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Abstract: Recent years have witnessed the fast development of UAVs (unmanned aerial vehicles).
As an alternative to traditional image acquisition methods, UAVs bridge the gap between terrestrial
and airborne photogrammetry and enable flexible acquisition of high resolution images. However,
the georeferencing accuracy of UAVs is still limited by the low-performance on-board GNSS and INS.
This paper investigates automatic geo-registration of an individual UAV image or UAV image blocks
by matching the UAV image(s) with a previously taken georeferenced image, such as an individual
aerial or satellite image with a height map attached or an aerial orthophoto with a DSM (digital
surface model) attached. As the biggest challenge for matching UAV and aerial images is in the large
differences in scale and rotation, we propose a novel feature matching method for nadir or slightly
tilted images. The method is comprised of a dense feature detection scheme, a one-to-many matching
strategy and a global geometric verification scheme. The proposed method is able to find thousands
of valid matches in cases where SIFT and ASIFT fail. Those matches can be used to geo-register the
whole UAV image block towards the reference image data. When the reference images offer high
georeferencing accuracy, the UAV images can also be geolocalized in a global coordinate system.
A series of experiments involving different scenarios was conducted to validate the proposed method.
The results demonstrate that our approach achieves not only decimeter-level registration accuracy,
but also comparable global accuracy as the reference images.
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1. Introduction

Emerging as novel image acquisition platforms, unmanned aerial vehicles (UAVs) bridge the gap
between aerial and terrestrial photogrammetry and offer an alternative to conventional airborne image
acquisition systems. In comparison to airborne or satellite remote sensing, UAVs stand out for low
cost, the utility to be used in hazardous or inaccessible areas and the ability to achieve high spatial
and temporal resolutions. Table 1 compares the main features of UAVs and manned aircraft based
on the surveys of [1,2]. In contrast with manned aircraft, UAVs have smaller coverage due to lower
flight altitude, but they are able to achieve high ground sampling distance (GSD) with lower cost and
better flexibility. While manned aircraft require big landing fields and pilots, UAVs only need small
landing sites and can be remotely controlled; therefore, they can work even in hazardous areas and
severe weather conditions. Hence, UAVs have been widely involved in remote sensing applications,
such as disaster management, urban development, documentation of cultural heritage or agriculture
management [3].

Remote Sens. 2017, 9, 376; doi:10.3390/rs9040376 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://dx.doi.org/10.3390/rs9040376
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2017, 9, 376 2 of 25

Table 1. Comparison between UAV and manned aircraft photogrammetry.

UAV Photogrammetry Manned Aircraft Photogrammetry

Coverage m2–km2 km2

Image resolution/GSD mm–cm cm–dm

Geo-registration possibility low quality GNSS/IMU high quality GNSS/IMU
meter-level accuracy centimeter-level accuracy

Price and operating cost low-moderate high

Flexibility
applicable in hazardous areas less mobile
works in cloudy/drizzly weather weather-dependent
remotely controlled pilot needed

Accurate geo-registration of UAV imagery is a prerequisite for UAV geolocalization and many
photogrammetric applications, such as generating georeferenced orthophotos, 3D point clouds
or digital surface models (DSMs). However, accurate geo-registration of UAV imagery is still an
open problem. Limited by on-board payload restrictions, UAVs are equipped with lightweight
GNSS/IMU systems, whose georeferencing accuracies are in the range of meters [4] and far from the
centimeter-level accuracy of airborne photogrammetry [5,6]. In order to achieve higher geo-registration
accuracy beyond hardware limits, we use a pre-georeferenced aerial or satellite image as a reference
and register the UAV image to the reference image with a novel feature-based image matching method.

In the field of image matching, numerous algorithms for different matching scenarios have been
proposed in the last few decades. The biggest challenge for UAV and aerial image matching lies in the
substantial differences in their scales, viewing directions and temporal changes. For instance, the flight
altitude of UAV platforms is about 50 m–120 m above the Earth, whereas aerial images are usually
captured at 800 m–1500 m from different viewing directions. Although state-of-the-art feature-based
image matching methods are generally working fine for many different image pairs and are said to be
invariant to changes in viewpoints, wider baselines and local changes of the scene, they surprisingly
failed in many of our test cases. Figure 1 illustrates two typical cases of UAV and aerial image matching
using SIFT [7].

(a) Container (b) Highway

Figure 1. Typical cases from the datasets (a) Container and (b) Highway showing the results of
matching UAV and aerial images using SIFT, where the left of the subfigure is a downsampled UAV
image and the right is a cropped aerial image. Green lines indicate the matches detected by SIFT;
almost all of them are wrong.

Even though the scale difference has been eliminated by down-sampling the UAV image towards
the aerial image and the aerial image has been cropped to the same region as the UAV image, no reliable
set of correct matches could be found in the similar looking image pairs. This finding motivated us
to analyze the reasons for the failure and to develop a new image matching strategy facilitating
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a successful and robust matching of imagery with wide baselines and substantial geometrical and
temporal changes. The obtained 2D matches are used for geo-registration of the UAV image with
reference to the aerial image. The results demonstrate that our approach achieves decimeter-level
co-registration accuracy and comparable absolute geo-registration accuracy as the reference image.

In summary, the main innovations of this paper cover the following aspects:

• An exhaustive analysis of limiting cases of SIFT-based image matching for UAV and aerial image
pairs. The reasons for the matching failure are identified by investigating the influence of different
SIFT and Affine-SIFT (ASIFT) parameters, image rotations and the ratio test.

• A novel feature matching pipeline constituted of a dense feature detection scheme, a one-to-many
matching strategy and a global geometric verification scheme.

• A comprehensive analysis of the matching quality with ground-truth correspondences and
a demonstration of various experiments for evaluating absolute and relative accuracies of
generated photogrammetric 3D products.

The paper is organized as follows: Section 2 gives a review of related works; Section 3 introduces
limiting cases for SIFT matching and outlines the key factors accounting for the failure of the matching.
Section 4 proposes the novel feature matching method for a robust and reliable matching result for
wide-baseline image pairs. In Section 5, various experiments are carried out to validate the accuracy of
the proposed matching method. Besides a qualitative and quantitative analysis of the obtained matches
of UAV and aerial images, 3D errors of triangulated matches from geo-registered UAV images are
compared to 3D points from aerial imagery and to terrestrial measured ground control points (GCPs).
Additionally, DSMs generated from geo-registered UAV images and from aerial images are compared,
and a joint 3D point cloud is presented. Finally, Section 6 discusses the applicability and limitations of
the proposed method, and Section 7 concludes the paper and describes further applications.

