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Abstract: Target classification techniques using spectral imagery and light detection and ranging
(LiDAR) are widely used in many disciplines. However, none of the existing methods can directly
capture spectral and 3D spatial information simultaneously. Multispectral LiDAR was proposed
to solve this problem as its data combines spectral and 3D spatial information. Point-based
classification experiments have been conducted with the use of multispectral LiDAR; however,
the low signal to noise ratio creates salt and pepper noise in the spectral-only classification, thus
lowering overall classification accuracy. In our study, a two-step classification approach is proposed
to eliminate this noise during target classification: routine classification based on spectral information
using spectral reflectance or a vegetation index, followed by neighborhood spatial reclassification.
In an experiment, a point cloud was first classified with a routine classifier using spectral information
and then reclassified with the k-nearest neighbors (k-NN) algorithm using neighborhood spatial
information. Next, a vegetation index (VI) was introduced for the classification of healthy and
withered leaves. Experimental results show that our proposed two-step classification method is
feasible if the first spectral classification accuracy is reasonable. After the reclassification based on
the k-NN algorithm was combined with neighborhood spatial information, accuracies increased
by 1.50–11.06%. Regarding identification of withered leaves, VI performed much better than raw
spectral reflectance, with producer accuracy increasing from 23.272% to 70.507%.

Keywords: LiDAR; multispectral; point cloud classification; k-nearest neighbors; vegetation index

1. Introduction

Target classification techniques based on remotely sensed data are widely used in many disciplines
such as resource exploration, outcrop geology, urban environmental management, and agriculture and
forestry management [1–11]. Target classification enables a more accurate understanding of targets and
therefore supports better decision-making. Thus, the remote sensing community has been studying
classification techniques and methods for many years. Target classification techniques and methods
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have matured and become diverse, given the recent advances in remote sensing technology and pattern
recognition, newer approaches have extended and built upon traditional technologies.

Before multispectral LiDAR, two major technologies provided data for target classification,
spectral imaging and light detection and ranging (LiDAR). Multispectral LiDAR data have similarities
to both spectral imaging and LiDAR, thus the classification methods based on spectral images,
and LiDAR data have acted as a reference when multispectral LiDAR techniques were initially
developed. Support vector machine (SVM) is a supervised [12] classification method, and a popular
non-parametric classifier widely used in the machine learning and remote sensing communities [13–15].
SVM can effectively overcome the curse of dimensionality and overfitting [16–18]. With the help
of SVM, spectral image classification has performed successfully in many experiments [19,20].
Compared to spectral images, the classification of LiDAR point clouds is less mature because
LiDAR requires complicated data processing and its wide application emerged only recently. LiDAR
classification experiments have been conducted for applications in urban building extraction and
forest management [21–23]. Spectral imaging and LiDAR have demonstrated their effectiveness
for target classification; however, spectral imaging lacks three-dimensional (3D) spatial information,
and conventional LiDAR systems operate on a single wavelength, which lacks spectra for objects.

Classification experiments employing complementary information from both LiDAR and images
were conducted. The performance of classification generally were improved with the complementary
information. Guo et al. [24] selected the random forests algorithm as a classifier and used margin
theory as a confidence measure of the classifier to confirm the relevance of input features for urban
classification. The quantitative results confirmed the importance of the joint use of optical multispectral
and LiDAR data. García et al. [25] presented a method for mapping fuel types using LiDAR and
multispectral data. Spectral intensity, the mean height of LiDAR returns and the vertical distribution of
fuels were used with an SVM classification combining LiDAR and multispectral data. Laible et al. [26]
conducted an object-based terrain classification with random forests by extracting 3D LIDAR-based
and camera-based features. The 3D LIDAR-based features included maximum height, the standard
deviation of height, distance, and the number of points. The results showed that classification
based on extracted features from camera and LiDAR was feasible under different lighting conditions.
The complementary information of LiDAR and images, however, can only be used effectively after
accurate registration, which involves many difficulties [27].

As a novel remote sensing technology, multispectral LiDAR can capture both spectral and spatial
information simultaneously [28,29], and has been used in various fields [30–33]. The introduction of the
first commercial airborne multispectral LiDAR, Optech Titan, made multispectral LiDAR land cover
classification feasible. Wichmann et al. [34] conducted an exploratory analysis of airborne-collected
multispectral LiDAR data with a focus on classifying specific spectral signatures by using spectral
patterns, thereby showing that a flight dataset is suitable for conventional spatial classification and
mapping procedures. Zou et al. [35] presented an Object Based Image Analysis (OBIA) approach, which
only used multispectral LiDAR point clouds datasets for 3D land cover classification. The results show
that an overall accuracy of over 90% can be achieved for 3D land cover classification. Ahokas et al. [36]
suggested that intensity-related and waveform-type features can be combined with point height
metrics for forest attribute derivation in area-based prediction, and currently is an operatively applied
forest inventory process used in Scandinavia. The airborne multispectral LiDAR Optech Titan system
shows promising potential for land cover classification; however, as Optech Titan acquires LiDAR
points in three channels at different angles, points from different channels do not coincide at the
same GPS time [34]. Therefore, data processing involves finding corresponding points, which is
a disadvantage of Optech Titan data.

