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Abstract: It is not yet clear whether there is any difference in using remote sensing data of different
spatial resolutions and filtering methods to improve the above-ground biomass (AGB) estimation
accuracy of alpine meadow grassland. In this study, field measurements of AGB and spectral data
at Sangke Town, Gansu Province, China, in three years (2013-2015) are combined to construct AGB
estimation models of alpine meadow grassland based on these different remotely-sensed NDVI
data: MODIS, HJ-1B CCD of China and Landsat 8 OLI (denoted as NDVIyiop, NDVIccp and
NDVIgy, respectively). This study aims to investigate the estimation errors of AGB from the three
satellite sensors, to examine the influence of different filtering methods on MODIS NDVI for the
estimation accuracy of AGB and to evaluate the feasibility of large-scale models applied to a small
area. The results showed that: (1) filtering the MODIS NDVI using the Savitzky—Golay (SG), logistic
and Gaussian approaches can reduce the AGB estimation error; in particular, the SG method performs
the best, with the smallest errors at both the sample plot scale (250 m x 250 m) and the entire study
area (33.9% and 34.9%, respectively); (2) the optimum estimation model of grassland AGB in the
study area is the exponential model based on NDVIgy 1, with estimation errors of 29.1% and 30.7%
at the sample plot and the study area scales, respectively; and (3) the estimation errors of grassland
AGB models previously constructed at different spatial scales (the Tibetan Plateau, Gannan Prefecture
and Xiahe County) are higher than those directly constructed based on the small area of this study
by 11.9%-36.4% and 5.3%—-29.6% at the sample plot and study area scales, respectively. This study
presents an improved monitoring algorithm of alpine natural grassland AGB estimation and provides
a clear direction for future improvement of the grassland AGB estimation and grassland productivity
from remote sensing technology.

Keywords: alpine meadow grassland; above-ground biomass; inversion model; error analysis;
applicability evaluation

1. Introduction

As the largest terrestrial biome on the Earth’s surface [1], the grassland biome occupies approximately
40% of the total land area [2], and its net primary productivity accounts for approximately 20% of
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the production capability of the entire land biome [3]. In China, the grassland biome accounts for
approximately 1/3 of the total national territory. Grasslands play a critical role not only in animal
husbandry, but also in energy exchange, carbon sequestration and the biogeochemical cycle. In particular,
the effect of the grassland biome is more prominent in the vast central and western regions of China [4,5].

Grassland vegetation is defined as permanent vegetation composed of an herbaceous plant
community [2]; the above-ground biomass (AGB) of grassland provides the basis for estimating the
net primary productivity of grassland [6]. Overall, AGB can be used to directly estimate grassland
productivity [7,8]. In general, AGB is defined as the weight of dry grass in the above-ground portion
within one unit area [9]. Monitoring using remote sensing data is the most effective method for
collecting continuous spatial and temporal data on the regional or global scale [10,11], because satellite
remote sensing can provide large-scale, frequent, low cost and massive information [12]. Therefore,
it has gradually replaced traditional methods of ground biomass monitoring, which are inefficient
and expensive. Since NDVI was first applied to study natural grasslands in the 1970s, research on the
linkage between vegetation indices and AGB has had a history extending over several decades [13-17].
Because grassland AGB estimations can directly guide livestock production, evaluating the accuracy
of estimation models is highly important. Numerous studies have indicated that factors such as the
representativeness of ground sampling sites, the temporal and spatial resolutions of satellite images,
the types of sensors and the methods of remote sensing image processing [18] are responsible for the
large differences between the grassland AGB models developed by different scholars even for the
same region or the same type of grassland. These differences exist not only in the form of the models,
but also in the estimation errors. At present, grassland AGB estimation is often based on the statistical
models on a specific remote sensing vegetation index [19-22]. For alpine meadow grassland, which
type of remote sensing estimation model is the most suitable is currently unknown. Existing studies
indicate that using both high spatial resolution imagery and filtering the vegetation index can increase
the accuracy of grassland AGB estimation [18,23-25]. However, it is not yet clear whether there is
any difference in using remote sensing data of different spatial resolutions and filtering methods to
improve the AGB estimation accuracy of alpine meadow grassland. Therefore, further comparisons
and studies must be conducted.

In this study, considering the factors discussed above, a region of alpine meadow grassland in the
Tibetan Plateau area is used to perform the following investigations: (1) by comparing and analyzing
the AGB estimation models and their accuracies based on the NDVI of multi-source remote sensing
data, the influences of different remote sensing data and filtering methods on the error of grassland
AGB estimation are revealed; (2) the data from the sample plots observed inside the study area are used
to validate the applicability of previous grassland models based on MODIS data and to investigate the
reasons for errors from different models; and (3) based on the above research results, we propose a
method to improve the accuracy of grassland AGB estimation.

2. Data and Methods

2.1. Study A = rr?

The study area (102°23/-102°26' E, 35°5'-35°7' N) is located in the Yangji Community of Sangke
Town in Xiahe County, Gansu Province, with a size of approximately 3.86 km (N-S) x 2.77 km (E-W)
and a mean elevation of 3050 m (Figure 1). The natural grassland type in the study area is alpine
meadow. The dominant pasture plants include alpine Kobresia pygmaea C B Clarke, Elymus nutans
Griseb, Festuca ovina L, Poa annua L, Koeleria litwinowii Domin var and Astragalus membranaceus
Bunge, while the primary malignant weeds include Ligularia virgaurea Mattf, Leontopodium japonicum,
Potentilla chinensis Ser and Pedicularis resupinata L. The dominant grazing livestock are yak and Ganjia
sheep. The study area is cold and wet throughout the year, and it belongs to the continental monsoon
climate of the temperate plateau. The annual average temperature is 2.1 °C; the annual average rainfall
is 580 mm.
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Figure 1. Distributions of experimental sample areas (A-E), with sample plots (yellow squares) and
sub-plots (red small squares with their identification numbers as yellow), in Xiahe County, Gansu
Province. Each sample area has a similar situation of grass growth; each sample plot is a MODIS pixel
of 250 m x 250 m; each sub-plot is a 30 m x 30 m plot with five sample quadrats (see the details in
Section 2.2).