2. Related Work

The availability of georeferenced imagery is a prerequisite for many photogrammetric tasks,
such as the generation of registered 3D point clouds, DSMs, orthorectification, mosaicking or 3D
reconstructions of buildings. The key for precise georeferencing of the mentioned products lies
in an accurate geo-registration of the captured images, which can be tackled in different ways.
In the field of aerial photogrammetry, high-end GNSS/IMU localization sensors are used, which
allow direct georeferencing of the images without the need for external GCPs or photogrammetric
adjustments in a post-processing step. Many established systems in aerial photogrammetry have access
to such accurate sensors and achieve centimeter-level registration accuracy. The relatively low-cost
DLR 3K sensor system [8] presents a camera frame carried by either an airplane or helicopter and
consists of three Canon EOS 1Ds Mark II cameras looking in nadir, forward and backward direction
developed for real-time disaster monitoring. The synchronized image acquisition and localization
information provided by the expensive and heavy GNSS/IMU system (4 kg in total) allows for direct
georeferencing accuracies of 10 cm [9]. The Vexcel UltraCam [10] offers a high level optical sensor for
high resolution aerial photogrammetry with more than 100 megapixels. Combined with the high-end
UltraNav GNSS/IMU system [11], 5 cm accuracy for direct georeferencing can be achieved. Due to
payload limitations, many commercial UAVs are usually equipped with lightweight sensors providing
localization accuracies in the range of meters [12], which is not sufficient enough for photogrammetric
applications using direct georeferencing. An investigation regarding the ability of direct georeferencing
with UAV systems shows that the geolocalization accuracy of current UAV systems is still too low to
perform direct applications of photogrammetry at very large scale [4].

For this reason, image-based methods are usually utilized to facilitate geo-registration of UAV
imagery in centimeter-level accuracy. One way to augment geo-registration results is to deploy GCPs,
which is even recommended for high-end devices due to the existence of systematic errors [13].
Nevertheless, the deployment of GCPs is often expensive, requires fieldwork operations and is
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unpractical or even impossible for hazardous or inaccessible regions. Due to the growing accessibility
of high resolution aerial and satellite imagery, image matching approaches present a promising
alternative for geo-registration. Here, geo-registration of UAV imagery is done by matching UAV
images with georeferenced databases, such as 3D models, aerial images, orthophotos or satellite
images. An accurate geo-registration of UAV images depends on the accuracy and reliability of the
image matching result. Although image matching is a long-standing problem and much research has
been performed in this area, still many cases exist where established methods fail or perform poorly.
The task of matching UAV and aerial images can be characterized by wide baselines, large differences in
viewpoints and geometrical, as well as temporal changes. Among intensity-based and frequency-based
matching methods, local feature-based matching methods perform best with regard to these matching
conditions [14]. Among various feature-based matching algorithms, SIFT [7] stands out for its robust
scale- and rotation-invariant property. Although many variants and alternatives have been developed,
such as its approximation SURF [15] and the binary descriptor BRIEF [16], investigations demonstrate
that SIFT is still more robust to viewpoint changes and common image disturbances than both BRIEF
and SURF [17]. ORB [18], which is a combination of the FAST detector [19] and the BRIEF binary
descriptor, is a good choice for real-time applications, but several evaluations state that it cannot reach
the repeatability and discriminative properties of SIFT [20–23]. KAZE [24] is a new development
and succeeds especially in the presence of deformable objects. As a variant of SIFT, a full affine
invariant matching framework ASIFT [25] was proposed to handle big differences in viewpoints by
simulating a series of transformed images to cover the whole affine space. In the case of matching
images with large differences in viewpoints, ASIFT has more robust performance than SIFT, which was
also confirmed in the evaluation presented in [26].

Apart from feature-based wide-baseline matching, other concepts also investigate different
methods for geo-registration of UAV imagery. Intensity-based methods, like an on-board
correlation-based method to register UAV images towards aerial images in case of GNSS outages [27]
or deformable template matching with image edges and entropy as feature representation [28], usually
do not perform well in the case of temporal and geometrical changes. More recent work also focuses
on matching terrestrial and aerial images showing extremely large viewpoint changes. A new feature
representation using a convolutional neural network (CNN) is learned for geolocalizing ground-level
images with an aerial reference database [29]. However, manual interventions are needed to estimate
the scale for ground-level queries, and the absolute orientation of the query image can hardly be
estimated. Shan et al. [30] synthesizes aerial views from pre-aligned Google Street View images using
depth maps and corresponding camera poses, which are then matched with aerial images using SIFT.
A similar approach is presented by Majdik et al. [31], where UAV images are matched with geo-tagged
street view images using ASIFT, achieving meter-level global accuracy. However, only low altitudes
and oblique images facing building facades are considered for the geo-registration. Aicardi et al. [32]
adopts an image-based approach for co-registering multi-temporal UAV image datasets; however,
it only estimates the relative transformation between the epochs, while the absolute transformation of
the epoch is not solved. Finally, Xu et al. [33] presents an fast and efficient way for UAV image
mosaicking without the explicit computation of camera poses; however, the image mosaics are
not geo-registered.

Although considerable attempts and progress have been made regarding this topic, many of them
rely on intensity-based matching methods, which are proven to be unstable in the case of geometric or
temporal changes. In this sense, robust image matching against large-scale and viewpoint differences
is the key to solve the problem for which feature-based approaches are still the methods of choice.
Some mentioned approaches focus on improving the matching result for extremely large viewpoint
changes, but still do not reach the desired global georeferencing accuracy.

Our approach is based on previous works [34,35], which have been proven to work for complex
matching scenarios with multi-scale images. Compared with the state-of-the-art works mentioned
above, our method is an advancement in the following aspects:
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• To handle the large differences in scale and rotation between image pairs, we use a novel feature
matching approach, which can overcome the challenge and robustly deliver abundant matches.

• Our method works for data of different scales, e.g., aerial images, aerial orthophotos and
satellite images.

• Our method achieves not only decimeter-level co-registration accuracy, but also comparable
absolute accuracy as that of the reference image, which is georeferenced in the conventional
photogrammetric way.

3. Matching Performance Evaluation Using SIFT Features

This section introduces different UAV and aerial image pairs and a comprehensive analysis of the
matching performance using SIFT and ASIFT. Although one would expect that SIFT matching can
successfully match the presented images, a robust and successful matching is not possible. In order
to figure out why the popular SIFT matching method surprisingly fails, we analyze the influence
of different SIFT parameters, such as octaves and levels, the ratio test, but also image rotations.
Experimental results demonstrate that the rotation invariance of SIFT is not as good as it has been
considered to be, and the deficiency in the rotation estimation of SIFT leads to non-optimal matching
results. In addition to that, many correct matches are either not nearest neighbors in the feature space
or are rejected after applying the ratio test.

3.1. SIFT

Among the state-of-the-art matching algorithms, SIFT has been proven to be scale and rotation
invariant and to outperform other local descriptors in various evaluations [20–23]. Besides, the
ratio test proposed by Lowe [7] is widely applied to discard mismatches. In view of the substantial
differences in scale and rotation of the UAV image and the aerial image, it makes sense to implement
the SIFT matching algorithm (we use the OpenCV 3.0 implementation). This matching method is noted
as “standard SIFT” in the following text.