Terrestrial multispectral LiDAR however, can overcome this disadvantage, and classification
attempts have been undertaken. Hartzell et al. [37] classified rock types using the data from three
different commercial terrestrial laser scanning systems with different wavelengths and compared
the results with passive visible wavelength imagery. This analysis indicated that rock types could
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be successfully identified with radiometrically calibrated multispectral terrestrial laser scanning
(TLS) data, with enhanced classification performance when fused with passive visible imagery.
Gong et al. [38] compared the performance of different detection systems finding that classification
based on multispectral LiDAR was more accurate than single-wavelength LiDAR and multispectral
imaging. Vauhkonen et al. [39] studied the classification of spruce and pine species using multispectral
LiDAR data with linear discriminant analysis. They found that the accuracies of two spectrally similar
species could be improved by simultaneously analyzing reflectance values and pulse penetration.
There are two kinds of classification for point clouds: object-based classification and point-based
classification [40,41]. Object-based classification is for objects, which are composed of many points
while point-based classification is for individual points. Most of the aforementioned classification
experiments were point-based, based on statistical models and image analysis; but have not yet
employed neighborhood spatial information to improve and enhance classification results.

The classification results could be improved considering the low signal to noise ratio of this kind
of novel sensor data. Moreover, the reasons of low signal to noise ratio could be: high noise in the
reflection signal collection [42,43], the close range experimental setup that caused high sensitivity of
the sensing process [44], the instability of the laser power and the multi-return of the LiDAR beam [45].
The low signal to noise ratio brings about instability in the spectral intensity value of points, creating
salt and pepper noise in the spectral-only classification [38] and thus lowering overall classification
accuracy. To solve this problem, we proposed a subsequent k-nearest neighbors (k-NN) clustering step
using neighborhood spatial information with a better classification outcome, overall.

This article proposes a two-step approach for point-based multispectral LiDAR point cloud
classification. First, we classified a point cloud based on spectral information (spectral reflectance or
vegetation index). Second, we reclassified the point cloud using neighborhood spatial information.
In the first step, the vegetation index (VI) was introduced into the classification of healthy and
withered leaves. In the second step, the k-NN algorithm was employed with neighborhood spatial
information for reclassification. The feasibility of the two-step classification method and the efficiency
of neighborhood spatial information for increasing classification accuracy were assessed.

2. Materials

2.1. Equipment

The equipment used in this experiment was the multi-wavelength canopy LiDAR (MWCL)
designed and established by Gong [28]. The MWCL system consists of three subsystems: the laser
source, the optical receiver assembly, and the data acquisition and processing system. The laser
sources are four independent semiconductor laser diodes with four wavelengths: 556, 670, 700,
and 780 nm. The laser lights are synthesized into one beam and then transmitted to the target.
Backscattered radiation is received by the optical receiver assembly, this equipment includes an
achromatic Schmidt–Cassegrain telescope with a diameter of 20 cm and four photon-counting detectors.
The platform details of the MWCL are described in a study published by Gong [28]. Using the MWCL
system, multispectral LiDAR point cloud data were acquired.

2.2. Materials and Data

This research was conducted at the laboratory at Wuhan University in Central China.
Seven experimental materials were used: a white wall; a white paper box; a cactus; a ceramic flowerpot;
healthy scindapsus leaves; withered scindapsus leaves; and plastic foam. These seven materials
were selected for two reasons: first, the artificial and vegetable materials were to demonstrate the
multispectral LiDAR’s ability to classify artificial and vegetable targets; and second, the healthy and
withered scindapsus leaves were included to validate whether different growing states could be
recognized correctly.
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The experimental materials were in decimeter scale and placed at a horizontal distance of six to
six and a half meters from the MWCL receiver. The materials were lined up in front of a white wall.
The height and length of the point cloud was 0.41 and 1.39 m. A photo and a MWCL point cloud of
the experimental scene are shown in Figures 1 and 2.
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The MWCL data had seven dimensions, with four channels for spectra and three dimensions
of spatial position (X,Y,Z), that is, the multispectral LiDAR point cloud. This data contained more
information than either the spectral image or conventional LiDAR point cloud alone. The spectral
image possesses abundant spectral information but only two-dimensional planar spatial information.
The point cloud from one kind of conventional LiDAR, without an optical camera, possesses only one
channel of spectrum and three-dimensional spatial positional information. The multispectral LiDAR
point cloud combines the advantages of a spectral image and a conventional LiDAR point cloud.