The study area consists of five fenced experimental sample areas (A-E) of natural alpine meadow
grassland (Figure 1), with a total area of 161.36 ha. Specifically, Area A (19.38 ha) was used to conduct
natural grassland reseeding tests; Area B (16.06 ha) was used for grazing utilization experiments; Area
C (7.52 ha) acted as a non-treatment testing control area; Area D (19.30 ha) was an experimental area
for grassland enclosure; and Area E (99.10 ha, accounting for 61.55% of the total experimental area)
was used for artificial fertilization experiments. The grassland growth in these five experimental areas
differed because of the above different usages.

2.2. Sampling Strategy and Data Collection

A total of 13 sample plots of 250 m x 250 m were set up inside the five experimental sample
areas. In each sample plot, a 30 m x 30 m sub-plot was set up for data collection. In each sub-plot,
five quadrats (1.5 m x 1.5 m each) were set up as shown in Figure 2, taking the central point and the
four corner points to represent the entire sub-plot. To reduce the artificial sampling error of biomass
measurements, a strategy of 9 sub-quadrats was also used for avoiding repeat sampling in each year
(Figure 2). The locations of the 13 sample plots were selected based on the following factors: (1) the
growth status of the grassland was relatively uniform and was spatially representative; and (2) each
sample plot (250 m x 250 m) corresponded to one MODIS pixel. However, in each sample plot,
the sub-plot of 30 mx 30 m was randomly selected, corresponding to a Landsat 8 OLI and HJ-1B
CCD pixel.

During the grassland growth seasons from 2013 to 2015, observations were performed
approximately every 10 d, and a total of 20 field investigations was conducted over the three years.
Due to factors such as weather conditions and satellite image time phases, only five times of field
measurement data were matched well with satellites and were selected. They were August 2013, July
2014 and July, August and October 2015; with a total of 325 quadrat observations (see the details in
Section 2.4) used to construct and analyze the biomass model.
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Figure 2. Distributions of the five quadrats (1.5 m x 1.5 m each) in each sub-plot of 30 m x 30 m. Each
quadrat consists of 9 sub-quadrats of 0.5 m x 0.5 m. The sub-quadrat identification number (1-9) is the
order that we used to sample grass each time, e.g., Sub-quadrat 1 was used the first time of any year,
2 was used in second time of the same year, etc.

Grass samples in each sub-quadrat (0.5 m x 0.5 m) were collected and recorded in the same way
through the years. It was cut to the ground level using shears and then packed and weighed, after
removing all residual litter and other non-plant materials. The sampling record included latitude,
longitude, elevation, grassland types, dominant species, grassland vegetation coverage, grass height, the
fresh weight and dry weight (after being dried in the lab at 64 °C until the weight remained constant).

In the field, we also collected spectral data of grassland, in a total of 18 out of the 20 field
campaigns at 1170 sub-quadrats. These data were used to analyze the influence of the three filtering
methods on MODIS NDVI. The spectral data were acquired using an AvaField-3 portable spectrometer
(made by Holland Avantes Company). The spectral range of AvaField-3 is 300-2500 nm, particularly
with a resolution of 1.4 nm and a sampling interval of 0.6 nm in the 300-1100 nm and a resolution of
15 nm and a sampling interval of 6 nm in 1100-2500 nm. The fieldwork was conducted on several
consecutive sunny days. Measurements were taken on clear sunny days between 11:30 a.m. and
2:00 p.m. The fiber optic sensor, with a field view of 25°, was pointed on the target at nadir position
from about a 1-m height above the ground surface. In order to increase the stability and precision of
the instrument as advised in the operational manual, we preheated the spectrometer for half an hour
before measurements. For each target measurement, the downwelling radiance was first measured
by pointing to the white reference panel. The spectral reflectivity was directly recorded by using
the upwelling radiance (i.e., reflective radiance) to the target divided by the downwelling radiance.
Ten spectral reflectivity curves for each target were collected for later processing in the lab. An example
of the mean spectrum of 13 sample plots on 28-29 July 2014 is shown in Figure 2. The artifacts seen
(in the Figure 3) around 1150 nm could be mostly due to the mixed effect of different objects in the
sample plots, including grass, soil, gravel and dead grass.

In addition, a portable GPS device for 20 ground control points (GCP) was used in the study to
record the longitude, latitude and elevation, for later precise geometric corrections of the Landsat and
HJ-1B satellite images.
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Figure 3. The spectral curves of 13 sample plots on 28-29 July 2014.

2.3. Preprocessing of MODIS Vegetation Index Data

The MODIS vegetation index data were selected from the MODIS 16-d maximum composite
NDVI vegetation index product (MOD13Q1) of the United States National Aeronautics and Space
Administration. In total, 69 images spanning the years 2013-2015 taken with a spatial resolution of
250 m from orbit number h26v05 were selected. Three filtering methods, the asymmetric Gaussian
function (GA), double-logistic curve (LO) and Savitzky—Golay (SG), were used to reconstruct the
time series data of NDVI. The four vegetation indices were denoted as NDVIyop (MOD13Q1
NDVI), NDVIgy (after GA filtering), NDVI; o (after LO filtering) and NDVIgg (after SG filtering).
The performance of the three filtering methods was examined using the NDVI values derived from
spectrum measurements in the 18 out of 20 field campaigns, as shown in Table 1.

Table 1. The dates between MODIS images (h26v05) and spectral measurements in 13 sample plots in
the study area.