The ratio test discards mismatches by rejecting all potential matches with similar descriptors.
It works well in most cases; however, applying the ratio test in feature-based matching methods
for images with repetitive structures often causes problems with similar descriptors. In this case,
the distance ratio can be so high that these features would probably be defined as outliers. This can
be critical especially when only a few correspondences remain after matching. To investigate how
many correct matches are actually discarded by the ratio test, we implemented SIFT matching and
counted the correct matches before and after the ratio test. Particularly, the distances of the first
two nearest neighbors are computed and compared with the threshold. Considering that the number
of matches can be numerous and it is unrealistic to check every single match manually, we therefore
computed the fundamental matrix between the two images with dozens of manually-selected image
correspondences, and then apply the epipolar constraint using the derived fundamental matrix to
filter the raw matches. Afterwards, the filtered matches are again checked by manual inspection to
ensure the purity of correct matches.

It needs to be pointed out that only a manually-cropped part of the aerial image with almost the
same image content of the UAV image was used for interest point detection, otherwise SIFT would
fail to find correct matches for any dataset. This simplification of the matching problem is not feasible
in practice and is only used for this analysis. The proposed method is able to match the original
uncropped image pairs, as will be discussed in Section 5.

To ensure the best matching result using the SIFT detector and descriptor, we comprehensively
tested different parameters. Specifically, we analyzed the effect of different ratio test thresholds
and different parameters of the SIFT detection, like the number of octaves and levels per octave.
Other parameters were kept constant as they have only a minor effect on the matching result.
Concretely, we set the contrast threshold to 0.04, the edge threshold to 10 and the sigma of the
Gaussian to 1.6. An extensive analysis was carried out for all of the datasets in Figure 2, while only
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the results of the Container dataset is depicted. Nevertheless, we found similar results for all of our
image pairs.

(a) Container (b) Urban1 (c) Pool1 (d) Building

(e) Highway (f) Urban2 (g) Pool2 (h) Googlemaps

Figure 2. Datasets used in this paper: each column represents one (pre-processed) aerial reference
image and two UAV target images. The UAV image in (d) should be matched to the aerial image
(top right) and to a cropped part of a Google Maps image (h). (a) Container; (b) Urban1; (c) Pool1;
(d) Building; (e) Highway; (f) Urban2; (g) Pool2; (h) Googlemaps.

In the first step of our analysis, we study the effect of different numbers of octaves and levels in the
SIFT detection step, while fixing the ratio test threshold to a commonly-used value of 0.75. The number
of octaves is related to different image samplings, while the number of levels represents the number
of scale spaces per octave and is therefore related to the amount of image blurring. Table 2 lists the
number of feasible correct matches from the set of remaining matches after applying the ratio test for
different values of octaves and levels. Due to the low image sizes of the downsampled UAV image
(664× 885 pix) and cropped aerial image (971× 665 pix), the number of keypoint detections saturates
after two octaves. While increasing the number of levels per octave results in more matches surviving
the ratio test, the number of inliers stays constant at a very low number of around 20 matches.

According to this experimental result, we analyze different thresholds of the ratio test in the
next step while limiting the SIFT detector to three octaves and five levels. Like in the analysis above,
we again count the number of remaining matches after the ratio test and the number of inliers among
them, as illustrated in Figure 3a. A maximum number of around 100 correct matches can be found
when only the first nearest neighbor is considered (equivalent to a threshold of one). Comparing this
number to the total number of around 4000 matches, this is a very low ratio of inliers as can also be
seen in Figure 3b. Increasing the impact of the ratio test (equivalent to lower values of the threshold),
many correct matches are rejected due to a high similarity to other keypoint descriptors, while the
ratio of outliers is decreasing at the same time.
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According to the results in Figure 3b, the best ratio of inliers is suggested for threshold values
between 0.3 and 0.5, but the absolute numbers of correct matches for these values is below ten and
therefore not a reliable matching result.

Table 2. Analysis of SIFT performance with different octaves and levels for the Container dataset.
Cells contain the number of correct matches (first number) from the set of remaining matches
(second number) after applying the ratio test with a fixed threshold of 0.75. Due to the scale adaption
of the UAV image, the number of keypoint detections saturates after two octaves. By increasing the
levels, more keypoints can be detected, but the ratio of inliers decreases.

Levels

1 2 3 4 5 6 7 8

Octaves

1 12/50 15/61 15/64 17/74 17/84 11/91 17/78 14/91
2 13/61 17/71 12/89 20/103 25/124 16/134 26/137 21/148
3 13/63 17/76 13/93 22/108 26/131 17/142 27/148 22/153
4 13/62 17/77 13/94 22/109 26/134 17/146 27/155 22/158
5 13/62 17/77 13/93 22/110 26/136 17/148 27/157 22/159
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Figure 3. Influence of different ratio test thresholds for the Container dataset. (a) Number of remaining
matches after applying the ratio test (solid) and the number of correct matches among them (dashed);
(b) ratio of correct (dashed) and incorrect (solid) matches.

For our further analysis, we choose a ratio test threshold of 0.75, which is a good trade-off between
rejecting most of the wrong matches and keeping a relatively high ratio of inliers.

Experimental results for the other datasets with these parameters are listed in Table 3,
which confirmed the difficulty of matching this kind of image pair. Particularly in automatic registration
systems for online geolocalization, it is crucial that the system is able to decide whether an image pair
could be registered successfully or not. A high and reliable number of matches between 500 and 1000
is therefore indispensable for a trustable decision, compared to a rather low number below 50, as in
our experiments, which could also satisfy random geometric transformations by chance.
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Table 3. Analysis of standard SIFT matching on the proposed datasets in Figure 2. Matching was
performed on downsampled UAV images and cropped aerial images on the same image content of the
UAV image. Keypoint detection was limited to 3 octaves and 5 levels, and the ratio test threshold was
set to 0.75. Results show the number of feature points detected by the SIFT-detector, correct matches
considering only the first nearest neighbor, after applying the ratio test and possible matches according
to 100 nearest neighbors.

Scenario
Image Fragment Size (pix) Keypoints Correct Matches

Aerial UAV Aerial UAV Nearest Ratio Test Nearest 100

Container 971× 665 664× 885 3763 3682 81 27 690
Highway 617× 908 571× 762 2768 2560 46 22 521
Urban1 1197× 1643 871× 1307 10,335 6266 47 27 304
Urban2 1199× 1603 871× 1307 9642 5757 293 176 1031
Pool1 838× 1075 804× 1071 5096 4202 87 47 451
Pool2 976× 1074 799× 1065 5788 4047 152 103 675
Building 1100× 830 687× 1030 4072 3270 76 39 498
Googlemaps 630× 944 924× 1668 3411 5963 45 21 565

However, the number of correct matches (using the same feature points and descriptors) can
be significantly increased, if multiple nearest neighbors in feature space are considered as matching
candidates. Figure 4 shows the cumulative number of correct matches for the first 100 nearest neighbors
for the Container dataset. The last column of Table 3 lists the number of possible matches for the other
datasets. This significant increase of correct matches for all datasets indicates that many corresponding
keypoints in an image pair are not described perfectly by the SIFT descriptor, but can still be found
among the first nearest neighbors in the feature space.
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Figure 4. Cumulative number of possible correct matches considering multiple nearest neighbors in
the feature matching for the Container dataset.