2.3. Variation of Raw Spectral Reflectance

There were seven targets in the laboratory, each of which had a different spectral reflectance.
The realistic spectral reflectance of the same target also varies from point to point because the realistic
spectral reflectance is influenced by the spectral properties of a target, the incidence angle, transmission
distance, and atmospheric attenuation.

The spectral properties of a target is the main factor in spectral reflectance, and is also the
fundamental information on which the classification can be based. Given the variance of the surface of
targets, the incidence angle of the beam changed for all targets, especially vegetation. Transmission
distance was already considered when calibrating the echo reflectance, based on the radar equation.
Atmospheric attenuation was not considered in this experiment because the transmission distance was
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too short (approximately 6–6.5 m), and the experiment was conducted in a clean room. The variation
of raw spectral reflectance on seven targets is shown in Figure 3.Remote Sens. 2017, 9, 373  5 of 17 
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Figure 3 shows that the white wall maintained a high reflectance at all four wavelengths; most
reflectances were between 0.9 and 1.0. The white paper box had a high reflectance at the other three
wavelengths except for 670 nm (approximately 0.3–0.4). The cactus had a low reflectance (0.1–0.4) at
three wavelengths except at 780 nm. The reflectance of the ceramic flowerpot was moderate (0.3–0.6)
but was high at 700 nm. Healthy and withered scindapsus leaves had a similar reflectance at three
wavelengths except at 700 nm. The reflectance of withered leaves at 700 nm was visibly higher than
that of healthy leaves. Thus, 700 nm is a significant wavelength to distinguish between healthy
and withered scindapsus leaves. The plastic foam exhibited great reflectance fluctuations over three
wavelengths apart from 700 nm (nearly one), which means that the spectral feature of plastic foam
was unstable. However, other targets had a steady spectral reflectance. This result serves as the basis
of the classification based on spectral information.
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3. Methods

The classification process consisted of two steps: routine classification based on spectral
information followed by spatial majority k-NN clustering. First, we classified the multispectral LiDAR
point cloud with an SVM classifier using spectral information (raw spectral reflectance and VI). Second,
the k-NN algorithm was used by neighborhood spatial information to reclassify the multispectral
LiDAR point cloud based on the first step. The details are described in the following sections.

In the first step, the classification experiments using raw spectral reflectance value included:
(1) seven individual targets; (2) artificial and vegetable targets; and (3) healthy and withered scindapsus
leaves. The classification based on VI included: (1) artificial and vegetable targets; and (2) healthy and
withered scindapsus leaves. In the second step, all the aforementioned classification experiments were
reclassified using neighborhood spatial information with the k-NN algorithm.

3.1. Classification Based on Raw Spectral Reflectance

To evaluate classification accuracy, most points (92%) in the multispectral LiDAR point cloud were
labeled manually using MATLAB software, with the spatial limitation for every target, as shown in
Figure 4. Spatial outliers and points that were difficult to label manually were excluded (8%). The raw
spectral reflectance of the multispectral LiDAR point cloud was normalized by spectraLon. SpectraLon
is a fluoropolymer, and has the highest diffuse reflectance of any known material or coating over the
ultraviolet, visible, and near-infrared regions of the spectrum [46]. An SVM classifier was used to train
the classification model with the LibSVM proposed by Chang [47].

Remote Sens. 2017, 9, 373  6 of 17 

 

multispectral LiDAR point cloud based on the first step. The details are described in the following 
sections. 

In the first step, the classification experiments using raw spectral reflectance value included:  
(1) seven individual targets; (2) artificial and vegetable targets; and (3) healthy and withered 
scindapsus leaves. The classification based on VI included: (1) artificial and vegetable targets; and (2) 
healthy and withered scindapsus leaves. In the second step, all the aforementioned classification 
experiments were reclassified using neighborhood spatial information with the k-NN algorithm. 

3.1. Classification Based on Raw Spectral Reflectance 

To evaluate classification accuracy, most points (92%) in the multispectral LiDAR point cloud 
were labeled manually using MATLAB software, with the spatial limitation for every target, as 
shown in Figure 4. Spatial outliers and points that were difficult to label manually were excluded 
(8%). The raw spectral reflectance of the multispectral LiDAR point cloud was normalized by 
spectraLon. SpectraLon is a fluoropolymer, and has the highest diffuse reflectance of any known 
material or coating over the ultraviolet, visible, and near-infrared regions of the spectrum [46]. An 
SVM classifier was used to train the classification model with the LibSVM proposed by Chang [47]. 

