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Abstract: The Ultra-Violet Aerosol Index (UVAI) is a practical parameter for detecting aerosols that
absorb UV radiation, especially where other aerosol retrievals fail, such as over bright surfaces
(e.g., deserts and clouds). However, typical UVAI retrieval requires at least two UV channels,
while several satellite instruments, such as the Thermal And Near infrared Sensor for carbon
Observation Cloud and Aerosol Imager (TANSO-CAI) instrument onboard a Greenhouse gases
Observing SATellite (GOSAT), provide single channel UV radiances. In this study, a new UVAI
retrieval method was developed which uses a single UV channel. A single channel aerosol index
(SAI) is defined to measure the extent to which an absorbing aerosol state differs from its state with
minimized absorption by aerosol. The SAI qualitatively represents absorbing aerosols by considering
a 30-day minimum composite and the variability in aerosol absorption. This study examines the
feasibility of detecting absorbing aerosols using a UV-constrained satellite, focusing on those which
have a single UV channel. The Vector LInearized pseudo-spherical Discrete Ordinate Radiative
Transfer (VLIDORT) was used to test the sensitivity of the SAI and UVAI to aerosol optical properties.
The theoretical calculations showed that highly absorbing aerosols have a meaningful correlation
with SAI. The retrieved SAI from OMI and operational OMI UVAI were also in good agreement
when UVAI values were greater than 0.7 (the absorption criteria of UVAI). The retrieved SAI from
the TANSO-CAI data was compared with operational OMI UVAI data, demonstrating a reasonable
agreement and low rate of false detection for cases of absorbing aerosols in East Asia. The SAI
retrieved from TANSO-CAI was in better agreement with OMI UVAI, particularly for the values
greater than the absorbing threshold value of 0.7.
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1. Introduction

An accurate estimation of aerosol radiative forcing requires detailed information on aerosol
amounts (e.g., maps of aerosol optical depth, AOD) and aerosol characteristics, such as size,
composition, and optical properties, especially absorption and scattering [1–3]. The types of aerosols
identified by satellite observations are an important issue in the evaluation of climate forcing, because
aerosol radiative effects significantly vary from one type to another. Generally, aerosols have been
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classified into four major types in satellite observations: soil dust, carbonaceous, sulfate, and sea
salt [4,5], where their representative particle sizes and radiation absorptivity are quite different. Soil
dust particles, for example, are large in size and absorb significant amounts of radiation, especially
at ultraviolet (UV) and blue wavelengths, while sulfate aerosol particles are small in size and do not
absorb radiation in the UV and visible wavelengths. Although carbonaceous aerosols are complicated
in their chemical and optical properties, they are commonly recognized as strongly absorbing (as are
soot particles) in UV wavelengths [5,6].

Algorithms for identifying aerosol types from satellite observations have been developed,
based on the theoretical characteristics of each satellite’s instrument wavelength channel. The UV
wavelengths from satellite observations are helpful for detecting absorbing aerosols and are insensitive
to aerosol phase function effects, although they are insensitive to aerosol in the boundary layer, as
discussed in Li et al. [7]. Herman et al. [8] successfully detected absorbing aerosols using a UV Aerosol
Index (UVAI), whereby soil dust and biomass-burning (carbonaceous) aerosols strongly absorb UV and
blue radiation. The strong light absorptivity of such aerosols was also reported by Dubovik et al. [9],
who used aerosol inversion products from the ground-based Aerosol Robotic Network (AERONET)
measurements. The UVAI is estimated by comparing the two channel near-UV radiances, where
trace gas absorption is relatively small, based on the hypothesis that their albedo differences are
negligible [10]. The UVAI algorithm has a strong advantage of being applicable over bright surfaces,
such as desert and cloud, where many other aerosol inversion products are typically not available.

The UVAI has often been used with the Angstrom Exponent (AE), which provides information
on aerosol particle size. Higurashi and Nakajima [11] and Kaufman et al. [12] retrieved the AE
using two-channel visible radiances at 0.64 and 0.83 µm. Subsequently, Higurashi and Nakajima [4]
developed a four-channel algorithm to classify aerosols into four major types (soil dust, carbonaceous,
sulfate, and sea salt), using the four visible channel data of the Sea-Viewing Wide Field-of-View
Sensor (SeaWiFS) over the ocean. This algorithm has the advantage of classifying aerosol types
from simultaneous measurements at four wavelengths (412, 443, 670, 865 nm) in near real-time.
Jeong and Li [13] developed an aerosol classification algorithm by utilizing two instruments: a
Total Ozone Mapping Spectrometer (TOMS) and an Advanced Very High Resolution Radiometer
(AVHRR). The aerosol size information (AE) from the visible channel of the AVHRR was combined
with the aerosol absorption (UVAI) from TOMS, to infer the aerosol types of biomass burning,
pollution, dust, sea salt, and a mixture of different types. Kim et al. [5] developed the MODIS-OMI
algorithm (MOA), which uses the Moderate Resolution Imaging Spectroradiometer (MODIS) and the
Ozone Monitoring Instrument (OMI), and evaluated the consistency between two different aerosol
classification algorithms. This algorithm was purely designed to classify aerosols and it uses standard
products including MODIS AOD, Fine Mode Fraction (FMF), and OMI UVAI.