3.2. Influence of Rotation

As shown in the matching results above, SIFT has unsatisfactory performance for matching UAV
and aerial images. Considering the fact that the UAV and aerial images are both almost nadir view
and the difference in scale has already been eliminated, the only observable difference is that the
two images are not aligned in rotation. Therefore, the rotation invariance property of SIFT needs to be
reconsidered and evaluated. To investigate the problem, a series of experiments was carried out to test
the influence of rotation. As listed in Table 4, we compare the standard SIFT matching on the original
unaligned images (denoted by ‘Std. SIFT’) from Table 3 and on the aligned image (denoted by ‘Std.
SIFT rotation aligned’); besides, instead of letting SIFT assign the orientation for each keypoint, we
forced the orientation of all of the detected key points in the aligned images manually to be a fixed
value; here, it was 0◦ for aligned images (denoted by ‘Fixed-orientation’). The matching result was
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represented by the number of putative correspondences after ratio test (denoted by ‘Matches’) and the
correct matches among them (denoted by ‘Inliers’). It is worth noting that the performance of matching
between rotation-aligned images using standard SIFT does not improve; however, the number of inliers
increased substantially after we fixed the orientation of the keypoints. The experiment result shows
that the rotation invariance of SIFT does not always work well, at least for the scenes in our datasets.

Table 4. Analysis of the influence of image rotation on matching performance. Inliers and matches
for downsampled UAV images and cropped aerial images, rotation-aligned UAV images and
rotation-aligned UAV images with fixed orientation in the SIFT-detector. Std., standard.

Scenario

Inliers/Matches

Std. SIFT Std. SIFT
Rotation
Aligned

SIFT Rotation
Aligned
Fixed-Orientation

Container 27/320 22/349 30/306
Highway 22/204 26/263 52/277
Urban1 27/471 17/496 43/478
Urban2 103/635 179/677 267/734
Pool1 47/391 65/446 92/404
Pool2 103/635 179/677 267/734
Building 39/349 27/381 51/396
Googlemaps 21/535 21/509 35/394

For further investigation into the influence of rotation, we also made a comparison with the
ASIFT method, as Table 5 shows. First, we compared the fixed-orientation SIFT with standard ASIFT
on aligned images. As we achieved fewer correct matches for a tilt value of four at even higher
computation cost, we, inspired by this finding, also fixed the orientation in ASIFT (denoted by
‘Fixed-orientation’) in the same way, and the matching performance improved significantly. Comparing
the results in Column 2 and Column 4, it can be seen that when the orientation is fixed, SIFT results in
almost equivalent inliers as ASIFT; however, for a robust matching, the number of inliers is still far
from enough.

Table 5. Comparison with ASIFT. Inliers and matches for pre-aligned images using standard SIFT with
fixed orientation, ASIFT and pre-aligned images on ASIFT with fixed orientation.

Scenario

Inliers/Matches

SIFT Rotation
Aligned
Fixed-Orientation

Std. ASIFT ASIFT Rotation
Aligned
Fixed-Orientation

Container 30/306 25/281 46/283
Highway 52/227 56/249 70/237
Urban1 43/478 46/512 61/508
Urban2 267/734 254/1069 281/994
Pool1 92/404 73/346 109/404
Pool2 267/734 255/600 375/620
Building 51/396 45/382 78/424
Googlemaps 35/394 42/330 47/430

Based on the above findings, we summarize that the challenges of matching UAV imagery and
airborne imagery stem mainly from the following aspects: inadequate matching candidates, ambiguous
keypoint orientations and misuse of the ratio test. To be more specific:

• The rotation invariance of SIFT does not work well when the images have large differences in
scales and viewpoints. In standard SIFT, the dominant orientation is detected automatically.
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Instead, if we fix the orientations of SIFT keypoints, the number of correct matches
increases significantly.

• When the image has repeated patterns, the local descriptors of the repeated structure can be so
similar that the distance ratio between the nearest and second nearest neighbor is no more
distinctive. As an important step in the standard matching pipeline, the ratio test actually
discards many correct matches, and the remaining correspondences are not reliable. In contrast,
considering multiple nearest neighbors as matching hypotheses can help to increase the matching
performance enormously.

4. Proposed Image Matching Method

According to the reasons for the matching failure presented in Section 3, the new matching
approach is designed to eliminate each of the exposed bottlenecks. A new feature detection scheme
increases the number of matchable keypoints, which is necessary for a reliable matching result.
To avoid loosing many correct matches that are not nearest neighbors in feature space or that are
rejected by the ratio test, we introduce a one-to-many matching scheme. To extract correct matches
among them, a direct method using histogram voting is performed instead of the commonly-used
RANSAC scheme. An extension of this method can also handle unknown image rotations. In the end,
the detected matches are used to estimate camera poses of the UAV images in the coordinate system of
the reference images.

4.1. Prerequisites

The proposed method assumes that the scale difference between both images can be estimated
and mostly eliminated in advance. This requirement can be generally fulfilled, as accurate positional
information of aerial images is always available, and UAV images are tagged with both GNSS and
barometric altitude information. One of both sensors should deliver reliable data in any case.

Secondly, a pre-alignment with respect to the image rotation can be achieved using the on-board
compass of the UAV. The next sections assume that a rough pre-alignment of the image pairs is feasible,
but in the case of no or only imprecise image heading information, Section 4.5 presents an extension of
the proposed method that allows recovering an unknown image rotation.

4.2. Dense Feature Extraction

The essential prerequisites of robust matching are sufficient and uniformly distributed features
whose density should reflect the information content of the image. According to the results in Tables 4
and 5, established keypoint detectors, such as in SIFT, do not always find a sufficient number of
matchable features. To ensure a large number of inliers, a dense detection scheme is desired, but instead
of using all pixels as potential feature points, only keypoints should be considered that are located
along strong image gradients. This does not only reduce computational time, but also rejects hardly
matchable feature points at homogeneous areas with weak descriptors.

In view of the fact that image segmentation using SLIC (simple linear iterative clustering) [36]
can efficiently generate compact and highly uniform superpixels, whose boundaries mostly define
strong variations in the intensities of the local neighborhood, like edges and corners, we therefore
adopt all of the pixels at the boundaries of superpixels as feature points. In practice, the number
of desired superpixels can be specified according to the need for feature density and compactness.
Since the relative scale difference of both images is known beforehand, the number and compactness
of superpixels in both images are similar and therefore ensure the extraction of identical object
boundaries. Figure 5 highlights the feature points of a UAV and aerial image, namely all of the pixels
at the boundaries of superpixels, after removing those feature points located at homogeneous areas.

Afterwards, a SIFT-descriptor for each detected feature point is computed. Since the UAV image
is already aligned with the reference image, the scale space and feature orientation of SIFT-descriptors
should be identically assigned for both images.
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(a) UAV image (b) Aerial Image

Figure 5. Feature points highlighted in red, namely all of the pixels at the boundaries of superpixels,
after removing those feature points located at homogeneous areas for (a) the pre-aligned UAV
image and (b) the aerial image of the Container dataset with 1000 simple linear iterative clustering
(SLIC) superpixels.