In this section, three classification sub-experiments were conducted with the use of raw spectral 
reflectance: (1) seven individual targets; (2) artificial (white wall, white paper box, ceramic flowerpot, 
plastic foam) and vegetable (cactus, healthy scindapsus leaves, withered scindapsus leaves) targets; 
and (3) healthy and withered scindapsus leaves. Training samples were a quarter of the total 
manually labeled points and were selected randomly with MATLAB. In this way, the spectral and 
spatial information of training samples were randomly distributed, and the integrity of training was 
ensured. The input parameters of the SVM classifier were four channels of raw spectral reflectance 
(556, 670, 700, and 780 nm). Results are shown in Figures 5, 6, and 8 in Section 4. 

 
Figure 4. Manually labeled multispectral light detection and ranging (LiDAR) point cloud in the seven 
materials: white wall, white paper box, cactus, ceramic flowerpot, healthy scindapsus leaves, 
withered scindapsus leaves and plastic foam, which are shown in blue, red, orange, yellow, green, 
brown and purple, respectively. 

3.2. Classification Based on Vegetation Index (VI) 

To enhance the capability of distinguishing artificial, healthy, and withered vegetable targets, VI 
was introduced to the classification. A VI is a spectral transformation of two or more bands designed 
to enhance the contribution of vegetation properties and allow reliable spatial and temporal inter-
comparisons of terrestrial photosynthetic activity and canopy structural variations [48].  
In consideration of the four wavelengths of the MWCL, namely, 556, 670, 700, and 780 nm, 14 types 
of VI were tested for the experiment separately, and are listed in Table 1 and Appendix A. A 
comparison among the classification results obtained by every single VI indicated that five VIs 
performed best; and were therefore selected as the input parameters of the SVM. The defined 
wavelengths in the original formula were replaced by the closest adapted wavelengths of the MWCL. 

Figure 4. Manually labeled multispectral light detection and ranging (LiDAR) point cloud in the seven
materials: white wall, white paper box, cactus, ceramic flowerpot, healthy scindapsus leaves, withered
scindapsus leaves and plastic foam, which are shown in blue, red, orange, yellow, green, brown and
purple, respectively.

In this section, three classification sub-experiments were conducted with the use of raw spectral
reflectance: (1) seven individual targets; (2) artificial (white wall, white paper box, ceramic flowerpot,
plastic foam) and vegetable (cactus, healthy scindapsus leaves, withered scindapsus leaves) targets;
and (3) healthy and withered scindapsus leaves. Training samples were a quarter of the total manually
labeled points and were selected randomly with MATLAB. In this way, the spectral and spatial
information of training samples were randomly distributed, and the integrity of training was ensured.
The input parameters of the SVM classifier were four channels of raw spectral reflectance (556, 670,
700, and 780 nm). Results are shown in Figures 5, 6, and 8 in Section 4.

3.2. Classification Based on Vegetation Index (VI)

To enhance the capability of distinguishing artificial, healthy, and withered vegetable targets,
VI was introduced to the classification. A VI is a spectral transformation of two or more bands
designed to enhance the contribution of vegetation properties and allow reliable spatial and
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temporal inter-comparisons of terrestrial photosynthetic activity and canopy structural variations [48].
In consideration of the four wavelengths of the MWCL, namely, 556, 670, 700, and 780 nm, 14 types of
VI were tested for the experiment separately, and are listed in Table 1 and Appendix A. A comparison
among the classification results obtained by every single VI indicated that five VIs performed best;
and were therefore selected as the input parameters of the SVM. The defined wavelengths in the
original formula were replaced by the closest adapted wavelengths of the MWCL. The five VIs were
calculated by the MWCL adapted formula for every point. These were additional classification features
related to the biochemistry status of the vegetation.

Table 1. Details of five selected vegetation indices (VIs).

Vegetation Index MWCL Adapted Formula Original Formula

Chlorophyll Absorption
Reflectance Index 1 (CARI1) [49] (R700 − R670) − 0.2 × (R700 + R556) (R700 − R670) − 0.2 × (R700 + R550)

Normalized Difference Red
Edge (NDRE) [50] (R780 − R700)/(R780 + R700) (R790 − R720)/(R790 + R720)

Modified Triangular Vegetation
Index1 (MTVI1) [51] 1.2 × [1.2 × (R780 − R556) − 2.5 × (R670 − R556)] 1.2 × [1.2 × (R800 − R550) − 2.5 × (R670 − R550)]

Gitelson [52] 1/R700 1/R700

Green Normalized Difference
Vegetation Index (GNDVI) [53] (R780 − R556)/(R780 + R556) (NIR − GREEN)/(NIR + GREEN)

For this section, two classification sub-experiments were conducted with the use of the five VIs:
(1) the artificial and vegetable targets; and (2) the healthy and withered scindapsus leaves. The training
samples were the same as those in Section 3.1, and the classifier was SVM. Thus, only the input
parameters were changed from Section 3.1 (from four channels of raw spectral reflectance to five
channels of VI), thereby ensuring a comparison between the classification capability of VI and raw
spectral reflectance.