Date of MODIS Measurement Time

2013.08.30-09.14
2014.05.26-06.10
2014.06.11-06.26
2014.06.27-07.12
2014.07.13-07.28
2014.07.13-07.28
2014.08.14-08.29
2014.08.30-09.14
2014.09.15-09.30
2014.10.17-11.01
2015.05.10-05.25
2015.07.13-07.28
2015.07.13-07.28
2015.07.29-08.13
2015.08.14-08.29
2015.08.30-09.14
2015.10.01-10.16
2015.10.17-11.01

2013.09.12-09.13
2014.05.30-05.31
2014.06.14-06.16
2014.06.28-06.29
2014.07.11-07.13
2014.07.26-07.28
2014.08.14-08.15
2014.09.01-09.02
2014.09.26-09.28
2014.10.20-10.22
2015.05.20-05.22
2015.07.14-07.15
2015.07.24-07.25
2015.08.10-08.11
2015.08.20-08.23
2015.09.11-09.13
2015.10.10-10.11
2015.10.20-10.22
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For the period of field sampling in August 2013, July 2014 and July, August and September 2015,
the NDVIyjop, NDVIga, NDVI; o and NDVIgg were used to construct the grassland AGB models, and
the performance of the models was assessed using the field measurements.

2.4. Data Processing of Landsat 8 OLI and HJ-1B CCD and Calculation of the Vegetation Index

The Landsat 8 OLI data were obtained from the website of the United States Geological Survey
(USGS). The OLI imager includes eight multi-spectral bands with a spatial resolution of 30 m and
one panchromatic band with a spatial resolution of 15 m. The imaging range is 185 km x 185 km,
and the revisit period is 16 d. In this study, five scenes of Landsat 8 OLI satellite images with no
cloud cover in the study area in Xiahe County, Gansu Province, during 2013-2015 were downloaded.
The HJ-1B CCD data were acquired from the China Center for Resource Satellite Data and Applications
(http:/ /www.cresda.com/n16/index.html). The Environment and Disaster Monitoring Satellite B
(HJ-1B) carries two CCD cameras. Each CCD creates four multi-band images with a spatial resolution
of 30 m; the frame width of a single CCD image is 360 km. Together, the frame width of the two CCD
images spans 700 km, and the revisit period is 4 d. Based on the time of the ground surveys, the
revisiting periods of the Landsat 8 and the HJ-1B satellites and cloud cover in the images, a total of five
scenes of the HJ-1B CCD images and five scenes of Landsat 8 images close to the field investigation
times that cover the entire study area without clouds (Table 2) were selected.

Table 2. The date between satellite images and field measurements in the study area.

Date of Satellite Images Satellite Sensor Type Path Row Sampling Time
2013.08.08 Landsat8 OLI 131 36 2013.08.06-09
2013.08.09 HJ-1B CCD2 12 73 2013.08.06-09

2013.07.29-08.13 MODIS Terra 26 5 2013.08.06-08.09
2014.07.26 Landsat8 OLI 131 36 2014.07.27-31
2014.07.28 HJ-1B CCD2 13 72 2014.07.27-31
2014.07.29-08.13 MODIS Terra 26 5 2014.07.27-07.31
2015.07.13 Landsat8 OLI 131 36 2015.07.11-17
2015.07.13 HJ-1B CCD1 20 72 2015.07.11-17
2015.07.13-07.28 MODIS Terra 26 5 2015.07.11-07.17
2015.08.14 Landsat8 OLI 131 36 2015.08.10-11
2015.08.12 HJ-1B CCD2 16 72 2015.08.10-11
2015.07.29-08.13 MODIS Terra 26 5 2015.08.10-08.11
2015.09.15 Landsat8 OLI 131 36 2015.09.14-18
2015.09.14 HJ-1B CCD1 19 72 2015.09.14-18
2015.09.15-09.30 MODIS Terra 26 5 2015.09.14-09.18

The OLI and CCD data were both processed using ENVI 5.0 software, and the Radiometric
Calibration module, the Image to Image module in the registration and the FLAASH Atmospheric
Correction module were used for converting the original DN value to atmospheric surface reflectance,
precise geometric correction and atmospheric correction of OLI and CCD images, respectively.
The image projection was defined as WGS_1984_UTM_ZONE_47N [26]. Then, the Band Math module
was used to calculate the NDVI values for the Landsat 8 OLI and HJ-1B CCD images. The NDVI
values were extracted from the Landsat 8 OLI and HJ-1B CCD images in the 13 sample sub-plots
(250 m x 250 m). These results were used as the NDVI values (namely, NDVIccp and NDVIgyy)
corresponding to the ground sampling sites.
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2.5. Spectral Data Processing and Accuracy Evaluation of MODIS NDVI

The spectral data were processed by using the Viewer 7 software of AvaField-3. First, we
previewed the spectral curves in the Viewer and removed the abnormal curves. Then, we calculated
the mean value of the normal curves for each plot. Third, according to the spectral response function
of the MODIS sensor, the reflectance of the red and near-infrared bands corresponding to the MODIS
sensor (near-infrared band: 841-876 nm; red band: 620-670 nm) was calculated (Equation (1)). Finally,
the NDVI was calculated as Equation (2).

Y3 (AW (A)
pi — ai - (1)
2)\3 o (M)

where p; represents the reflectivity of band i, A;; represents the starting wavelength of band i, Ay;
represents the termination wavelength of band i, \(};) represents the reflectivity value at wavelength
A and @(A;) represents the spectral response factor at wavelength A of band i.

NDVI = (pNir - pRed)/(pNir + pRed) (2)

where pyy;, represents the reflectance of the near-infrared band and pg,,; represents the reflectance of
the red band.

According to the measured spectrum of grassland in the sub-quadrat, the NDVI values of the
grassland were calculated by taking the average NDVI of the five quadrats as the ground-measured
NDVI value for that sub-plot and then calculating the root mean square error (RMSE) with NDVIyop,
NDVIga, NDVI; o and NDVIgg (Equation (3)) and their correlation coefficients (7). The smaller the
RMSE and the larger the r value are, the better the vegetation index.

Yiiq (Yi - Y;)z

n

RMSE = ®)
where y; represents the ground-measured value, y’ is the estimated value, i represents a sampling plot
and n stands for the number of sample plots.