UVAI is an important parameter for assessing aerosol absorption and type, but is only available
when instruments have more than two UV channels. However, some satellite instruments only have a
single UV channel, such as the Thermal And Near infrared Sensor for carbon Observation Cloud and
Aerosol Imager (TANSO-CAI) of the Greenhouse gases Observing SATellite (GOSAT). The information
on the aerosol type is significantly important for the GOSAT, which aims at retrieving the concentration
of greenhouse gas, CO2. Jung et al. [14] reported that incorrect information on the aerosol type can
lead to significant errors in CO2 retrievals up to 3 ppm. Although the UVAI can be obtained from other
instruments such as the OMI, spatial and temporal collocation results in low information availability.
In addition, since OMI has a coarser pixel resolution (13 × 24 km2) than TANSO-CAI (500 × 500 m2),
the distinction between absorbing aerosol and non-absorbing aerosol at high resolutions becomes
erroneous, which also leads to errors in AOD, CO2, and relevant products.

In this study, we developed an algorithm to discern absorbing aerosol signals using one UV
radiance channel, named the Single UV channel Aerosol Index (SAI). The underlying physical principle
of SAI is different from that of UVAI. The advantage of the SAI algorithm is its adaptability to satellite
platforms with one UV channel. This raises the possibility of distinguishing aerosol absorption through
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the instruments themselves, and therefore enables us to expand the analysis to include past satellite
data for climate research. Moreover, particularly for GOSAT, by providing better information on
aerosol absorption from TANSO-CAI, the CO2 retrievals can be improved. The remainder of this
manuscript is organized as follows. The instruments used in this study are summarized in Section 2
and a theoretical sensitivity analysis test of UVAI and SAI are presented in Section 3, before the
development of an algorithm using satellite instruments. In Section 4, several empirical models of SAI
are analyzed to find the best empirical SAI (Section 4.1), and the best SAI empirical model is adapted to
the OMI (Section 4.2) and TANSO-CAI (Section 4.3) instruments. Finally, the conclusions are presented
in Section 5.

2. Data

2.1. OMI

To test the feasibility of the SAI algorithm, we first applied it to OMI (Sections 4.1 and 4.2). OMI has
hyperspectral bands in the UV and visible (270–500 nm) regions, with a spectral resolution of ~0.5 nm.
OMI is a spectrograph onboard the Earth Observing System (EOS) of the Aura spacecraft, which
has measured upwelling radiances at the top of the atmosphere since its deployment in 2004 [15,16].
With a 2600 km across-track swath and 60 viewing positions, it provided nearly daily global coverage
at a 13 × 24 km2 nadir resolution (28 × 150 km2 at extreme off-nadir) during its first three years of
operation. Since mid-2007, an external obstruction to the sensor’s field of view began to progressively
develop, perturbing OMI measurements of both solar flux and Earth shine radiance at all wavelengths.
Currently, about half of the sensor’s viewing positions are affected by what is referred to as “row
anomaly”, since the viewing positions are associated with the row numbers on the charge-coupled
device (CCD) detectors [6]. Therefore, in this study, we used the OMI data acquired before mid-2007 in
Sections 4.1 and 4.2, to test the performance of SAI without a row anomaly problem. In Section 4.3,
however, aerosol cases in 2012 are selected to compare the SAI results of TANSO-CAI with OMI data.

An OMI aerosol algorithm (OMAERUV V1.4.2) retrieves AOD, SSA, and UVAI. The latest
algorithms have been described in Torres et al. [17]. In this study, level 2 aerosol products of SSA
and UVAI are used. OMAERUV SSA are retrieved when UVAI >0.8 over the ocean, because of the
difficulty associated with the separation of ocean color effects from those of low aerosol concentrations,
and OMAERUV retrieves SSA products over land under all conditions, regardless of the value of AI.
However, the SSA of OMAERUV is assumed to be 1.0 over land when UVAI <0.5 for sulfate aerosols
and UVAI <0.8 for dust aerosols. In contrast, UVAI is retrieved under all conditions over land and
the ocean.

Jethva et al. [18] checked the consistency between OMAERUV SSA and AERONET SSA in terms
of standard statistical comparison, and about 46% (69%) of OMI-AERONET matchups agree, within
the absolute difference of ±0.03 (±0.05) for all aerosol types.