4.3. One-To-Many Feature Matching

In this phase, a feature descriptor in one image is matched with all other features in the other
image using the euclidean distance calculation. In standard SIFT, only the first and second nearest
neighbors are taken into account, so that many correct matches are actually discarded as presented in
Table 3. An example of ambiguous feature matching is demonstrated in Figure 6. The correct feature
point (left) would mainly be discarded for two reasons: first, the correct match may not be the first
nearest neighbor in feature space; second, it may not pass the ratio test due to the high similarity of the
local descriptors.

(a) (b)

Figure 6. Challenge of ambiguous feature matching. One feature point at a corner of a container in the
UAV image (a) corresponds to many feature points in the aerial image with similar descriptors (b). The
correct match often can be found among a set of multiple nearest neighbors. These ambiguities need to
be solved in order to extract the correct match.

To solve this problem, we propose a one-to-many matching scheme by taking the k-nearest
neighbors as matching candidates to ensure that correct matches can be even found for corresponding
keypoints that do not show nearest descriptors distances. Besides, the approximate nearest neighbor
method (ANN) is applied to avoid the exhaustive search and to speed up the matching process.
Although the idea of using a one-to-many matching scheme is not new, the next section proposes
a new approach for how to extract the correct matches among them.
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4.4. Geometric Match Verification with Histogram Voting

It is pointed out in Section 3 that the commonly-used ratio test in SIFT does not effectively
determine whether a feature point is a correct match. As a substitute, we use pixel-distances as a global
geometric constraint to verify the matching hypotheses. The superpixel-based feature point extraction
and one-to-many matching strategy result in a plethora of putative matches, which ensures a sufficient
number of correct matches, but also inevitably contains a massive number of mismatches. Postulating
that the UAV and reference image both contain the same planar scene and the differences in their scales
and rotations have already been eliminated, the transformation between the two aligned images can be
simply approximated as a 2D-translation. Particularly, for each keypoint i, whose image coordinates
are (xi

u, yi
u) in the UAV image and (xi

r, yi
r) in the reference image, and for each of its k matching

hypotheses j (j = 1 : k), whose image coordinates are (xj
r, yj

r) in the reference image, we calculate their
coordinate differences ∆xi,j and ∆yi,j by ∆xi,j = xi

u − xi,j
r and ∆yi,j = yi

u − yi,j
r . Correct matches are

expected to satisfy the conditions |Tx − ∆xi,j| ≤ R ∧ |Ty − ∆yi,j| ≤ R, where R is a threshold related
to the scene depth and Tx and Ty are the parameters of the unknown 2D translation. We can recover
this translation by a simple histogram voting scheme. After computing ∆xi,j and ∆yi,j for all putative
matches, distinctive peaks Tx and Ty in the both histograms are extracted.

Figure 7 presents an example for this histogram voting regarding the Container scenario.
While distances of wrong matches are randomly distributed, those of geometrically correct matches
concentrate on or aggregate around a common value (Tx, Ty), thus shaping a distinct peak in the
histogram. To allow for minor changes of image scene depth, we determine the matches located at
close range to (Tx, Ty) as possibly correct matches; the distance threshold is denoted by R. The value of
R is related to the change of scene depth, as well as the accuracy of pre-alignment. A larger threshold
R can compensate for these impacts and result in more matches; on the other hand, more outliers
would also be introduced into the raw matches.
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Figure 7. Geometric match verification of the Container scenario with histogram voting. Distribution
of pixel distances for all putative matches according to the one-to-many matching in the (a) row and
(b) column direction. Distinct peaks represent unknown 2D-translation.

4.5. Eliminating Differences in Image Rotation

The scale difference between the UAV image and the reference image can be derived using
either the on-board GNSS information or the barometric altitude sensor. In contrast, precise
orientation-adaption fails for many UAVs due to inaccurate heading information provided by the
low quality IMUs. Our assumption that correct matches follow a simple 2D translation fails in the
case of unaligned images. However, we can estimate the unknown image rotation by adapting the
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proposed matching approach with a rotation search scheme. Although Section 3.2 shows that fixing
the orientation of the feature points in the SIFT descriptors results in a better matching performance
if the images are pre-aligned, a sufficient number of correct matches can still be found for unaligned
images with the keypoint orientation estimation of SIFT when using a denser feature detection like the
one presented in Section 4.2.

After generating a set of putative one-to-many matches for unaligned images, the unknown
image rotation is obtained by first dividing the rotation ψ equally into discrete rotation values
ψa = [−180, 180]deg. For each rotation ψa, the feature points of the UAV images pti

u = (xi
u, yi

u, 1)T

are rotated around the image center pti,a
u,rot = M(p, ψa) · pti

u with a transformation matrix
M(p, ψa) = [T(p)R(ψa)T(−p)], where T(p) is a translation matrix with the coordinates of the image
center p and R a rotation matrix with rotation angle ψa. Pixel distances are calculated according to
∆xi,j,a

rot = xi,a
u,rot − xi,j

r and ∆yi,j,a
rot = yi,a

u,rot − yi,j
r , and histogram voting from Section 4.4 is performed for

each rotation. The maximum number of raw matches satisfying the threshold Ta
x and Ta

y is kept for all
rotation values ψa. Figure 8 shows the number of raw matches for different image rotations according
to the Container dataset. The distinct peak at −104 deg represents the unknown image rotation.

This method may be used for a full 360 deg search; however, the search range can be reduced in
the case of available inaccurate rotations from the on-board IMU. After recovering the unknown image
rotation, further matches can be determined with fixed orientations according to the previous sections.
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Figure 8. Recovering the unknown image rotation in the case of unavailable or inaccurate UAV IMU
data. Extending the proposed method by transforming UAV feature points with multiple rotation
values before the histogram voting step. The figure shows the rotation histogram for the Container
dataset. The maximum number of raw matches represents unknown image rotation.

4.6. Match Refinement

After the geometric verification of the one-to-many matches, it is likely for some keypoints that
they share multiple adjacent feature points in the other image as geometric correct matches. This is
caused by the dense feature point extraction, which generates dense feature points especially along
strong image edges. The distance threshold R allows multiple geometric correct matches for adjacent
feature points for which the distance to Tx and Ty is below R. Figure 9 illustrates these local ambiguities
of the feature matches. One feature point in the UAV image in Figure 9a corresponds to multiple
geometrical correct matches in the aerial image in Figure 9b. Even a successive RANSAC filtering
step according to geometrical transformations will not truly solve these ambiguities, if Sampson
distances or transfer errors of neighboring matches are below the filtering threshold. In order to
ensure geometrically-correct and unique one-to-one matches, a refinement step is applied for all
geometrically-correct matches by eliminating the ambiguities and optimizing the location of the
feature points. The superpixel segmentation cannot guarantee exact locations of corresponding pixels
in both images. The refinement consists of a normalized cross correlation (NCC) of a template in the
local neighborhood of the UAV feature point (yellow rectangle in Figure 9a). For all corresponding
matching hypotheses (yellow dots in Figure 9b), the corresponding patch is searched in a local search
window around the feature points (red rectangle in Figure 9b). The size of the search window
for all aerial feature points can be set to the threshold R of the geometric verification. The NCC
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optimizes all matching hypotheses to the correct location, illustrated by the red dot in Figure 9c. This
method eliminates duplicate matches and refines feature point locations for inaccurate keypoints in
a local neighborhood of the initial keypoints. These raw matches can now be used to estimate the
fundamental matrix or homography in combination with RANSAC methods and to reject remaining
outliers satisfying the geometric constraint. After computing the fundamental matrix, a guided
matching method, as presented in Section 3, can be applied to find more matches if the threshold was
chosen too small.