2.6. Construction of Grassland Biomass Monitoring Model and Accuracy Evaluation

The average dry weight of AGB in all of the sub-quadrats of each sub-plot was estimated as
the biomass for that sample plot. Taking the grassland biomass of different sample plots as the
dependent variable and taking NDVIyjop, NDVIga, NDVI; o, NDVIgg, NDVIcep and NDVIgy as
the independent variables, the leave-one-out cross validation (LOOCV) method, RMSE and relative
estimate error (REE) (Equation (4)) were used to evaluate the accuracy and estimation errors of the
linear, exponential, logarithmic and power regression models for the 6 vegetation indices at the sample

plot level.
" v /v
REE = \/ i1 (v = y1) /yi] @)

n

where y; represents the ground-measured value, y; is the estimated value, i represents a sampling plot
and n stands for the number of sample plots.

In addition, to study the relative estimation error of the alpine meadow grassland AGB monitoring
model on the regional scale (i.e., the experimental area of this study), the average AGB dry weight
for all of the sample plots in each sample area was adopted as the ground-measured biomass in
this sample area. Then, the RMSE and REE were used to assess the performance of each model for
estimating total yield and yield per unit area.
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3. Results and Analysis

3.1. Statistical Analysis of Ground Observation AGB and the Corresponding Multi-Source Satellite NDVI

Table 3 shows the statistical results of AGB in the surveyed sample plots and the NDVI calculated
using the corresponding remote sensing data from 2013-2015. There are considerable differences
in the biomass during the grass growing season in the 13 sample plots of the experimental area.
The average values range from 1280-1887 kg DW /ha over the past three years, while the coefficient
of variation ranges from 0.16-0.73. The largest biomass from the 13 sample plots is 3963 kg DW /ha,
and the minimum is 745.5 kg DW /ha. The magnitude of the variation in the NDVIccp, NDVIpr and
NDVIyiop values is relatively small, and their dispersion degree is similar; the standard deviation and
coefficient of variation range from 0.03-0.13 and 0.05-0.18, respectively. In terms of mean NDVI value
ranges, they are very similar, from 0.59-0.75 and 0.57-0.74, respectively, for NDVIccp and NDVIyiop
and 0.62-0.83 for NDVIgy, slightly larger than the former two.

For the entire experimental area, the average total biomass in August 2013-2015 is 285 x 10° kg,
and the average grass yield is 1813.5 kg DW/ha. In the experimental area, the average biomass of
the five times in July—September of 2013-2015 is 1808.4 kg DW /ha, with the standard deviation of
847.3 kg DW/ha and the variation coefficient of 0.47. Similar to the sample plots level, the NDVIccp
and NDVIyjop means are very close (0.68-0.69), slightly smaller than the 0.78 of NDVIpy .

3.2. Influence of Different Filtering Methods on MODIS NDV1I

The NDVI calculated using the measured spectrum data on the ground is treated as the
ground-measured value to examine the accuracy of NDVIyjop and the three NDVI time series after the
filters are applied, i.e., NDVIga, NDVIj o and NDVIgg. The results are shown in Table 4, indicating
that the three filtering methods perform better overall than the original MOD13Q1 NDVI, and the
SG filtering is the best. At the sample plot level, the SG filtering method achieves the best results for
Sample Plots 1, 4-8, 10, 12 and 13, with RMSE ranging from 0.028-0.098 and r values ranging from
0.78-0.91. The logistic filtering method achieved the best results for Sample Plots 3 and 11; with RMSE
of 0.050-0.076 and r values of 0.88-0.89. The Gaussian filtering method achieved the best results for
Sample Plots 2 and 9; with RMSE of 0.078-0.094 and r values of 0.81-0.89. Among all of the sample
plots, all three filtering methods achieved relatively good results at Plot 1, with RMSE of 0.028-0.029
and r of 0.90-0.91. In contrast, all three filtering methods achieve relatively poor results at Plot 13, with
RMSE values ranging from 0.098-0.113 and r values from 0.85-0.91.
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Table 3. Descriptive statistics of grassland above-ground biomass (AGB) and corresponding multi-source satellite NDVI during July-September of 2013-2015 in the
study area, Xiahe County.

Pl
Index Statistics ot
E1 E2 E3 E4 E5 E6 E7 D8 D9 C10 B11 A12 A13 All
Maximum 220 228 270 208 252 294 320 247 177 203 241 3.96 267 3.96
Minimum 112 115 0.83 0.86 0.79 113 0.97 0.94 118 0.95 0.93 0.83 0.75 0.75
Biomass (10° kg/ha) Average 177 1.89 1.86 129 148 171 175 1.82 151 137 144 1.68 128 1.81
Standard deviation ~ 0.47 0.52 081 053 074 0.84 1.00 0.68 0.25 0.46 0.67 152 0.93 0.85
Cv 0.27 0.27 0.44 0.42 0.50 0.50 0.57 0.37 0.16 0.34 047 0.12 0.73 0.47
n 25 25 25 25 25 25 25 25 25 25 25 25 25 325
Maximum 0.68 0.74 0.80 076 0.80 0.78 073 0.74 0.68 071 071 0.67 0.67 0.80
Minimum 0.57 0.64 0.67 0.62 0.68 0.64 0.65 0.65 0.62 0.58 0.57 0.53 0,51 0.51
HJ-CCD NDVI Average 0.65 0.71 0.75 0.67 0.73 0.72 0.70 0.70 0.65 0.64 0.64 0.61 0.59 0.68
Standard deviation ~ 0.04 0.05 0.05 0.07 0.05 0.06 0.04 0.04 0.03 0.05 0.06 0.06 0.07 0.07
Cv 0.07 0.07 0.06 0.10 0.07 0.08 0.06 0.05 0.05 0.08 0.09 0.09 0.12 0.10
n 5 5 5 5 5 5 5 5 5 5 5 5 5 65
Maximum 0.77 0.86 0.90 0.86 0.87 0.86 0.85 0.87 0.82 0.78 0.82 0.79 071 0.97
Minimum 0.60 0.70 0.74 0.65 0.73 0.73 0.75 0.76 0.63 0.66 0.69 0.64 0.55 0.55
Londeat8 OLL DY Average 0.70 0.79 084 075 081 0.80 0.81 0.82 0.72 0.72 0.75 0.70 0.62 0.78
Standard deviation ~ 0.07 0.07 0.07 0.10 0.06 0.06 0.05 0.05 0.08 0.06 0.06 0.07 0.07 0.10
Cv 0.10 0.09 0.08 0.13 0.08 0.08 0.06 0.06 0.11 0.08 0.08 0.10 0.11 0.13
n 5 5 5 5 5 5 5 5 5 5 5 5 5 65
Maximum 0.82 0.84 0.82 0.82 0.81 0.81 0.82 0.79 0.73 0.75 0.79 0.69 0.67 0.84
Minimum 0.66 0.69 0.68 0.65 0.61 0.64 0.64 0.58 0.62 0.46 0.49 0.49 0.44 0.44
Average 0.73 0.74 0.73 0.72 0.70 0.71 0.72 0.69 0.68 0.60 0.60 0.57 0.58 0.69
MODI13Q1 NDVI Standard deviation  0.06 0.07 0.07 0.07 0.08 0.07 0.08 0.08 0.05 0.12 0.13 0.09 0.10 0.10
Cv 0.09 0.09 0.09 0.10 0.12 0.10 0.11 0.12 0.07 0.20 021 0.15 0.18 0.15
n 5 5 5 5 5 5 5 5 5 5 5 5 5 65