2.2. GOSAT TANSO-CAI

GOSAT is a Low Earth Orbit (LEO) satellite, launched in 2009 by the Japan Aerospace Exploration
Agency (JAXA), Ministry Of the Environment (MOE) and National Institute for Environmental Studies
(NIES), to measure global carbon dioxide concentrations, using the Thermal And Near infrared Sensor
for carbon Observation Fourier Transform Spectrometer (TANSO-FTS) for shortwave and longwave
infrared spectral radiances [19]. The satellite also carries the TANSO-CAI, which is a push-broom
scanning imager. TANSO-CAI has four spectral bands (380, 674, 870, and 1600 nm), with footprints
of 0.5, 0.5, 0.5, and 1.5 km, respectively. The purpose of TANSO-CAI is cloud screening and aerosol
detection [20,21]. Fukuda et al. [22] developed the CAI aerosol algorithm from CAI. The Level 1
algorithm for TANSO-CAI is described in detail by Kuze et al. [23]. To test the feasibility of the SAI
algorithm, we applied it to the broadband (380 nm) of TANSO-CAI (see Section 4.3).
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3. Sensitivity Analysis Test of UVAI and SAI Using Theoretical Model Simulations with a
Radiative Transfer Model

We used radiative transfer calculations to simulate the sensitivity of UVAI and SAI at the top of
the atmosphere to changes in the physical properties of both absorbing and non-absorbing particles.
The radiative transfer model Vector LInearized pseudo-spherical Discrete Ordinate Radiative Transfer
(VLIDORT) [24] was used in this study. VLIDORT is a vector version of LInearized Discrete Ordinate
Radiative Transter (LIDORT) and uses the DIScrete Ordinate Radiative Transfer Model (DISORT)
method to overcome the disadvantage of the discrete ordinate solution. The LIDORT model allows
for a spherically curved atmosphere for off-nadir satellite viewing, thereby taking into account the
effect of pseudo-spherical direct beam attenuation. Mie code was used to calculate light scattering
by randomly oriented spheroids with the same volume size distribution as spherical particles [25,26].
In this simulation study, only the absorption band of ozone gas with 300 Dobson Units is considered,
which rarely has an effect on OMI UVAI bands (354 and 388 nm) or the TANSO-CAI UV band (380 nm).

The UVAI is a measure of the degree to which the wavelength dependence of backscattered
UV radiation from an atmosphere containing aerosols (Mie scattering, Rayleigh scattering, and
aerosol scattering) differs from that of a purely molecular atmosphere (pure Rayleigh scattering).
Quantitatively, the UVAI is defined as:

UVAI = −100
[
log10(I354/I388)meas − log10(I354/I388)calc

]
(1)

where I354meas and I388meas are the measured radiances at 354 and 388 nm, respectively, at the top of the
atmosphere (TOA); and I354calc and I388calc are the calculated radiances at 354 and 388 nm, respectively,
for a pristine atmosphere using Lambertian Equivalent Reflectivity (LER) at 388 nm. Generally, the
UVAI is positive for absorbing aerosols and negative for others. However, weakly absorbing aerosols
at low-level (<1 km) may yield a negative UVAI, meaning that UVAI cannot distinguish absorbing
aerosols from non-absorbing aerosols [8,10]. The current OMI near-UV aerosol algorithm (OMAERUV)
employs UVAI over a value of 0.7 to differentiate absorbing (smoke, dust, pollution) and non-absorbing
aerosols (e.g., sulfate, sea salt).

While the principle of the UVAI is to measure spectral contrast in the UV range, SAI measures
the extent to which aerosol absorption occurs compared with a minimal absorption state, which is
calculated as follows:

SAI = −10
[
log10

(
I388(mea)/I388(calc∗)

)]
− background AI (2)

where I388(meas) is the measured 388 nm radiance at the TOA and I388(calc*) is the radiance calculated
under an aerosol-free condition. Background AI in Equation (2) refers to a purely molecular atmosphere
condition or where UVAI equals a zero condition, theoretically. To empirically identify the purely
molecular atmosphere condition or zero UVAI condition, several empirical models are calculated
and investigated. The algorithm assumes that, at one point, the effect of absorption and scattering
are equal for the search window period of the previous 30 days. Details of the empirical model for
background AI are described in Section 4. Note that the multiplication factor of −10 in Equation (2)
was also decided empirically, as UVAI and SAI are qualitative values.

Figure 1 shows the simulated results of UVAI and SAI with respect to aerosol types, aerosol
layer height (ALH), AOD, and single scattering albedo (SSA) using VLIDORT. Atmospheric
radiative quantities of number-weighted aerosol particle size distributions and refractive indexes
are summarized in Table 1. rm1 and rm2 denote a fine and coarse mode radius, respectively, and σm1

and σm2 denote fine and coarse mode variance, respectively. The fraction of m1 refers to the ratio of the
fine mode number to the total number distribution. The last column in Table 1 presents the assumed
real refractive index. Each aerosol type is divided by seven or eight aerosol models of varying SSA, for
a total of 22 microphysical models (Table 2).
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Figure 1. Comparison of model-simulated UVAI and SAI with respect to AOD, SSA, aerosol types, 
and aerosol layer height using VLIDORT. Solid lines indicate UVAI (354, 388 nm) and dashed lines 
indicate SAI (388 nm) using Equations (1) and (2). The aerosol’s SSA are indicated at top left. The 
surface albedo and terrain pressure are 0.05 and 1014 mb, respectively. The three aerosol types 
(smoke, dust, and NA) and their optical properties were obtained from AERONET lv.2 Inversion data 
using the aerosol classifying method of Lee et al. [27]. 

Table 1. Number-Weighted Particle Size Distributions and Refractive Indices of Aerosol Models 
Employed to Retrieve the Theoretical Value of SAI and UVAI using VLIDORT. 