3.3. Reclassification Based on Neighborhood Spatial Information with k-Nearest Neighbors Algorithm

After spectral information (raw spectral reflectance and VI) classification had allocated every
point a class attribute, the k-NN classification algorithm was employed with the neighborhood spatial
information for reclassification. The k-nearest neighbors algorithm is a non-parametric method for
classification or regression [54]. In this experiment, the k-NN algorithm was used for classification in
consideration of the nearest neighborhood point class.

Reclassification was based on the hypothesis that most of the neighborhood point class was correct
after the first classification, where every point was assigned to the most common class considering its
k (k is a positive integer) closest neighbors class attribute, in a fixed neighborhood distance. With a view
to the scale of the targets, the density of point cloud, and the practical test, the k and neighborhood
distance in this experiment were empirically set to 15 and two centimeters, respectively.

The two drawbacks of the k-NN algorithm are its sensitivity to the local samples of the data and
the non-uniform distribution of samples. These two shortcomings can be overcome by the property of
spatial distribution of the LiDAR point cloud. The distribution of one target in space is uninterrupted,
thus, the points that describe one target are assembled in space. One point is usually surrounded by
the points of the same target, and, furthermore, because of the steady scanning frequency, the density
of points that describe one target is uniform.

Another advantage of employing k-NN to reclassify the multispectral LiDAR point cloud is
the edge process. In images, most edges are surrounded by two or more classes of targets, thereby
complicating the classification of the pixel on the edges. By contrast, most edges in a point cloud
have only one class of target surrounding itself unless it is at the junction of different targets. Thus,
the neighborhood points of the edge points are usually of the same class. Thus, the k-NN algorithm is
suitable for the reclassification of the edges of the point cloud. The performance of k-NN is detailed
in Section 4.3.
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4. Results

4.1. Classification Based on Raw Spectral Reflectance

Figure 5 shows the classification result based on the raw spectral reflectance for seven individual
targets. The salt and pepper noise is apparent in Figure 5. The overall accuracy was 81.258%;
the confusion matrix is shown in Table 2. The confusion matrix shows that the user accuracies
of most classes were more than 70%, but some of the producer accuracies were less than 70%: 40.4157%
for withered scindapsus leaves and 62.8243% for plastic foam. With regard to the withered scindapsus
leaves, 25.64% and 32.10% of points were classified as ceramic flowerpot and healthy scindapsus leaves,
respectively, possibly because they were similar in the spectral feature space. Given the significant
fluctuation of the reflectance of plastic foam over three wavelengths (Figure 3), precisely describing
the spectral feature of plastic foam was difficult. Therefore, the classification result for plastic foam
was not acceptable.
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Table 2. Confusion matrix of the classification based on raw spectral reflectance.

Predicted Class Producer
AccuracyW Wall W P Box Cactus. C Pot H E Leaf W E Leaf P Foam

Ground
truth

W Wall 5486 350 9 74 106 4 130 0.8907
W P Box 187 2784 73 150 134 35 200 0.7813
Cactus. 1 17 625 0 213 0 0 0.7301
C Pot 3 69 0 1401 68 27 211 0.7875

H E Leaf 0 14 173 1 2728 4 0 0.9342
W E Leaf 0 6 2 111 139 175 0 0.4041
Plastic F 364 72 1 345 89 3 1477 0.6282

User accuracy 0.9081 0.8405 0.7078 0.6729 0.7845 0.7056 0.7319

In addition, there were many error points at the edges of targets. For example, some points along
the edges of the cactus were classified as healthy scindapsus leaves, and some points on the edges of
the white wall were also falsely classified. Two main reasons explain these errors: first, the normal
vector of the surface changes at the edge of the targets. Thus the scattering solid angle correspondingly
changes, and a factor in raw spectral reflectance [55]. Second, the foot point of the beam may illuminate
two or more targets simultaneously at the edges, and the echo reflectance combines echoes from
different targets. Therefore, these types of points are difficult to classify and should be classified using
spectral mixture analysis.