Note: Cv depicts the coefficient of variation, equal to the standard deviation divided by the mean; n depicts the number of observations.
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Table 4. The result of NDVIyjop, NDVIga, NDVI; o and NDVIgg as compared with the field measurements in 13 sample plots of the study area.

Vegetation Index Plot
Index E1 E2 E3 E4 E5 Eé6 E7 D8 DB9 C10 B11 Al2 Al13 Average

NDVI RMSE 0.035 0.083 0.081 0.079 0.087 0.089 0.105 0.115 0.110 0.087 0.051 0.120 0.111 0.102
MOD R 0.83 ** 0.85 ** 0.86 ** 0.83 ** 0.81 ** 0.81 ** 0.78 ** 0.70 0.74 ** 0.82 ** 0.87 ** 0.82 0.77 ** 0.77 **
NDVI RMSE 0.029 0.078 0.077 0.062 0.077 0.070 0.087 0.094 0.094 0.079 0.051 0.113 0.107 0.091
GA R 0.90 ** 0.89 ** 0.88 ** 0.90 ** 0.86 ** 0.89 ** 0.86 ** 0.82* 0.81 ** 0.86 ** 0.89 ** 0.85 ** 0.79 ** 0.83 **

NDVI RMSE 0.028 0.078 0.076 0.062 0.077 0.072 0.088 0.095 0.095 0.080 0.050 0.112 0.107 0.091
Lo R 0.90 ** 0.89 ** 0.88 ** 0.90 ** 0.86 ** 0.88 ** 0.86 ** 0.81* 0.80 ** 0.86 ** 0.89 ** 0.86 ** 0.78 ** 0.83 **

NDVI RMSE 0.028 0.079 0.080 0.060 0.075 0.070 0.085 0.093 0.095 0.078 0.051 0.098 0.107 0.090
5G R 0.91 ** 0.88 ** 0.87 ** 0.91 ** 0.87* 0.89 ** 0.86 ** 0.82* 0.81 ** 0.88 ** 0.88 ** 0.91 ** 0.78 ** 0.84 **

**p <0.01,*p < 0.05.
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3.3. Grassland Biomass Monitoring Model in the Study Area and Evaluation of Its Accuracy at the Sample
Plot Level

The results of the accuracy evaluation validated by LOOCYV for the grassland biomass models
constructed on the three satellites, NDVIyjop, NDVIccp and NDVIgyj, as well as the three filtering
methods applied to MODIS NDVI only are listed in Table 5. It is found that in the four types of
grassland AGB estimation models (linear, logarithmic, power and exponential), the exponential model
performs the best, with the smallest RMSE and REE, while the linear or power model performs the
second best. Among the six vegetation indices, the exponential model based on NDVIgy is the best,
with the smallest RMSE of 511.6 kg DW /ha and REE of 29.1% and the highest estimation accuracy
of the AGB (Figure 4d). The exponential model based on NDVIccp is the second best (Figure 4c).
The exponential model based on NDVIyiop is worse (Figure 4a). All of the filtering methods perform
better than the NDVIyiop, with NDVIgg the best (Figure 4b).

Table 6 shows the parameters of the best fit model for each of the six vegetation indices. As shown,
all six models pass the T test and F test at a significance level of 0.01, with NDVIgy | the best, followed
by NDVIccp, NDVIgg and NDVIyiop.

Table 5. The validation results by leave-one-out cross validation for the grassland biomass models
based on multi-source satellite data. REE, relative estimate error.

Accuracy Evaluation

Vegetation Index Model
RMSE (kg/ha) REE (%)

Linear 594.5 47.8

Exponential 574.6 35.3

NDVIvop Logarithm 619.2 61.4
Power 598.8 36.7

Linear 573.3 45.0

Exponential 549.7 33.9

NDVIse Logarithm 594.6 57.7
Power 5714 35.0

Linear 581.1 441

Exponential 560.4 34.1

NDVLio Logarithm 602.4 53.8
Power 582.0 35.2

Linear 583.8 44.2

Exponential 562.0 34.1

NDVIga Logarithm 605.8 53.9
Power 585.2 35.3

Linear 557.1 45.2

Exponential 548.4 31.6

NDVlcen Logarithm 567.6 74.0
Power 552.6 32.1

Linear 516.8 33.7

Exponential 511.6 29.1

NDVlowi Logarithm 528.9 412

Power 512.1 29.4
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Figure 4. The best fit models constructed based on NDVIy;op (a), NDVIsg (b), NDVIccp (c) and

NDVIoy; (d).

