is the final de-noised image by adding the
guided filter into Figure 2a. ak and bk can be obtained by the following cost function.

Figure 2. Edge preservation of guided filter: (a) Initial de-noised image; (b) Final de-noised image by
guided filter.

E(ak, bk) = ∑
i∈ωk

((ak Ii + bk − qi)
2 + γa2

k) (14)

where γ is the regularization parameter adjusting the value of ak from being very large, and the
solutions of Equation (14) are listed as Equations (15) and (16).

ak =

1
|ω| ∑i∈ωk

Ii pi − µk pk

σ2
k + γ

(15)

bk = pk − akµk (16)

where µk and σ2
k are the mean and variance of the image I in the local window ωk. |ω| denotes the

pixel number in ωk and pk =
1
|ω| ∑i∈ωk

pi denotes the mean value of pixels.
Since the local window ωk is changing in the whole image, some certain pixels such as qi in

Equation (13) may be included by different windows, and the output pixel has many values [21].
To overcome this problem, we simply adopt the mean of all the values of qi. Then, the output pixel can
be calculated as:

qi =
1
|ω| ∑

k:i∈ωk

(ak Ii + b) = ai Ii + bi (17)

where ai =
1
|ω| ∑i∈ωi

ak, bi =
1
|ω| ∑i∈ωi

bk.
Since the output image of the guided filter considers the information in the guidance image,

the guidance image can be the input image itself or another image whose information is important
for the output image. It is better to make the noise-free image as the guidance image and the initial
de-noised image as the input image. However, there is no noise-free image in the real scene, and we
need to conduct the image de-noising for the obtained noisy image. In this paper, we make the initial
de-noised image by shift-invariant K-SVD as the input image and guidance image at the same time.
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4. The SAR Image De-Noising Method

In this paper, we present one advanced method for SAR image de-noising. For our method, it not
only overcomes the shift variance of the traditional K-SVD by adding the shift invariance into the
dictionary training, but also preserves more detailed information of the original image (e.g., image
edges in the noise-free image) by combining the guided filter and the adaptive K-SVD. The whole
algorithm is presented in Algorithm 1. First, we change the multiplicative noise model into an additive
model by logarithm transformation and more detail can be seen in Section 2.2. Then, we initialize a
random dictionary Dinit and some related parameters shown in Algorithm 1. Next, we do the iteration
process to get the shift invariant adaptive dictionary and the optimal sparse coefficients by SVD and
OMP. The detail of OMP [28] can be seen in Algorithm 2. After that, we can recover the initial de-noised
image. Then, the guided filter is adopted, and we make the initial de-noised image as the input and
guidance image. Finally, the de-noised image is recovered by exponential transform.

Algorithm 1 The SAR image de-noising method.

Input : the noisy SAR image I
Step 1 : recover the initial de-noised image by shift-invariant K-SVD

Initialize : dictionary Dinit, iterNum N
block I with slidingstep = 1

for i = 1 to N
extract the sparse coefficient α by OMP
update dictionary D by SVD in Section 2.2

end
de-noise I by obtained D
recover the initial de-noised image Iinit

Step 2 : recover the final de-noised image by guided filtering
Initialize : guidance and input image Iinit

regularization parameter γ
local window ωk

calculate ak and bk
recover the de-noised image by Equation (16)

Output : the de-noised image IR

Algorithm 2 OMP [28].