TYPE rm1 rm2 σm1 σm2 Fraction of m1 Re(RI) (443 nm) 
SMOKE 0.080 1.005 1.644 1.849 0.9997 1.45 
DUST 0.065 0.832 1.451 1.820 0.9978 1.52 

NA 0.087 0.741 1.772 1.976 0.9997 1.42 
  

Figure 1. Comparison of model-simulated UVAI and SAI with respect to AOD, SSA, aerosol types, and
aerosol layer height using VLIDORT. Solid lines indicate UVAI (354, 388 nm) and dashed lines indicate
SAI (388 nm) using Equations (1) and (2). The aerosol’s SSA are indicated at top left. The surface albedo
and terrain pressure are 0.05 and 1014 mb, respectively. The three aerosol types (smoke, dust, and
NA) and their optical properties were obtained from AERONET lv.2 Inversion data using the aerosol
classifying method of Lee et al. [27].

Table 1. Number-Weighted Particle Size Distributions and Refractive Indices of Aerosol Models
Employed to Retrieve the Theoretical Value of SAI and UVAI using VLIDORT.

TYPE rm1 rm2 σm1 σm2 Fraction of m1 Re(RI) (443 nm)

SMOKE 0.080 1.005 1.644 1.849 0.9997 1.45
DUST 0.065 0.832 1.451 1.820 0.9978 1.52

NA 0.087 0.741 1.772 1.976 0.9997 1.42
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Table 2. Considered Parameters for LUT to Retrieve the Theoretical Value of SAI and UVAI using
VLIDORT. SZA, RAA, and VZA are fixed to 36◦, 150◦, and 38◦, respectively.

Variable No. of Entries Entries

Surface elevation 3 0, 3, 6 km
Aerosol peak height 5 0.5, 1.5, 3.0, 4.5, 6.0 km

AOD 4 0, 1, 2, 3
SSA

(ref_wav = 443 nm)
7 (SMOKE, DUST)

8 (NA)
0.82, 0.85, 0.88, 0.91, 0.94, 0.96, 0.98

0.90, 0.92, 0.94, 0.96, 0.97, 0.98, 0.99, 1.0
Wavelength 2 354, 388 nm

Surface reflectance 8 0.0, 0.01, 0.025, 0.05, 0.1, 0.3, 0.55, 0.8

Aerosol optical properties, such as particle size distributions and their refractive indices, are
obtained from AERONET 46 sites lv.2 Inversion data within 100◦E–150◦E, 20◦N–50◦N [9,28]. These
data provide the most realistic aerosol information for East Asia. The aerosol types (fine-absorbing
particles or smoke, dust, and NA) are classified, based on the method proposed by Lee et al. [27], using
550 nm FMF and 440 nm SSA. Smoke and NA aerosol types showed fine-mode dominant volume size
distribution, while dust aerosol showed course-mode dominant volume size distribution, and their
volume size distributions are converted to number-weighted particle size distributions, as shown in
Table 1. The UV wavelength spectral dependence of the imaginary refractive index of aerosol models
is assumed from AERONET 440 nm measurements with a constant value of the absorption angstrom
exponent (AAE) [2]. The highest spectral dependence of the imaginary refractive index is assumed
for dust aerosols, while almost no spectral dependence of the imaginary refractive index is assumed
for smoke aerosols. In VLIDORT, all aerosol models are considered as spherical particles, including
dust aerosol models (see Appendix A). Table 2 summarizes the input parameters for the VLIDORT
calculation used to simulate UVAI and SAI. The aerosol profiles are assumed to have a Gaussian
distribution, with a full width at a half maximum (FWHM) of 1 km, and are set to be located between
0.1 and 10 km.

Figure 1 shows the UVAI (for 354 and 388 nm) and the SAI (for 388 nm) calculated using
Equations (1) and (2), respectively. Although the sensitivity analysis examines changes for various
input parameters, a set of fixed baseline values was used, including reflectivity (0.05), the Solar Zenith
Angle (SZA) (36◦), the Relative Azimuth Angle (RAA) (150◦), the Viewing Zenith Angle (VZA) (38◦),
and surface elevation (0 km). The simulation results show that both UVAI and SAI have a sensitivity
to SSA that increases for highly absorbing cases. As the aerosol layer height increases from 0.5 to
3.0 km, the path between the aerosol and the TOA becomes shorter, meaning that both AI signals
increase. When considering the different aerosol types, dust AI is more sensitive to aerosol absorption
because dust is known to have the highest spectral dependence of the imaginary refractive index in
UV [29,30]. In Figure 1, the weakly absorbing aerosols of smoke and dust AI at lower altitudes cannot
be distinguished from NA AI [8]. For brighter surfaces and higher terrain pressures (not shown),
simulated UVAI and SAI seem to have a high signal sensitivity with aerosol loading. Although SAI is
sensitive with respect to SSA, SAI at lower altitudes shows small and negative values, even for smoke
and dust aerosols, when compared with UVAI, thus showing a limitation of the model simulations.

To overcome these problems for real measurements (Section 4), an investigation of the empirical
SAI was performed to find the best background AI. Additionally, we verified the sensitivity of SAI
with respect to SSA using six SAI empirical models.