In the classification of artificial and vegetable targets, the cactus and scindapsus leaves were
treated as vegetable targets and the others as artificial targets. The result based on raw spectral
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reflectance was satisfactory: overall accuracy was 96.457%. The classification result is shown in
Figure 6a beside the result produced by VI (Figure 6b). Excluding individual noisy error points,
there were main areas of error: the paper box; the withered scindapsus leaves; and the left edge of the
plastic foam. The errors in the paper box and plastic foam are likely due to the changing incidence
angle. Therefore, the correlation between the incidence angle and spectral reflectance requires further
research. The errors seen in the withered leaves might result from the biochemical status of withered
leaves when leaves change, thereby resulting in different spectral properties.
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Figure 6. Classification of artificial (white wall, white paper box, ceramic flowerpot, and plastic
foam) and vegetable (cactus and scindapsus leaves) targets on the basis of (a) raw spectral reflectance;
and (b) five VIs. Red and green points represent the artificial and vegetable samples, respectively.

The classification result of healthy and withered scindapsus leaves on the basis of raw spectral
reflectance and result obtained by VI are shown (Figure 8) in Section 4.2, for comparative purposes.

4.2. Classification Based on VI

In the classification of artificial and vegetable targets by VI, the accuracy was slightly better than
that of raw spectral reflectance: 97.747% to 96.457%. The classification results are shown in Figure 6b.
These experiments demonstrated that the MWCL could effectively classify artificial and vegetable
objects using both raw spectral reflectance and VI.

For the classification of healthy and withered scindapsus leaves, the variance of five VIs of
every point in healthy and withered scindapsus leaves is shown in Figure 7. Healthy and withered
scindapsus leaves performed differently during every VI experiment. The variation in the distribution
of the VI values for healthy and withered leaves was most significant in the case of CARI1, NDRE, and
Gitelson, and merely noticeable in the case of MTCI1 and GNDVI.

The behaviors of healthy and withered scindapsus leaves on the spectrum are sharply different,
especially in the visible region as seen in the photo (Figure 1). However, on scindapsus the classification
result based on raw spectral reflectance was less accurate than that of the VI (Table 3). The result
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(Figure 8) indicates that the classification accuracy of VI (95.556%) was much better than that of raw
spectral reflectance (90.039%), possibly because the VI could describe the biochemical status of leaves
more precisely. In addition, NDRE and GNDVI could help remove the effect of incidence angle [55].
In particular, the VI was more helpful than raw spectral reflectance for recognizing withered scindapsus
leaves (70.507%) while the accuracy of raw spectral reflectance was as low as 23.272%, as shown in
Figure 8. This experiment demonstrated that the VI could be used by MWCL to classify healthy and
withered scindapsus leaves, and increase the accuracy when recognizing withered scindapsus leaves
in terms of raw spectral reflectance.
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Table 3. Confusion matrixes of the classification of healthy and withered scindapsus leaves, based on
the VI (left) and raw spectral reflectance (right).

VI Raw Spectral Reflectance

Predicted Class
Producer Accuracy

Predicted Class
Producer Accuracy

H Leaf W Leaf H Leaf W Leaf

Ground truth
H Leaf 2896 24 0.9918 2919 1 0.9997
W Leaf 128 305 0.7044 333 100 0.2309

User accuracy 0.9577 0.9271 0.8976 0.9901
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Figure 8. Healthy and withered scindapsus leaves classification results based on (a) VI and (b) spectral
reflectance. Green and brown points indicate healthy and withered leaves, respectively. The result
indicates that the VI is more sensitive to the growing condition of leaves, which makes it helpful for
discriminating between healthy and withered leaves.
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4.3. Reclassification Based on Neighborhood Spatial Information with k-NN

Reclassification was conducted after every spectral classification experiment, based on raw
spectral reflectance and VI. The reclassification results obtained by k-NN with neighborhood spatial
information are shown in Table 4. The k-NN algorithm helped to increase the classification accuracy
in most experiments by 1.50–11.06% except in the recognition of withered scindapsus leaves by raw
spectral reflectance due to the low first classification accuracy (23.272%). The results demonstrate that
the k-NN algorithm with neighborhood spatial information performed well in most situations if the
first spectra-based classification accuracy is reasonable.

Table 4. Accuracies of first classification and reclassification by which the effect of k-nearest neighbors
(k-NN) with neighborhood spatial information could be assessed. The last row shows the recognition
accuracies of withered leaves in the classification of healthy and withered scindapsus leaves. The k-NN
algorithm may not work when the accuracy of the first classification based on spectral information is
too low.

Classification Targets
Raw Spectral Reflectance VI

Before After k-NN Before After k-NN

Seven individual targets 81.258% 87.188% - -
Artificial and vegetation 96.457% 97.957% 97.747% 99.302%

Healthy and withered leaves 90.039% 88.309% 95.556% 97.197%
Withered leaves 23.272% 12.903% 70.507% 81.567%

If the first spectra-based classification accuracy of one class is too low, the neighborhood class
attributes of most points of this class will be wrong. In k-NN, every point is assigned to the most
common class of neighborhood points, considering its k (k is a positive integer) nearest neighbor class
attribute. Therefore, the k-NN algorithm with neighborhood spatial information cannot work in this
low first classification accuracy situation. That explains the declination of the classification accuracy of
withered leaves based on raw spectral reflectance.