Input : dictionary D ∈ RM×T , image I, iteration number T
Initialize : residual r0 = I, iterNum t = 1, D0 = ∅

Initialize : dictionary Dinit, iterNum N
block I with slidingstep = 1
Repeat

find λt = arg maxt=1,2,...,T |〈rt−1, ϕt〉|, ϕt : tthcolumn o f D
set new Dt = [Dt−1, ϕλt ]

obtain α̂t = arg minα ‖I − Dtα̂‖2
2 by least square method

update Dt = [Dt−1, ϕλt ]
t = t + 1

end until t > T
Output : sparse coefficients α

5. Experimental Results and Analysis

To testify the superior performance of our method, we conducted a series of experiments on
the simulated SAR image and various standard real SAR images with different sizes from different
data sets, which were first polluted artificially by noise. Then, we applied the state-of-the-art image
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de-noising methods to them, such as the enhanced Lee filter (Lee) [29], shearlet (ST) [7], SAR-BM3D [30],
K-SVD [25], iterative nonlocal sparse model (It-NSM) [31], and our method. In the part of the sparse
model in It-NSM, we adopted K-SVD. Moreover, all the experiments were carried out by Matlab codes
on an Intel Core i5 3.1 GHz with 4 GB RAM.

5.1. Experiments on the Simulated SAR Image

At first, we ran our experiment on the simulated SAR image. Figure 3a is a noise-free SAR
image with size 131× 131 [1]. Then, we added speckle noise with ENL of L = 2 into Figure 3a and
obtained the noisy image shown in Figure 3b. Figure 4 shows the de-noised images by different
methods. From Figure 4 we can see that there is still some speckle noise in Figure 4a, which indicates
that the enhanced Lee filter has limited image de-noising ability. From Figure 4b,c we can see that
some dots in the first line of Figure 3a are lost. Although ST and SAR-BM3D could realize the image
de-noising effect, it mistook some important information in the original image for noise, and led to
incomplete information in the de-noised image. It is obvious that the first bar on the left of Figure 4d is
very blurry and the image de-noising method of K-SVD made the image too over-smoothed. Finally,
the de-noised image by our method in Figure 4f has better visual effect and image de-noising and
edge-preserving ability.

In order to evaluate the de-noised images by different methods more accurately, we adopted
the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). The larger the index values
are, the better the de-noising method is. The value of SSIM ranges from 0 to 1. In addition, when we
used the noisy image to obtain the adaptive shift invariant dictionary, the results were random with
a small range. To be objective, we adopted the mean value of the corresponding indexes from ten
experimental replications.

Table 1 shows the objective evaluation index values of Figure 4. From the table we can see that
the de-noised image by our method has better values of PSNR and SSIM. Additionally, the value of
PSNR by our method is 1.8509 larger than the second-largest value of PSNR. SSIM by ours is 0.9757
and near to 1. All of these indicate that the presented image de-noising method is a good method.

Table 1. Peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) of Figure 4 by the tested
image de-noising methods.

Noisy Image Lee [29] ST [7] SAR-BM3D [30] K-SVD [25] It-NSM [31] Proposed Method

PSNR 20.1942 28.3467 28.9427 30.4674 32.6934 32.9754 34.8263
SSIM 0.6069 0.7977 0.8434 0.8942 0.9568 0.9597 0.9757

Figure 3. The simulated SAR image which is carried out by Matlab codes on an Intel Core i5 3.1 GHz
with 4 GB RAM: (a) Noise-free image; (b) Noisy image.
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Figure 4. The de-noised images of Figure 3b: (a) Lee; (b) Shearlet (ST); (c) SAR-Block Matching
3D (SAR-BM3D); (d) K-means singular value decomposition (K-SVD); (e) Iterative nonlocal sparse
model (It-NSM); (f) Proposed method.

5.2. Experiments on the Real SAR Images

In order to better prove the image de-noising ability of our method, we conducted our experiments
on a real SAR image. The original SAR image in Figure 5a was taken by TerraSAR-X High Resolution
SpotLight 1-m acquisition on 20 March 2009 [32], of which the size is 475× 475. Similarly, we added the
speckle with ENL from L = 10 to 35 into Figure 5a. When L = 25, the noisy image is representative and
has real meaning. Here we only show the noisy image in Figure 5b when L = 25. Then, we processed
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the noisy image with different de-noising methods and obtained the de-noised images shown in
Figure 6. From Figure 6, we can see that the de-noised image by our method is better in terms of the
visual effect.