4. Results

The present study area (Figure 2) covers the Korean Peninsula and the surrounding area in
northeast Asia, including Korea, Taiwan, China, and Japan. This region experiences severe dust storms
every spring and severe pollution in winter, causing high UVAI during these periods. A single path of
OMI lv.2 UVAI (354 and 388 nm) data was projected for all OMI data crossing the study area during a
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single day. This day was marked by a severe dust storm to the northwest of the Korean Peninsula and
highly absorptive aerosols with a UVAI value of >1.5. A sun-glint area near the east coast of China was
removed because this area has a brighter surface than other ocean surface areas.
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Figure 2. A single path of OMI UVAI data is projected for all OMI data for the Korean Peninsula and
surroundings (top). MODIS True Color image (bottom) with an 8 min time difference compared with
OMI, showing a severe dust storm over the Korean Peninsula, which originated in north China. Highly
absorbing aerosols within the dust storm were detected by OMI UVAI with values greater than 1.5.

A flowchart of the SAI retrieval algorithm is presented in Figure 3. First, a surface reflectance (R)
was produced for a 0.5◦ × 0.5◦ grid resolution by directly using the previous 30-day minimum OMI LER
(lv.2) data, referred to as the minimum reflectance method. This method assumes at least one clear-sky
day among the previous 30 days for a given pixel [31,32]. If the period exceeds 30 days, the surface
reflectance could be contaminated by other factors, such as changes in vegetation cover. Secondly, a
pre-calculated lookup table (LUT) was used to calculate I388

calc(R). The LUT was constructed using a
forward model, VLIDORT, to calculate the Rayleigh scattered radiance from the minimum reflectance.
The input parameters used to construct the LUT are summarized in Table 3. After calculating I388

calc(R)
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for a clear sky area, −10log
(

I388
meas

I388
calc(R)

)
was calculated from the OMI measurement data to allow the

aerosol signals to be separated. The 30-day minimum values of −10log
(

I388
meas

I388
calc(R)

)
in a 0.5◦ × 0.5◦ grid

resolution were then defined as background AI. To avoid cloud contamination and uncertainties in
radiometric calibration, OMI lv.2 normalized radiance data with a quality flag of zero, which indicates
minimum cloud presence [17], are used. Finally, SAI is obtained from Equation (2) by subtracting
the background AI from the aerosol signal. In the next section, to identify the best background AI,
frequency distributions are used to evaluate detailed empirical background AI models.
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Figure 3. Flowchart of the SAI retrieval algorithm using the 388 nm instrument channel of OMI.
To avoid bias in the algorithms, measurement quality flags of zero, pixel quality flags of zero, and final
algorithm flags of zero and one are used in the OMI lv.2 data.

Table 3. Considered parameters for LUT to retrieve the SAI using OMI and CAI.

Variable No. of Entries Entries

SZA 8 0, 10, ..., 70
RAA 7 0, 30, ..., 180
VZA 8 0, 10, ..., 70

Surface pressure 6 600, 700, 800, 900, 1000, 1014 mb
AOD 1 0

Wavelength (OMI)
Wavelength (CAI)

2
41

354, 388 nm
360,361, ..., 400 nm

Surface reflectance 8 0.0, 0.025, 0.05, 0.12, 0.25, 0.4, 0.55, 0.7
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4.1. Inter-Comparisons of SAI Obtained from Empirical Models

To derive the best background AI, SAI sensitivity with respect to SSA for six empirical models was
analyzed. OMI lv.2 data for spring 2006 were selected for calculating several empirical models of SAI,
the minimum reflectance, and background AI. The 2006 data were selected for this case study to avoid
the row anomaly problem of OMI. The results for two days marked by severe dust storms and high
UVAI are presented in Table 4. A particulate matter (PM) concentration of 2298 µg/m3 was observed
over the Korean Peninsula on 8 April 2006, and 50~400 µg/m3 was recorded on 23 April 2006.

To consistently assess the SAI sensitivity with respect to SSA, only AOD values greater than
0.5 and UVAI values greater than 0.5 were selected, to ensure the retrieval accuracy of the SAI
algorithm. The calculated slope of regression and the correlation coefficient (R) are presented in
Table 4. Six empirical SAI models (M0 to M5) are categorized in Table 4. For empirical model M0,
the background AI is zero. For models M1 to M5, each background AI refers to a selected value of
M0 among 30 days in the following ways: non-cloud-screened minimum composite (M0-minM0),
cloud-screened minimum composite, cloud-screened mean composite (M0-meanM0), cloud-screened
median composite (M0-medianM0), and the absolute value of the cloud-screened minimum composite
(M0-min(absM0)), respectively.

Figure 4 shows the frequency distribution of background AI for each empirical model (M1 to M5)
for two days, using the 388 nm channel of OMI. Background AIs are enumerated in the same order
as the bold characters in Table 4. Among the five background AIs, the minimum composite of the
cloud-screened M0 values (Figure 4b,g) is closest to a Gaussian distribution and is evenly distributed,
indicating that the background AIs are randomly selected.