(a) (b) (c)

Figure 9. Refinement and duplicate elimination of geometric correct matches. (a) One feature point
in the UAV image (yellow dot) and its template size (rectangle); (b) corresponding geometric inliers
(yellow dots) in the aerial image and size of the search window for one match (red rectangle); (c) all
geometric inliers will share the same optimized pixel location after refinement (red dot).

4.7. Geo-Registration of UAV Images

As the UAV image and the reference image have overlapping areas, one 3D point in the object
space could be visible both in the reference image and the UAV image. Such 3D points can be used as
reference 3D points for geo-registration of UAV images. The prerequisite of the geo-registration is the
available georeferenced aerial image together with its height map or one orthorectified mosaic with
a high resolution DSM.

• Match a UAV image U with the reference image R using the proposed matching method. Assume
a feature point (xr, yr) in the reference image is matched to feature point (xu, yu) in the UAV
images, this matching pair corresponds to a 3D point P(X, Y, Z) in the object space.

• If image R is an individual georeferenced aerial or satellite image, we assume its height map is
available, which can be generated in the process of dense matching with neighboring images [37].
The height Z can be looked up in the height map, and the planar coordinates X and Y can
be calculated using the orientation parameters of R. If image R is an aerial orthophoto that is
generated by an orthographic projection of the aerial image mosaic onto a high resolution DSM,
the planar coordinates (X, Y) are namely the corresponding georeferenced coordinates of the
pixel (xr, yr) in the orthophoto, and Z is namely the corresponding height at (X, Y) of the DSM.

• As the proposed matching method generates thousands of matches and each match results in
a 3D point, those points can be used as reference 3D points to transform the UAV image to the
same global coordinate system of the reference image. If there are UAV image sequences, a bundle
adjustment can be performed to improve the global geo-registration accuracy.

5. Experiments

In order to verify the robustness and reliability of the proposed matching method, we compare
the performance of our method with standard SIFT on different datasets. Furthermore, the generated
matches are used for geo-registration and 3D reconstruction of the UAV images. Qualitative and
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quantitative analyses are presented to validate the accuracy of geo-registration, and on this basis,
photogrammetric 3D products, such as orthophotos, DSMs and merged points clouds are discussed.

5.1. Data Acquisition

Experiments were carried out based on offline flight data of four datasets: Eichenau, Germering,
EOC(Earth Observation Center) and WV2 (WorldView-2). It is worth noting that for datasets Eichenau,
Germering and EOC, which contain 72, 58 and 11 UAV images, respectively, the whole of the UAV
sequences were matched in an automatic manner. Showing the results for all image pairs is beyond the
scope of this paper, so we focused on the same image pairs which were already introduced in Section 3.
The Eichenau dataset contains two scenarios: Urban1 and Urban2. The UAV images were acquired
with a Sony Nex-7 camera simultaneously with the reference aerial images on 2 November 2015. For
both scenarios, we matched UAV images not only to aerial images, but also to aerial orthophotos,
which are generated by an orthographic projection onto a high resolution DSM [37,38]. The Germering
dataset is comprised of four different scenarios: Container, Highway, Pool1 and Pool2. The reference
aerial images of this dataset were captured on 17 June 2014, whereas the UAV images were captured
with a slight time delay on 11 July 2014 with a GoPro Hero 3+ Black camera. The aerial images in the
EOC dataset were acquired on 16 June 2014, and the UAV images were captured on 12 November 2014
with a Sony Nex-7 camera. In the EOC dataset, all aerial images are almost nadir, whereas the UAV
images have both nadir views of the building roof and oblique views of the building facades. Only the
nadir-view UAV images are matched with the aerial images, and the generated 3D points are used to
geo-register the whole of the UAV image block, including both nadir and oblique images. In addition,
the nadir UAV images are also matched with a screenshot of Google Maps. In the WV2 dataset [39], we
match an aerial image from the EOC dataset with a WorldView-2 RGB satellite image of the year 2010
to validate the generalization ability of the proposed method and its robustness against large temporal
changes. Besides, the datasets Eichenau, Germering and EOC are not significantly affected by temporal
changes, as the vegetation periods are the same (except for EOC) and the appearances of buildings have
not changed. All of the aerial images were captured by a Canon EOS-1DX camera mounted on the DLR
4K sensor system [9], which consists of two cameras with a 15◦ sidewards looking angle and an FOV
of 75◦ across. In data pre-processing, an orthographic projection of the aerial imagery was performed
to generate nadir-view images. Figures 2 and 10 illustrate all datasets used in the experiments, where
the first row shows the reference images (pre-processed nadir-view aerial images and satellite image)
and the other two rows are the corresponding target images (UAV and aerial images) to be matched.
Detailed characteristics of the datasets are listed in Table 6.

Table 6. Characteristics of the datasets used in the experiment. Target images are pre-aligned
towards the reference image using GNSS/IMU data. AI: aerial imagery; AO: aerial orthophoto;
SI: satellite imagery; UI: UAV imagery.

Dataset
Reference Image Target Image

Type/Date Resolution Height GSD Type/Date Resolution Height GSD
(pix) (m) (cm) (pix) (m) (cm)

Eichenau AO 11/2015 9206× 7357 600 20 UI 11/2015 573× 794 100 1.8
Germering AI 06/2014 5184× 3902 700 9.4 UI 07/2014 823× 996 100 2
EOC AI 06/2014 5184× 3902 340 4.6 UI 11/2014 1106× 807 25–40 0.5–0.8
WV2 SI 2010 5292× 6410 770,000 46 AI 2015 497× 332 350 4.4
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(a) WV2 (b) Eichenau (c) EOC

Figure 10. Additional datasets for the experiment. Top: reference images. Bottom: target images.
Overlapping areas are highlighted by yellow rectangles in the reference images. (a) WV2; (b) Eichenau;
(c) EOC.

5.2. Performance Test of Matching UAV Images with a Reference Image

In order to validate the robustness and accuracy of the proposed method, we use the same image
pairs presented in Section 3, where the standard SIFT performed poorly in most of the cases. Different
from the results in Table 3, the matching is now performed with original aerial images other than the
cropped images. As can be seen in Figure 2, only a small portion of the aerial images is pictured in
the UAV images. Thus, it is also tested if the matching benefits from our geometric constraints in the
presence of large searching areas.