We analyzed the performance of the k-NN on a complex scene containing seven individual targets.
After employing the k-NN algorithm with the neighborhood spatial information, the overall accuracy
increased from 81.258% to 87.188%. Figure 9 shows the reclassification result, and the confusion matrix
is presented in Table 5. A comparison with Table 2 shows increased producer and user accuracies,
and a higher number of correctly classified points for every target.
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Table 5. Confusion matrix of the reclassification based on the k-NN algorithm with neighborhood
spatial information.

Predicted Class Producer
AccuracyW Wall W P Box Cactus C Pot H E Leaf W E Leaf P Foam

Ground truth

W Wall 5790 316 0 5 44 1 3 0.9400
W P Box 79 2963 20 112 60 31 291 0.8332
Cactus 0 0 745 0 111 0 0 0.8703
C Pot 0 0 0 1538 43 31 166 0.8650

H E Leaf 0 2 74 0 2830 0 0 0.9738
W E Leaf 0 0 0 98 113 222 0 0.5127
Plastic F 325 28 0 261 77 0 1659 0.7059

User accuracy 0.9347 0.8954 0.8879 0.7636 0.8633 0.7789 0.7829

The effect of the k-NN algorithm with neighborhood spatial information for the multispectral
LiDAR point cloud is similar to that of image smoothing. This method corrects most falsely classified
edge points, especially for the edges of the white wall. Scattered falsely classified points far away from
edges were also corrected. The salt and pepper noise was mitigated. However, the large error area
could not be corrected, and even some correct points that surrounded it were reclassified erroneously.
This false reclassification may be a disadvantage of the k-NN algorithm with neighborhood spatial
information, despite the evident increase in accuracy.

After the reclassification of seven individual targets, 11.83% of the points changed class: 8.88%
were reclassified correctly, and 2.95% were reclassified falsely. These points are shown in Figure 10;
where the green and red points denote the correctly and falsely reclassified points. The changed points
were discretely distributed throughout the area, but no large error area with significant changes was
found, thereby indicating that a large error area would not be corrected by the k-NN algorithm.
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Figure 10. Colorful points represent the points whose class changed after reclassification based on the
k-NN algorithm with spatial information. Gray, green, and red points represent the unchanged points,
the correctly changed points, and the falsely changed points, respectively.

5. Discussion

The proposed two-step method was compared with the Gong method [38]. In Gong’s method,
multispectral LiDAR point cloud was classified with the SVM. There were five dimensions of input
parameters of the SVM: four for spectra, one for distance. Thus, the spatial information was not
adequately used, and only used as one dimension of the input parameter of the SVM. For fair
comparison, the training points were the same as those in our proposed two-step method. Therefore,
the classification result of Gong’s method in this paper was slightly different from the result in
Reference [38]. The confusion matrix and results are shown in Table 6 and Figure 11.
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Table 6. Confusion matrix of the reclassification based on Gong’s method [38].

Predicted Class Producer
AccuracyW Wall W P Box Cactus. C Pot H E Leaf W E Leaf P Foam

Ground
truth

W Wall 5460 380 11 29 111 5 163 0.8865
W P Box 155 2877 72 135 143 25 156 0.8074
Cactus 3 3 555 0 295 0 0 0.6483
C Pot 3 76 0 1499 68 20 113 0.8426

H E Leaf 1 15 144 1 2755 4 0 0.9434
W E Leaf 0 7 0 115 142 169 0 0.3903
Plastic F 387 12 1 217 89 6 1639 0.6971

User accuracy 0.9086 0.8537 0.7088 0.7510 0.7646 0.7379 0.7914
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When comparing Tables 5 and 6, our proposed two-step method had higher both user and
producer accuracy for every class than via Gong’s method, except for the user accuracy of plastic foam.
The lower user accuracy of plastic foam may be due to its great reflectance fluctuations at 556, 670 and
780 nm. However, in terms of the number of correctly classified points for plastic foam, our proposed
method was better (1659 to 1639) and also the overall accuracy (87.188%) was higher than Gong’s
method (82.797%).

When comparing Figures 9 and 11, the distribution of erroneously classified points was similar to
our proposed method. The reason may be due to the role played by the spectral information in these
two methods. Furthermore, the spectral information quality was actually not ideal in the area of error.
In addition, there are many scatter error points in Gong’s method (Figure 11), unlike the result seen
in Figure 9 classified by our two-step method. This also demonstrates the effectiveness of the k-NN
algorithm with neighborhood spatial information.