Figure 5 shows scatter plots of SAI with respect to SSA for 8 April 2006. OMI lv.2 data are used to
determine the aerosol type, and most of the scenes are classified as smoke. Six empirical SAI models,
from M0 to M6, show a proportional relationship with SSA and exhibit a negative slope. However, M2
shows the best proportional relationship with respect to SSA, with a root mean square error (RMSE) of
0.723, except for NA aerosols, which were assumed to have an SSA equal to one [17]. Therefore, from
Table 4 and Figures 4 and 5, M2 was chosen as the best SAI model, given the correlation coefficient of
scatter plot data, distribution of scatter plot data with the RMSE value, and the Gaussian distribution
of background AI.

In a physical sense, the background AI of M2 is a composite result of the strongest scattering signal
among the previous 30 days. Therefore, subtracting minM0 will make the SAI absorbing aerosol signals
more dominant. M2 is sufficient for discerning the aerosol absorption, as described in Sections 4.2
and 4.3. However, empirically selecting the background AI could limit the performance of the current
algorithm because the background AI may differ in different regions.

For M1, compositing minM0 without cloud screening resulted in a weaker correlation because it
contains a thick cloud signal. The M1 background AI shows a large negative value compared with the
non-cloud areas (not shown).

The background AI signal may be changed with respect to different composite periods, since
surface vegetation changes throughout the year. To examine the influence of surface reflectance, we also
tried to composite more than 30 days of background AI (e.g., 40, 50, and 60 days), but the composited
value of background AI did not show a significant change to the 30-day composite periods. Therefore,
only M2 (M0-minM0, after cloud screening) was used in our algorithm.
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Table 4. Six empirical SAI models (M0 to M5) are categorized with background AI marked in bold. Slopes and correlation coefficients of six empirical models with
respect to SSA are presented. ‘20060408’ indicates the selected day and ‘t0400’ indicates the OMI passing time (in this case UTC 04:00). The empirical model (c)
M0-minM0 showed the highest correlation coefficient and a linear relationship (see also Figures 4 and 5).

No. Day Before Cloud Screening After Cloud Screening

(a) M0 (b) M1: M0-minM0 (c) M2: M0-minM0 (d) M3:
M0-meanM0

(e) M4:
M0-medianM0

(f) M5:
M0-min(absM0)

1 20060408 t0400
y = −0.026x + 0.894 y = −0.015x + 0.997 y = −0.019x + 0.938 y = −0.023x + 0.913 y = −0.022x + 0.910 y = −0.026x + 0.891

R2 = 0.525 R2 = 0.427 R2 = 0.399 R2 = 0.544 R2 = 0.538 R2 = 0.514

2 20060423 t0319
y = −0.031x + 0.869 y = −0.025x + 1.039 y = −0.038x + 0.939 y = −0.03x + 0.892 y = −0.027x + 0.890 y = −0.033x + 0.861

R2 = 0.357 R2 = 0.340 R2 = 0.540 R2 = 0.372 R2 = 0.341 R2 = 0.429

3 20060408 t0458
y = −0.056x + 0.872 y = −0.033x + 1.096 y = −0.038x + 0.967 y = −0.050x + 0.909 y = −0.048x + 0.901 y = −0.056x + 0.868

R2 = 0.603 R2 = 0.348 R2 = 0.626 R2 = 0.597 R2 = 0.571 R2 = 0.643
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Figure 4. (a–j) Frequency distribution of background AIs from Table 4. Upper panel shows results for 8 April 2006 and lower panel for 23 April 2006. From left to
right, the frequency distributions show each background AI with cloud minimum M0 (a,f), without cloud minimum M0 (b,g), without cloud mean M0 (c,h), without
cloud median M0 (d,i), and without cloud absolute minimum M0 (e,j). (e,j) plotted on a log scale on the y-axis. Among the five empirical background AI models, the
minimum M0 (b), (g) shape is most likely to have a Gaussian distribution and is evenly distributed.



Remote Sens. 2017, 9, 378 11 of 20
Remote Sens. 2017, 9, 378  11 of 20 

 

 

Figure 5. Scatter plot of SAIs (388 nm) versus OMI lv.2 SSA for 8 April 2006. The empirical model of 
SAIs from (a) to (f) is the same as that listed in Table 4. These scatterplots use an AOD criterion of 
greater than 0.5 and a UVAI criterion of greater than 0.5 pixels. Among the five empirical SAI models, 
the M2 (c) has the smallest RMSE value. 

4.2. Performance of SAI Obtained from OMI (Including Validation with UVAI) 

Figure 6 shows a large Asian dust event that occurred on 23 April 2006, as shown in MODIS true 
color images and also OMI UVAI, OMI SSA, and SAI. On this day, a thick absorbing aerosol layer 
can be observed over northeast China, extending to western Korea, as shown in Figure 6a using a 
MODIS true color (650, 555, 465 nm as RGB respectively) image. AOD was higher than 1.5, indicating 
thick optical aerosol layers. The UVAI values higher than 2.5 from OMI (Figure 6b) show strong UV 
absorption for the dust layer located over the Yellow Sea. MODIS and OMI have 8-min time 
differences onboard the NASA’s A-train satellite. The SAI retrieval (Figure 6d) shows strong 
absorbing aerosols, where the OMI SSA for the 388 nm channel (Figure 6c) ranges from 0.82 to 0.90, 
and the UVAI ranges from 0.7 to 2.5, corresponding to the dust-laden area and over the Gobi Desert, 
as inferred from the MODIS RGB image.  