Figure 5. Naarden, The Netherlands [32]: (a) Original image; (b) Noisy image.

In addition to the aforementioned PSNR and SSIM, we adopted some other objective evaluation
indexes [1], such as equivalent number of looks (ENL), standard deviation (Sd), edge-preserving index
(EPI), and computation time (Time). Except for Time and Sd, the larger all the other index values are,
the better the de-noising method is. Additionally, the unit of Time is seconds. If the value of EPI is
less than 1, the edge of the de-noised image is weaker than the original image; otherwise, the edge is
strengthened.

We adopted some objective indexes to evaluate the de-noised images. The values of PSNR in the
first column denote the PSNR of the noisy images with the different ENL of the speckle, while the values
of PSNR in the third columns denote the PSNR of the de-noised images by different image de-noising
methods. Table 2 shows the experimental results of Figure 5a with different noise. From Table 2 we
can see that when the image has the same level of noise, the PSNR of ours is better. Additionally, the
less noise the image has, the better the ability of our method is. The minimum difference of the PSNR
between our method and others is 3.429 in the noisy image with L = 35. Of all the SSIM, ours is near
to one and has a better value for the same level of noise, which indicates that the de-noised image
of our method has the maximal similarity with the original. Additionally, except for L = 35, the EPI
of ours is also better, which indicates that our method has better edge-preserving ability. Among all
the methods, the ENL of ours is better, which indicates that the de-noised image by our method has
better visual effect. Except for L = 15, Sd of ours has the least value and better result. Though Time
of Lee is the least of all, compared with all the sparse representation, Time of our method is better,
and is nearly one minute shorter than others. Additionally, for almost all images with different noise,
Time of the methods such as Lee, ST, and SAR-BM3D has little difference. For the methods based on
sparse representation, the more noise the image has, the shorter the Time. For the methods based
on spatial domain and transform domain, the whole method is fixed and Time has little difference.
However, for methods based on sparse representation, the complexity of dictionary learning and sparse
representation is different, so Time is different when the noise is different. Additionally, when the
noise level increases, Time of the dictionary learning decreases and PSNR of the de-noised image also
decreases. As the main Time is spent on the dictionary learning, the whole computation time decreases
when Time of the dictionary learning decreases. When there is a great deal of noise in the image, the
image de-noising method can suppress most of the noise, but cannot eliminate all the noise. This
explains why PSNR decreases when the noise level increases.
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Figure 6. The de-noised images of Figure 5b: (a) Lee; (b) ST; (c) SAR-BM3D; (d) K-SVD; (e) It-NSM;
(f) Proposed method.
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Table 2. Objective evaluation index values of the noisy Naarden images by the tested image de-noising
methods. ENL: equivalent number of looks; EPI: edge-preserving index; Sd: standard deviation; Time:
computation time.

L/PSNR Method PSNR ENL Sd SSIM EPI Time(s)

Lee [29] 27.1364 1.6975 35.4571 0.9434 0.3458 3.3467
ST [7] 28.2214 1.7059 56.0744 0.9866 0.5522 5.6916

10/28.1181 SAR-BM3D [30] 27.4571 1.7985 49.4675 0.9874 0.6475 502.5384
K-SVD [25] 30.3233 1.8426 34.3466 0.9897 0.8519 2998.5896
It-NSM [31] 30.3565 1.8440 33.4676 0.9919 0.8516 3004.0813

Proposed method 39.2361 1.8677 30.0572 0.9989 0.8700 2919.8994

Lee [29] 23.4657 1.1574 35.1574 0.9346 0.3276 3.3946
ST [7] 25.3310 0.7811 54.6361 0.9733 0.5006 5.6565

15/24.6173 SAR-BM3D [30] 25.9843 1.2575 48.4674 0.9783 0.59743 500.2160
K-SVD [25] 27.5275 1.8807 45.2302 0.9844 0.6335 1698.2485
It-NSM [31] 27.5620 1.8792 45.2309 0.9845 0.6331 1703.6639