All image pairs are provided with rough information of positions and orientations from GNSS
and IMU, so that the images could be pre-aligned beforehand. Then, the target images and the
reference images were matched with the proposed matching method and standard SIFT. Specifically,
750 superpixels were segmented from the UAV images; the threshold for the feature matching-distance
was set to 0.2 as a trade-off between discarding apparent outliers and retaining enough matching
hypotheses. Fifty nearest neighbors were selected as matching candidates for the one-to-many
matching, and the distance threshold R for the geometric verification was set to 12 pixels. As for
matching using SIFT, the threshold of ratio test was set to 0.75.

In order to evaluate the matching accuracy, we created ground-truths of feature point
correspondences for each dataset using manually-selected and automatically-detected matching
correspondences. The quantitative results using standard SIFT and our proposed method are
summarized in Tables 7 and 8, where Error (homography (H)) denotes the mean transfer error (the
euclidean distance between a point’s true correspondence and the point mapped by the homography
matrix H, which is estimated from matching correspondences) and Error (fundamental (F)) denotes the
mean Sampson distance (the distance between a point to the corresponding epipolar line). Standard
SIFT failed for almost all scenarios, while the proposed method found abundant matches with much
smaller errors.

Regarding matching accuracy, standard SIFT outperformed our method only for the Pool1
scenario. As homography only considers transformation between two planes, those mismatches for
areas with apparently different scene depths were discarded. The mean transfer errors were only
2–3 pixels in most cases, corresponding to a ground distance of about 20–30 cm.
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Table 7. Results using standard SIFT: number of raw matches after applying SIFT for all scenarios.
Inliers after estimating the fundamental matrix (F) and homography (H) using RANSAC. Mean errors
(in pixel) according to ground-truths F and H.

Scenario Raw Matches (SIFT) Inliers F/Error (F) Inliers H/Error (H)

Container 58 14/666.26 9/1767.55
Highway 49 15/1996.30 9/2210.20
Pool1 162 52/0.83 33/1.63
Pool2 107 18/618.54 10/1308.02
Eichenau1 287 45/19.11 48/3.63
Eichenau2 436 140/1.11 146/3.64
EOC 446 16/959.87 6/877.21
WV2 117 19/175.73 19/4.03
Building 553 16/595.06 11/317.59
Googlemaps 522 19/195.34 8/919.48

Table 8. Results using the proposed method: number of raw matches after applying our method for
all scenarios. Inliers after estimating fundamental matrix (F) and homography (H) using RANSAC.
Mean errors (in pixel) according to ground-truths F and H.

Scenario Raw Matches (Our) Inliers F/Error (F) Inliers H/Error (H)

Container 8264 4876/2.59 2835/7.01
Highway 1979 1184/2.79 1230/1.20
Pool1 6593 3599/1.87 2188/1.87
Pool2 14,091 7555/2.01 4199/2.03
Eichenau1 4018 1850/4.35 1165/3.53
Eichenau2 5846 3204/1.09 3077/4.65
EOC 6834 3949/2.92 2586/3.18
WV2 15,131 6290/2.22 6760/3.57
Building 9113 3526/3.15 1932/2.36
Googlemaps 15,437 5120/3.42 3217/2.82

The matched feature points are marked in the UAV images (the second and third rows in Figure 11).
As a result of the superpixel segmentation, most matches are located at regions with rich textures and
have apparently much higher density than SIFT-features. The projection transformations can then be
estimated using these matches. The first row in Figure 11 depicts the projected UAV images on the
aerial images by the estimated homography.

Figure 11. Cont.
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Figure 11. Qualitative results of the proposed matching method according to the image pairs in
Figure 2. The first row shows the overlapped UAV and aerial image pairs after applying an estimated
homography calculated from our matches (also for the figure on the bottom right). The second and
third row show the distribution of the geometrically-correct matches in the UAV images (yellow dots).

5.3. Evaluation of the Geo-Registration of UAV Images

Following the proposed pipeline in Section 4.7, plenty of 3D reference points were computed
and then used as GCPs in a bundle block adjustment to geo-register the UAV images to the global
coordinate frame.

In order to verify the accuracy of the geo-registration of UAV images, several evenly-distributed
ground check points were selected across the survey area, and their actual coordinates Prtk were
measured using an RTK GNSS receiver. Meanwhile, these ground check points were marked in all UAV
images, and their theoretical 3D coordinates Puav were computed by triangulating the geo-registered
UAV images. The columns “Errorrtk” in Tables 9 and 10 list the errors Puav − Prtk of Eichenau and
Germering datasets, respectively. The height errors in “Errorrtk” are around 2 meters; this is mainly
caused by the systematic errors of the global digital elevation model like SRTM [40], which was used
as the height reference during the processing of the reference images.

In order to validate accuracy of co-registration, the coordinates triangulated by geo-registered
UAV images, Puav, were compared with the identical points on the reference image, as well. In the
Eichenau dataset, the reference image was an aerial orthophoto (with a high resolution DSM), so the
corresponding coordinates Pref were manually looked up in the orthophoto and DSM, as explained
in Section 4.7. In the Germering dataset, the reference image was an individual aerial image from
a pre-georeferenced aerial images dataset, so the corresponding coordinates Pref were triangulated
using multiple pre-georeferenced aerial images from that dataset. The column “Errorre f ” in Tables 9
and 10 lists the error Puav − Pref.

Afterwards, the orthophoto and DSM were reconstructed from the geo-registered UAV images
using the software SURE [41]. Figure 12 illustrates the aerial orthophoto and the UAV orthophoto of
Eichenau dataset. More specifically, Figure 12a depicts the aerial orthophoto of the Eichenau dataset,
whose resolution is 20 cm; Figure 12b shows the UAV orthophoto of the Eichenau dataset, whose
resolution is 2 cm. It is obvious that the UAV orthophoto has higher resolution and contains more
details than the aerial orthophoto. Figure 12c displays the UAV orthophoto overlapping on the aerial
orthophoto with 50% transparency; it can be seen that the two orthophotos are precisely aligned
using the proposed geo-registration method. Figure 12d–g compare the appearance of corresponding
objects on the aerial orthophoto and UAV orthophoto, demonstrating that the UAV orthophoto
contains richer textures than the aerial orthophoto. Figure 13 illustrates the estimated camera poses, as
well as the reconstructed point cloud of the geo-registered UAV image blocks and the aerial image
blocks. Despite the considerable scale difference, our matching approach still succeeds in an accurate
registration. Similarly, Figure 14 demonstrates the aerial orthophoto and UAV orthophoto of the
Germering dataset, whose resolutions are 20 cm and 2 cm, respectively.
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Table 9. Errors of the coordinates of check points compared to RTK GNSS measurements and the
coordinates looked up in the aerial orthophoto and DSM: Eichenau dataset.

Check Point Errorref (m) Errorrtk (m)

∆x ∆y ∆z ∆x ∆y ∆z

1 0.04 −0.51 −0.21 −0.04 −0.39 −1.74
2 −0.05 −0.07 −0.15 −0.11 −0.40 −1.90
3 0.04 −0.41 −0.36 −0.10 −0.83 −2.04
4 −0.14 0.80 0.70 −0.35 −0.33 −1.91
5 −0.04 0.49 −0.17 −0.05 −0.21 −1.81
6 −0.03 0.12 −0.10 0.12 −0.36 −1.63

Table 10. Errors of the coordinates of check points compared to RTK GNSS measurements and the
coordinates triangulated using aerial images: Germering dataset.