The OMI user guide has mentioned that ocean surface reflectance shows distinct angular and 
spectral variations compared to land, due to spectral varying scattering from the water, often called 
water-leaving radiances (WLR), chlorophyll, sediments, and other types of suspended matter which 
decrease the WLR. This WLR causes the main error of aerosol retrieval over the ocean. Since this short 
term variability is not taken into account in the current version of the algorithm, OMI SSA has been 
retrieved over an area where the UVAI are over 0.8. For the same reason, SAI over the north-east part 
of the Korean peninsula has been screened out. The SAI values are proportional to an SSA value of 
388 nm over western Korea, showing a linear relationship. 

To qualitatively evaluate the statistical results of the developed SAI algorithm with UVAI, the 
agreement and false detection rate are calculated by using the following equations:  ݐ݊݁݉݁݁ݎ݃ܣ = ௎ܰ௏஺ூ&ௌ஺ூ ௎ܰ௏஺ூ⁄ ݊݋݅ݐܿ݁ݐ݁݀	݁ݏ݈ܽ (3)  = 1 − ௎ܰ௏஺ூ&ௌ஺ூ ௌܰ஺ூ⁄  (4) 

where NUVAI&SAI denotes the number of absorbing aerosol pixels defined by both the OMI UVAI and 
SAI algorithms, simultaneously. NUVAI and NSAI denote the number of absorbing aerosol pixels 
detected by the OMI UVAI algorithm and the SAI algorithm, respectively (Park et al. [33]). 

Figure 5. Scatter plot of SAIs (388 nm) versus OMI lv.2 SSA for 8 April 2006. The empirical model of
SAIs from (a) to (f) is the same as that listed in Table 4. These scatterplots use an AOD criterion of
greater than 0.5 and a UVAI criterion of greater than 0.5 pixels. Among the five empirical SAI models,
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4.2. Performance of SAI Obtained from OMI (Including Validation with UVAI)

Figure 6 shows a large Asian dust event that occurred on 23 April 2006, as shown in MODIS true
color images and also OMI UVAI, OMI SSA, and SAI. On this day, a thick absorbing aerosol layer
can be observed over northeast China, extending to western Korea, as shown in Figure 6a using a
MODIS true color (650, 555, 465 nm as RGB respectively) image. AOD was higher than 1.5, indicating
thick optical aerosol layers. The UVAI values higher than 2.5 from OMI (Figure 6b) show strong UV
absorption for the dust layer located over the Yellow Sea. MODIS and OMI have 8-min time differences
onboard the NASA’s A-train satellite. The SAI retrieval (Figure 6d) shows strong absorbing aerosols,
where the OMI SSA for the 388 nm channel (Figure 6c) ranges from 0.82 to 0.90, and the UVAI ranges
from 0.7 to 2.5, corresponding to the dust-laden area and over the Gobi Desert, as inferred from the
MODIS RGB image.

The OMI user guide has mentioned that ocean surface reflectance shows distinct angular and
spectral variations compared to land, due to spectral varying scattering from the water, often called
water-leaving radiances (WLR), chlorophyll, sediments, and other types of suspended matter which
decrease the WLR. This WLR causes the main error of aerosol retrieval over the ocean. Since this short
term variability is not taken into account in the current version of the algorithm, OMI SSA has been
retrieved over an area where the UVAI are over 0.8. For the same reason, SAI over the north-east part
of the Korean peninsula has been screened out. The SAI values are proportional to an SSA value of
388 nm over western Korea, showing a linear relationship.

To qualitatively evaluate the statistical results of the developed SAI algorithm with UVAI, the
agreement and false detection rate are calculated by using the following equations:

Agreement = NUVAI&SAI/NUVAI (3)

alse detection = 1 − NUVAI&SAI/NSAI (4)

where NUVAI&SAI denotes the number of absorbing aerosol pixels defined by both the OMI UVAI
and SAI algorithms, simultaneously. NUVAI and NSAI denote the number of absorbing aerosol pixels
detected by the OMI UVAI algorithm and the SAI algorithm, respectively (Park et al. [33]).
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Figure 6. (a) MODIS RGB has an 8-min time difference compared with OMI. (b) OMI UVAI, (c) OMI
SSA, and (d) calculated SAIs over the Korean Peninsula, comparing UTC 0319 and UTC 0458 on 23
April 2006. PM10 concentrations were between 50 and 400 µg/m3 on this day.