The demerit of this two-step approach is that it cannot increase the classification accuracy if the
first spectral classification accuracy is low. If the first classification accuracy of one class was low, then
the class attributes of most neighborhood points will be wrong. The principle of k-NN is that every
point was assigned to the most common class of neighborhood points, considering its k (k is a positive
integer) closest neighbors class attribute. Therefore, the k-NN algorithm by neighborhood spatial
information cannot work in this low spectral classification accuracy situation.

6. Conclusions

The data form of the multispectral LiDAR point cloud is unique because of its combination
of spatial and spectral information, which is helpful for target classification. The properties of the
data ensure that targets can be classified; first by using spectral information and then reclassified by
using neighborhood spatial information. Experiments demonstrate the feasibility of this two-step
classification method for multispectral LiDAR point cloud in most scenarios.

The first classification based on raw spectral reflectance performed well in most scenarios, aside
from the classification of healthy and withered scindapsus leaves. After using the vegetation index,
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the classification accuracy of artificial and vegetable targets did not increase considerably. However,
the overall classification accuracy of healthy and withered scindapsus leaves increased from 90.039%
to 95.556%, compared with that obtained by raw spectral reflectance. For the identification of the
withered scindapsus leaves, the accuracy increased from 23.272% to 70.507%, thereby indicating
that vegetation indexes are more effective in classifying healthy and withered scindapsus leaves by
multispectral LiDAR.

An analysis of the reclassification experiments indicates that the k-nearest neighbors algorithm
with neighborhood spatial information can mitigate the salt and pepper noise and increase accuracy
in most scenarios unless the first spectral classification accuracy was too low. Producer and user
accuracies of every target rose in the confusion matrix in the seven-target classification (Tables 1 and 2).
The k-nearest neighbor algorithm in conjunction with neighborhood spatial information performed
well in raw spectral reflectance and in the vegetation index experiments in most cases (overall
accuracies increased by 1.50–11.06%). These results show that the proposed two-step classification
method is feasible for multispectral LiDAR point clouds and that the k-nearest neighbor algorithm
with neighborhood spatial information is an effective tool for increasing classification accuracy.

One disadvantage of this method is that the k-nearest neighbors algorithm with neighborhood
spatial information will not work in low first spectral-information-based classification accuracy
situations. In addition, it was conducted in a laboratory and the experimental targets were limited.
Further outdoor experiments with more complicated targets would be required to complete the
assessment of its feasibility.

Furthermore, a better algorithm for the spatial information to increase classification accuracy
requires more research to utilize the spatial information more adequately. For example,
the spectral-spatial method for hyperspectral imagery might be considered for the introduction for
multispectral LiDAR. In addition, research on object and point classification, and the internal relation
of object and point classification for multispectral LiDAR will be conducted.
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Appendix A

Table A1. Other nine vegetation indexes except the selected five ones.

Vegetation Index MWCL Adapted Formula Original Formula

Triangle Vegetation Index (TVI) [56] 0.5 × [120 × (R780 − R556) − 200 × (R670 − R556)] 0.5 × [120 × (NIR − GREEN) –200 × (R − GREEN)]

Red-edge Triangular Vegetation Index
(RTVI) [57]

[100 × (R780 − R700) – 10 × (R780 − R556)] sqrt
(R700/R670)

[100 × (R750 − R730) – 10 × (R750 − R550)] sqrt
(R700/R670)

Modified Chlorophyll Absorption in
Reflectance Index (MCARI) [58] [(R700 − R670) − 0.2 × (R700 − R556)](R700/R670) [(R700 − R670) − 0.2 × (R700 − R550)](R700/R670)

Transformed Chlorophyll Absorption in
Reflectance Index (TCARI) [59]

3 × [(R700 − R670) − 0.2 ×
(R700 − R556)(R700/R670)]

3 × [(R700 − R670) − 0.2 ×
(R700 − R550)(R700/R670)]

Red-edge Inflection Point (REIP) [60] 700 + 40 × [(R670 + R780)/2 − R700]/(R780 − R700) 700 + 40 × [(R670 + R780)/2 − R700]/(R740 − R700)

Normalized Difference Vegetation Index
(NDVI) [61] (R780 − R670)/(R780 + R670) (NIR − R)/(NIR + R)

Soil-Adjusted Vegetation Index (SAVI) [62] [(R780 – R670)/(R780 + R670 + 0.5)] × (1 + 0.5) [(NIR − R)/(NIR + R + 0.5)] × (1 + 0.5)

Optimized Soil-Adjusted Vegetation Index
(OSAVI) [63] [(R780 – R670)/(R780 + R670 + 0.16)] [(NIR − R)/(NIR + R + 0.16)]

Optimal Vegetation Index (VIopt) [64] (1 + 0.45)((R780)2 + 1)/(R670 + 0.45) (1 + 0.45)((NIR)2 + 1)/(R + 0.45)
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