Table 6. The results of model fits with the optimum inversion models based on multi-source satellite data.

Vegetation Index

Parameter Estimation and T Test

Regression Significance Test

Parameter Estimated Value T R? F
NDVIyop Z 139'2.14‘192 gg;g ’: 0.46 46.478 **
NDVisg ‘;’ 111%2966&3 giggg - 0.50 54.759 **
NDVI; o 1;’ 123284 ;ggg 0.47 49.413 **
NDVIs ‘; 12'14.%3 gggg - 0.46 47 464
NDVIccp ‘; Zggg gjg; ; 0.57 73.634 **
NDVIoys 1; 25635152 13%(;177: 0.65 100.341 **

Note: ** represents p < 0.01; a and b represent the constant and exponential term of the model, respectively; T and F
are the significant values according to the T and F tests.
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4. Discussion

4.1. Influence of Different Remote Sensing Data on the Estimation Error of Grassland Biomass

In this study, NDVIyop, NDVIcep and NDVIgy; data were used in combination with ground
observation data during 2013-2015 to construct a grassland biomass inversion model. The errors based
on NDVIyiop, NDVIccp and NDVIgy reached 35.3%, 31.6% and 29.1%, respectively, at the sample
plot level (Table 5). Our results indicate that the yield per unit area estimated using the exponential
model based on NDVIpy; (1518 kg DW /ha) is closest to the ground-measured value, and its estimation
error is the lowest (30.7%), followed by NDVIccp (32.4%) and NDVIyop (39.6%) (Table 7). This result
suggests that the inverse models based on 30-m resolution (namely, NDVIccp and NDVIpy ) are better
than that based on MODIS data with 250-m resolution, and the model based on NDVIy is better than
that on NDVIccp.

Table 7. The estimation error of the grassland AGB evaluated by different remote sensing data and
filtering methods in study area.

Data Type Vegetation Index Formula Yield (AGB) (kg DW/ha) REE (%)

. NDVIop y = 85.916e36787x 1518.0 30.7

Different rf‘ln;"te NDVIcep y = 48.325e50715 1472.7 324
sensmg ata _ 3.0149x

NDVIyviop y = 193.442¢ 1431.0 39.6

Different filteri NDVIsg y = 132.1463584% 1564.1 34.9

! ererih ! dermg NDVI; o y = 140.404¢3496 1422.3 38.6

methods NDVIca y = 141.383¢3478x 1408.1 39.3

There are multiple reasons for the above results. Existing studies indicate that the accuracy of
the grassland biomass inversion model is not only affected by the temporal and spatial resolutions
of the satellite images, sensor type and method of image processing [18,27], but is also subject to
the influence of the size, number and representativeness of ground sampling sites. In this study, the
five-point method is adopted to determine the sub-plot (30 m x 30 m), which matches the spatial
resolution of the Landsat 8 OLI and HJ-1B CCD images. Although the Landsat or HJ-1B pixel could
not always exactly match a sub-plot (30 m x 30 m) on the ground due to the orbit drift, we consider
this a minor problem, since the relatively uniform distribution of grass in each 250 m x 250 m sample
plot was one of the selection criteria. A slight mismatch between sub-plot and satellite pixel does not
really make much difference in our case. The average grassland biomass based on five quadrats can
reasonably represent the variation of grassland biomass within a full 30 m x 30 m sub-plot; therefore,
the accuracy is relatively high for the grassland biomass monitoring model constructed using the
remote sensing image data with 30-m resolution (namely, NDVIgr; and NDVIccp). However, the
spatial matching with the MODIS vegetation index, which uses a 250-m spatial resolution, has some
limitations; consequently, the accuracy of the simulation model is relatively low. In addition, there is
an obvious difference between the estimation errors of the biomass models based on NDVIp;; and
NDVIccp, which have the same spatial resolution (30 m). The error of the AGB estimation model based
on NDVIpy is smaller than NDVIccp. This difference occurred mainly because the near-infrared
(NIR) and red bands (RED) used to calculate their NDVI values come from different sensors that
have different band ranges. Specifically, the NIR and RED band ranges used to calculate NDVIccp
are 0.76-0.90 um and 0.63-0.69 pm, respectively, while for NDVIpy, they are 0.845-0.885 pm and
0.630-0.680 pum, respectively. The narrow band receives less signal disturbances. In addition, the OLI
NIR also excludes the influence of water vapor absorption at 0.825 pm, and therefore, the OLI NIR’s
contribution to retrieve grassland information is more prominent [28].
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4.2. Influence of Three Filtering Methods on the Error of Grassland AGB Estimation Based on MODIS NDVI

The exponential models (based on the accuracy of the best inversion mode) for grassland AGB
of the three filtering methods including NDVIgg, NDVI; o and NDVIg,, can better simulate the
grassland AGB than the NDVIyop, in which the error decreased by approximately 1.40, 1.14 and
1.13%, respectively (Table 5). The yield per unit area for grassland AGB estimated by NDVIsg
(1564.1 kg DW /ha) is the closest to the ground-measured value, and its estimation error was the
lowest (34.9%), followed by NDVI; o and NDVIg, (Table 7). This result indicates that the SG filtering
method is better at eliminating abnormal values from the MOD13Q1 NDVI; consequently, it yields
biomass estimates closer to the ground-measured value. This finding is similar to the research
results of Chen et al. (2004) and Geng et al. (2014) Their studies in Southeast Asia indicated that SG
filtering can partially eliminate atmospheric interference and the influence of mixed pixels on the
grassland vegetation index and can improve the representativeness of MODIS NDVI for grassland
vegetation [23,29].