Check Point Errorref (m) Errorrtk (m)

∆x ∆y ∆z ∆x ∆y ∆z

1 −0.06 −0.14 −0.38 0.34 −0.01 1.49
2 0.16 −0.67 0.37 0.43 −0.54 1.68
3 0.14 −0.02 0.46 0.56 0.16 1.76
4 0.11 −0.76 0.26 0.44 −0.76 1.71
5 0.19 −0.10 0.50 0.55 −0.06 0.75
6 −0.05 0.18 0.18 0.39 0.36 1.30
7 −0.08 0.41 −0.06 0.41 0.50 1.42

(a) (b) (c)

(d) (e) (f) (g)

Figure 12. Comparison of (a) the aerial orthophoto with 20 cm GSD and (b) the UAV orthophoto with
2 cm GSD of the Eichenau dataset; (c) 50% transparent overlap of both orthophotos; (d,e) compare cars
and (f,g) show a roof on the aerial and UAV orthophoto, respectively.
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Figure 13. Camera pose visualization for the Eichenau dataset, showing camera poses of the
geo-registered UAV image block at a 100-m altitude (red) and the aerial image block at a 600-m
altitude (black).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 14. Comparison of (a,c) aerial orthophotos with 20-cm GSD and (b,d) UAV orthophotos with
2-cm GSD of the Germering dataset; (e,f) compare a manhole and (g,h) staircases on the aerial and
UAV orthophoto, respectively.

Figures 15 and 16 illustrate the aerial DSMs with 20 cm resolution and UAV DSMs with 2 cm
resolution of the Eichenau and Germering dataset, respectively. The aerial DSM in (a) has a blurred
edge and inadequate details, while the UAV DSM in (b) represents more refined details and sharper
edges. Then, the UAV DSM was resampled by bilinear interpolation to the same resolution of the
aerial DSM, and their height differences were calculated. (c) illustrates the colorized height differences
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ranging from −5 m to 5 m, and it is apparent that the errors are mostly smaller than 1 m. Note that the
two red and one blue spots on the container site in Figure 16c indicate movements of the containers
due to different acquisition times of the captured images. In this sense, our matching method is able to
cope with such temporal changes in the scene. Figure 17 shows the histograms of the height differences
for both datasets.

(a) Aerial DSM (b) UAV DSM (c) DSM differences (m)

Figure 15. Comparison of (a) aerial and (b) UAV DSM of the Eichenau dataset. 20-cm GSD for aerial
and 2-cm GSD for UAV DSM. (c) Color map illustrating the height differences between the two DSMs
in meters.

(a) Aerial DSM (b) UAV DSM (c) DSM differences (m)

Figure 16. Comparison of (a) aerial and (b) UAV DSM of the Germering dataset. 20-cm GSD for aerial
and 2-cm GSD for UAV DSM. (c) Color map illustrating the height differences between the two DSMs
in meters.
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Figure 17. Histograms of the height differences between the aligned DSMs generated from UAV and
aerial images for the (a) Eichenau and (b) Germing datasets.

5.4. Application Scenario: Enriching 3D Building Models

The EOC dataset represents an urban scene, demonstrating the benefits of the joint use of aerial
and UAV imagery. Figure 18a displays a dense georeferenced 3D point cloud generated solely from
aerial images. Since the aerial images only contain nadir views of the scene, the reconstructed building
facades are not complete, which is a typical problem for aerial photogrammetry.

We automatically geo-registered a sequence of nadir-view UAV images (see the result for
one image pair in Table 8) to the aerial images. In addition, we also registered oblique UAV images
facing the facades of the building to the already geo-registered UAV nadir views in a conventional
photogrammetric way. Afterwards, a dense 3D point cloud was generated using all of the geo-registered
UAV images, resulting in a complete reconstruction of the building with a much higher GSD than the
aerial point cloud. The accurate geo-registration of the UAV images enables us to merge the UAV and
aerial point cloud and leads to a comprehensive representation of the scene, as illustrated in Figure 18b.
It can be seen that the UAV point cloud is precisely aligned with the aerial point cloud. While the
aerial point cloud covers a large area of the scene, the UAV point cloud contributes to information of
the building facades (particularly at positions indicated by yellow arrows) and enriched details of the
reconstructed building.

(a) Aerial point cloud (b) Merged point cloud

Figure 18. Comparison of the dense point clouds for (a) only aerial images and (b) additional registered
nadir and oblique UAV images of the EOC dataset. The combination of aerial and UAV images can
enrich 3D models for more details and add facades to buildings.

6. Discussion

Our method achieves robust and accurate co-registration of images acquired from different
acquisition platforms, thus opening up the possibility to integrate the information from multi-source
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images and achieve a more comprehensive understanding of the scene. Besides, repetitive image
acquisition with manned aircraft or satellites is quite expensive, whereas it is convenient to perform
with UAVs. The robust registration enables the timely update of pre-existing remote sensing data
using UAVs, which can also be applied in environment monitoring and change detection.

The main limitation of our method is that it only works for nadir or slightly tilted images.
When a conspicuous height jump exists, the histogram may present multiple peaks, e.g., one representing
matches on the ground-level and one matches on a higher level (like roofs). Therefore, manual
inspection is needed in this case. Moreover, it is difficult to determine the translation threshold R if the
scene depth changes continuously in the image. As listed in the first column of Table 8, there were
remarkably fewer raw matches in the Highway scenario than in the other ones due to topographic
changes. Furthermore, those scenarios containing various scene depths (e.g., Container and Eichenau)
resulted in wrong tilts when estimating the homography, leading to higher mean transfer errors (up to
seven pixels) compared to the scenarios with flat landscape.

7. Conclusions

This paper investigates into UAV geo-registration by matching UAV images with already
georeferenced aerial imagery. On the basis of an extensive analysis of why SIFT performs poorly for
this kind of image pair, a robust image matching approach is proposed to deliver a large number of
reliable matching correspondences between the UAV and a reference image. The method is comprised
of a novel feature detector, a one-to-many matching strategy and a global geometric constraint for
outliers’ detection. The prerequisite of our proposed method is the availability of rough GNSS/IMU
data of the UAV images to eliminate scale differences in the images and if possible to pre-align the
images with respect to the image rotation, although an extension of the method can handle unknown
or imprecise image rotations.

Experimental results prove that our method outperforms SIFT/ASIFT in the aspects of quantity
and accuracy of the detected matches. These matches are used to align UAV image blocks towards
the reference images in a bundle block adjustment, which achieves a registration accuracy of
1–3 GSD. A global accuracy evaluation of 3D points from geo-registered UAV images and terrestrial
measurements from RTK GNSS shows 0.5 m horizontal 1.5 m vertical deviations, which mainly stem
from the inaccurate georeferencing of the reference image.
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