Proposed method 34.6312 1.9224 42.5704 0.9969 0.6882 1666.4547

Lee [29] 22.4754 1.7874 35.4574 0.9247 0.2974 3.4354
ST [7] 23.6642 1.8400 53.6023 0.9603 0.2854 5.7601

20/22.1212 SAR-BM3D [30] 23.1542 1.8434 48.1674 0.9642 0.3674 500.5725
K-SVD [25] 22.1286 1.9199 33.5115 0.9759 0.5132 1051.7810
It-NSM [31] 25.7346 1.9143 32.5115 0.9761 0.5171 1057.0876

Proposed method 31.5908 1.9801 30.7713 0.9937 0.5872 986.3493

Lee [29] 21.4571 1.8445 35.9742 0.9172 0.3147 3.5647
ST [7] 22.6538 1.8899 52.7257 0.9492 0.3822 5.7038

25/20.1842 SAR-BM3D [30] 20.3844 1.6090 47.4676 0.9046 0.4727 503.7184
K-SVD [25] 23.3703 1.7575 34.0398 0.9670 0.5246 724.1567
It-NSM [31] 24.4259 1.4568 33.0334 0.9684 0.5424 735.1635

Proposed method 29.2883 1.9445 32.1524 0.9891 0.6420 679.3054

Lee [29] 20.1454 1.8975 36.0248 0.8975 0.2674 3.4678
ST [7] 21.8720 1.9389 51.9003 0.9384 0.2368 5.6985

30/18.6005 SAR-BM3D [30] 22.1547 1.8436 47.5461 0.9367 0.2943 501.4645
K-SVD [25] 23.3941 1.8012 32.9844 0.9582 0.4053 472.2370
It-NSM [31] 23.4505 1.9957 32.6037 0.9587 0.4060 487.5391

Proposed method 27.5500 1.9009 31.5809 0.9835 0.5448 419.1741

Lee [29] 19.3464 1.7841 35.9874 0.8864 0.1846 3.5147
ST [7] 21.3024 1.8832 51.2527 0.9292 0.1495 5.6939

35/17.2555 SAR-BM3D [30] 21.9754 1.9441 47.1464 0.9342 0.2746 489.8395
K-SVD [25] 22.6340 1.8434 32.1516 0.9497 0.3485 333.4654
It-NSM [31] 22.6987 1.8357 32.1875 0.9504 0.3864 344.6388

Proposed method 26.1277 1.9542 31.0467 0.9769 0.2891 284.7186

6. Conclusions

In this paper, one new SAR image de-noising method based on shift-invariant K-SVD and guided
filter is presented. The experimental results show that compared with the state-of-the-art image
de-noising methods, not only dose our method realize the results of image de-noising, but also more
detail information such as edges of the original image has been preserved by combining the adaptive
shift-invariant K-SVD and guided filter. However, the limitation of our method is that we only ran our
experiments on SAR images, and the computation of our method is time-consuming. In our next work,
we would love to attempt our experiments on polarized SAR image de-noising. And exploring new
method with good image de-noising results and less time is our goal and next work.
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Abbreviations

The following abbreviations are used in this manuscript:

SAR Synthetic Aperture Radar
K-SVD K-means Singular Value Decomposition
NSST Non-Sampled Shearlet Transform
DCT Discrete Cosine Transform
OMP Orthogonal Matching Pursuit
BP Base Pursuit
ENL Equivalent Number of Looks
MP Matching Pursuit
SVD Singular Value Decomposition
Lee Lee filter
ST Shearlet Transform
SAR-BM3D SAR-Block Matching 3D
It-NSM Iterative Nonlocal Sparse Model
PSNR Peak Signal-to-Noise Ratio
SSIM Structural Similarity
Sd Standard Deviation
EPI Edge-Preserving Index
Time Computation Time
COMSAR Commercial Synthetic Aperture Radar
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