4.3. Assessment of Previously-Established Biomass Inversion Models Based on the MODIS Vegetation Index
over the Tibetan Plateau

Many scholars have used the MODIS vegetation index to conduct numerous successful studies
on grassland biomass in the Tibetan Plateau area. However, the existing studies show considerable
differences in model errors for alpine grassland in the Tibetan Plateau area at the sample plot scale
(Table 8). For example, the grassland biomass inversion model constructed by Xu et al. (2007) used field
measurement data in the Tibetan Plateau area and the 10-d maximum composite MODIS NDVI (with
a 1-km resolution) from the end of July to the end of September in 2007, to construct an exponential
function (Model I), with R? of 0.75 and overall estimation accuracy up to 80% [19]. In the grassland
biomass regression models constructed by Feng et al. (2011), which combined measurement data from
the Tibetan Plateau during July—August of 2005 and 2006 with the monthly maximum composition
1-km resolution MODIS NDVI, the exponential function model is the optimum inversion model
(Model II). However, its accuracy is lower than that of Model I; with R? of 0.49 and RMSE up to
671.8 kg DW/ha [30]. Cui et al. (2011), Wang et al. (2010) and Bao et al. (2010) used the MODIS
vegetation index at 500-m, 1-km and 250-m resolution, respectively, to construct biomass regression
models for the Gannan prefecture. Their results are similar. The optimum inversion model (in the
order of Models III, IV and V) is a power function based on MODIS EVI, with the R? values of 0.63,
0.62 and 0.63, respectively [31-33]. Clearly, there are large differences among models. Here, we intend
to examine the feasibility of these models all developed at large scales to be applied to our small study
area with detailed field data.

Table 8. The existing AGB estimation models for alpine grassland in the Tibetan Plateau region.

Model Study Area Area (10 ha) MODIS Formula R2 Literature
I Tibetan Plateau 25,724 NDVI Y =225.42 x e*4368x 0.75 [19]
Il Tibetan Plateau 25,724 NDVI Y =268.810 x 2398 0.49 [30]

The northeast of Tibetan _ 1553
i Plateau (Gannan Prefecture) 380 EVI y = 3738.073x 0.63 [31]

The northeast of Tibetan B 19776
v Plateau (Gannan Prefecture) 380 EVI y=5320.7x 0.62 [32]

The northwest of

\ Gannan Prefecture 62.74 EVI y=1719.1x22588 0.63 [33]

(Xiahe County)

Table 9 shows the results of statistical analysis using the biomass data measured on the ground
surface during 2013-2015 in our study area to examine the error of the aforementioned five models.
As shown, the Model IV error is the smallest (47.2%), followed by V, III, II and I. Among the five
models, Models I and II based on the entire Tibetan Plateau perform the worse. Although Model I
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achieved the lowest error in the Tibetan Plateau (Table 8), its estimation error of grassland AGB in the
study area is highest (71.7%). Models III, V and IV are built on the regional area (Xiahe and Gannan) of
the Tibetan Plateau; their estimation errors are much smaller, around 47%.

Table 9. The estimation error for the grassland AGB based on existing inversion models at the sample
plot and the entire study area scales.

Sample Plot Scale Study Area Scale
Model
REE (%) Yield (kg DW/ha) REE (%)
I 71.7 5748.8 68.9
I 58.6 1352.9 48.3
I 47.8 1397.8 46.2
v 47.2 1470.8 48.0
\Y 47.3 1551.3 44.6

By analyzing the differences in biomass estimation among Models I-V in the study area (Table 8),
we can see that the yield per unit area of grassland biomass (1551.3 kg DW /ha) estimated by Model V
in Xiahe County is closest to the ground-measured value of the grassland AGB in the experimental
area, and its estimation error for yield per unit area is the lowest among the five models (44.6%).
The yield per unit area of grassland AGB estimated by Model I for the experimental area (5748.8 kg
DW /ha) is much larger than the ground-measured value, and its estimation error is also the largest
(68.9%); the error of the yield per unit area estimated by the other three models ranked from small to
large as III, IV and II.

Compared with this study, either at the sample plot scale or the regional scale (namely, the study
area of Xiahe County), the estimation accuracy of grassland AGB based on NDVIyop is the highest,
and its estimation error for the yield of grassland AGB per unit area is the smallest in the experimental
area (39.3%) (Table 7). Although the previous inversion Models I-V can reflect the overall variation
trend of grassland biomass, their errors are higher when applied to our study area. The reason is that
in large areas (the Tibetan Plateau area or an entire prefecture or county), the types of natural grassland
pasture are complicated, the geographical distribution is wide, the spatial heterogeneity is strong and
the vegetation index value is subject to influences from many features and factors (e.g., the ecological
environment of the grassland). Therefore, the models built based on a large scale, when applied to
small local areas (such as this experimental area), would result in large errors and low accuracy, poor
stability and large spatial variations. This conclusion is similar to the results of other studies in other
areas [16,34-37].

4.4. Limitations and Prospects of Remote Sensing Monitoring Biomass

In this study, although the optimum models for the remote sensing monitoring of grassland
biomass in the study area are determined, due to the limitations of factors, such as the duration of
sampling on the ground (only the growing seasons of the grassland from 2013-2015 were sampled),
there is still some error and uncertainty for these inversion models, especially the grassland biomass
inversion model based on the MODIS NDVI data. There are clearly two areas that we may improve
in the future. One is the NDVI saturation problem, as is clearly seen in Figure 4 when the biomass
is larger than 3000 kg DW/ha. One way to solve this problem is to use the wide dynamic range
vegetation index (WDRVI) [38-40], which was developed mostly to simulate the biomass for crops,
usually with very high biomass. It is worthy to introduce WDRVI for the grassland biomass study
in the future, especially to explore its sensitivity to the high end of grassland biomass. The other
one is the bidirectional reflectance distribution function (BRDF) effects on all remotely-sensed NDVI.
As the BRDF effects are already considered in the MODIS NDVI products, our derived NDVI from the
Landsat and HJ-1B are not. Although it is not the intention of this study to evaluate the methods for
deriving BRDF from these two satellites, we notice that quite a few studies have already reported their
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methods [41-44]. For example, one study [45] found that there are 0.02-0.06 differences for Landsat
images between regular reflectivity and BRDEF, and it is worthy to explore and use BRDF-derived
NDVI for modeling purposes in our future efforts.

The area of grassland resources is distributed broadly worldwide (accounting for approximately
40% of the global land biome) [2], and the variation on the temporal and spatial scales is dramatic [46].
Satellite data using the relatively high resolutions of Landsat MSS, TM and SPOT show relatively high
accuracy in the monitoring of grassland AGB over extended periods; however, because of influences
from the transit period, frame width and cloud cover, it is difficult to obtain long time series of
high-quality images. Although MODIS has relatively low spatial resolution and relatively large
estimation error of grassland AGSB, it is still particularly suitable for monitoring widely distributed
grassland AGB, mostly due to its high temporal resolution (daily) and large spatial coverage (2330 km).
Therefore, it is important to explore new research approaches to grassland AGB monitoring based
on MODIS data to improve the accuracy of grassland remote sensing inversion over large regions
in the future. These approaches mainly involve the following aspects: (1) enhance the spatial
representativeness of ground sampling sites, for example by increasing their number and area
and improving the range observed by the ground sampling site and the corresponding spatial
matching problem given the size of satellite image pixels; (2) improve the temporal matching between
ground sampling sites and remote sensing data, for example by better scheduling the times of field
investigations to reduce the time differences between ground surveys and satellite image acquisitions;
(3) incorporate new remote sensing observation techniques (e.g., hyperspectral imagery and the UAV
remote sensing technique) and strengthen research on the spectral characteristics of the grassland
vegetation community and the applications of the narrow band remote sensing vegetation index in
monitoring grassland AGB [47,48]; and (4) construct multi-factor grassland AGB estimation models
based on statistical analysis and machine learning techniques. These multiple factors include climatic
factors (e.g., sunlight, temperature and rainfall), soil factors (e.g., soil nutrients, soil structure and
fertility), biological factors (e.g., grassland type, species richness and distribution of malignant weeds)
and management factors (e.g., pasture, fencing enclosures and rotational grazing) [49-51]. For example,
Li et al. (2013) used neural networks to build an AGB model based on multiple MODIS vegetation
indices and showed higher accuracy than a model based on a single index, by decreased RMSE of
433 kg/ha and increased R? of 0.35 [49]. A multi-factor model by Liang et al. (2016) showed decreased
RMSE by 14.5% as compared with the optimum single-factor model [50]. Diouf et al. (2016) studied
the semi-arid grassland in the Sahel region and indicated that a combined photosynthetic radiation
and meteorological data model had better performance (R? = 0.69 and RMSE = 483 kg DW /ha) than
the single-factor model of photosynthetic radiation or meteorological data (R? = 0.63 and 0.55 and
RMSE = 550 kg DW /ha and 585 kg DW /ha, respectively) [51].

5. Conclusions

In this study, based on MOD13Q1, HJ-1B CCD and Landsat 8 OLI remote sensing data, grassland
observation data in the Sangke grassland of Xiahe County during 2013-2015 are combined to construct
a grassland AGB estimation model based on different remote sensing data, and the influence of
different filtering approaches for MODIS NDVI on the biomass estimation error of alpine meadow
grassland is investigated. The simulation errors of several grassland AGB models in the study area
are compared and analyzed, and the applicability of the models is evaluated. The following primary
conclusions have been reached.

(1) There is a significant difference in the estimation errors of alpine meadow grassland AGB using
remote sensing data from the Chinese HJ-1B CCD, Terra MODIS and Landsat 8 OLL. In this study,
the grassland AGB optimum inversion model of the experimental area is the exponential model
based on NDVIyi0op, NDVIgr 1 and NDVIccp, but different models show considerable differences
in the error of grassland AGB inversion. The errors for the estimation of grassland AGB for the
optimum models based on NDVIyiop, NDVIcep and NDVIpy at the sample plot level are 35.3%,



Remote Sens. 2017, 9, 372 17 of 19

31.6% and 29.1%, respectively. Their yield per unit area estimations for grassland AGB in the
experimental area indicate that the exponential model based on NDVIpy yielded values closest
to the ground-measured value; its estimation error for yield per unit area is the smallest (30.7%).
The estimation error for yield per unit area for the experimental area with the optimum AGB
inversion model based on NDVIpy 1 decrease by eight and two percentage points, respectively,
compared to the optimum inversion models based on NDVIyjop and NDVIccp.

(2) The filtering and de-noising processing of MOD13Q1 NDVI are key for reducing the AGB
inversion error of alpine meadow grassland based on MODIS data. At the sample plot level,
the estimation errors of the AGB estimation models based on NDVIgg, NDVI; o and NDVIga
decreased by 1.40, 1.14 and 1.13 percentage points, respectively, compared to the AGB estimation
model based on NDVIjop. On the study area scale (161.36 ha), the estimation errors for the yield
per unit area of grassland AGB based on NDVIgg, NDVI; o and NDVIga decreased by 4.48, 0.95
and 0.22, respectively, compared to that based on NDVIyiop.

(3) The feasibility study on previous models (I and II, III and IV and V) developed (on MODIS
indices) at broad scales to apply to our small study area suggests that the estimation error of these
models is higher than that of the NDVIyjop model constructed in this study by 11.9%-36.4% at
the sample plot scale and 5.3%—29.6% at the study area scale. Models V, IV and III based on Xiahe
County and Gannan Prefecture do not show considerable difference on the estimation error of
AGB, ranging from 47.2%—-47.8% at the sample plot level and 44.6%-48.0% of the yield per unit
area at the study area level. However, Models I and II based on the Tibetan Plateau scale show
much larger estimation error, up to 71.7% and 58.6%, respectively, at the sample plot scale and
68.9% and 48.3% of the yield per unit area at the study area scale.
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