Figure 7 shows the agreement and false detection of absorbing aerosol results between the
OMI UVAI algorithm and the OMI SAI algorithm for 8 April 2006 (Figure 7a–c) and 23 April 2006
(Figure 7d–i), respectively. Because SSA is assumed to be one in the OMI algorithm for an NA aerosol
scene, the pixels with SSA values lower than 1.0 are used for the inter-comparison, to ensure the
retrieval accuracy of the SAI algorithms. The results are only compared for areas where OMI SSA
exists. Since OMI UVAI can be used to detect the absorbing aerosol region with UVAI values higher
than 0.7 [17], UVAI values of 0.5, 0.7, and 1.0 from OMI are used as reference values. To calculate the
SAI absorbing aerosol threshold, values of −0.5 to 1.5 are used, as shown on the x-axis in Figure 7.
Given that the SAI values are generally distributed between −1 and 3, values from −1 to −0.5 and
from 1.5 to 3 were excluded, to avoid any statistical errors arising from sampling small numbers
of pixels.

The agreement between the absorbing aerosols inferred from the UVAI and the SAI algorithms
decreases significantly beyond a threshold value of 0.5 for SAI (Figure 7). Conversely, the false
detection rate is almost invariable over all of the SAI threshold values (x-axis ranges), which indicates
that SAI values higher than 0.5 qualitatively correspond to a UVAI value larger than 0.7, because 80%
of the SAI are also detected with UVAI. This tendency is clearer for highly absorbing cases (SSA < 0.90).
Note that although the agreement area falls rapidly for values above 0.5 because of a small threshold,
the SAI false detection rate remains stable, which in turn means that the number of false detections in
SAI is small. Therefore, 90% of the SAI is also detected with UVAI. For a strongly absorbing aerosol
case at 0458 UTC on 23 April 2006, the SSA ranged between 0.82 and 0.90, and the false detection rate
of SAI was consistently below 0.1 for the UVAI threshold of 0.7.
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reflectance in the 90-day composite make it possible to employ this approach without any significant 
errors. The advantage of applying the SAI algorithm to TANSO-CAI is that it can detect the absorbing 
aerosols with a 500 m resolution. To reduce the calculation time, all TANSO-CAI data were re-
gridded with a 0.1° resolution. To select the TANSO-CAI case-study days, the time difference 
between TANSO-CAI and OMI within 10 min was calculated.  
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Figure 7. (a–i) Results of an agreement and false detection test of OMI UVAI and OMI SAI for 8 April
(Case 1) and 23 April (Case 2, Case 3) 2006, respectively. The x-axis indicates the SAI absorbing
threshold ranging from −0.5 to 1.5. The different line styles indicate different UVAI threshold values.
The SAI value of 0.5 corresponds to a UVAI value of 0.7. The false detection rate is constant, indicating
that the current SAI algorithm correctly defines the absorbing aerosol pixels.

No significant changes were observed with AOD criteria higher than 0.5. This result indicates that
the SAI absorbing aerosol threshold primarily depends on SSA. The results show that although the
SAI pattern is similar to SSA and the SAI value over 0.5 matches well with a UVAI threshold of 0.7, the
agreement and false detection test with OMI shows a consistent and meaningful correlation. The SAI
value of 0.5 corresponds to a UVAI value of 0.7. As a result, the current SAI algorithm correctly defines
a high percentage of the absorbing aerosol pixels.

4.3. Performance of SAI Obtained from TANSO-CAI (Including Validation with UVAI)

The SAI algorithm was applied to the TANSO-CAI instrument to verify the feasibility of aerosol
absorption detection using the SAI algorithm with a single broadband UV channel. The minimum LER
values from 30 days were used for the composite surface reflectance and background AI. However,
since band 1 of TANSO-CAI has a narrow swath of 1000 km and a three-day recursion period, the
same paths of 30-day data among 90 days were used. Dark and invariable UV surface reflectance
in the 90-day composite make it possible to employ this approach without any significant errors.
The advantage of applying the SAI algorithm to TANSO-CAI is that it can detect the absorbing aerosols
with a 500 m resolution. To reduce the calculation time, all TANSO-CAI data were re-gridded with a
0.1◦ resolution. To select the TANSO-CAI case-study days, the time difference between TANSO-CAI
and OMI within 10 min was calculated.
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The absorbing aerosol cases for two days, 17 March and 25 April 2012, were selected to test
TANSO-CAI SAI with OMI UVAI (Figures 8 and 9, respectively). On 17 March 2006, a thin absorbing
aerosol layer was observed over the western Korean Peninsula and eastern China using MODIS RGB
(Figure 8a). The OMI UVAI (Figure 8b) showed values higher than 1.6, representing moderate UV
absorption over the dust layer located over eastern China. The white area in the middle of the UVAI
(Figure 8b) represents the row anomaly pixels of OMI. The SAI algorithm from TANSO-CAI (Figure 8d)
successfully detects the moderate absorbing aerosol layers with a SAI value above 2.0. As inferred
from previous results from OMI, the SAI algorithm detects OMI SSA (Figure 8c) over eastern China
with a linear relationship. For this day, the moderate absorbing aerosol layer showed AOD values
higher than 1.0.

A weakly absorbing aerosol case is shown in Figure 9, for 25 April 2006. Weakly absorbing
aerosols are detected in the MODIS RGB image over the northwestern Korean Peninsula (Figure 9a).
Figure 9d shows the SAI algorithm results of TANSO-CAI for this case, which shows weakly absorbing
aerosols where OMI SSA (Figure 9c) ranges from 0.88 to 0.91 and UVAI (Figure 9b) ranges from 0.8 to
1.0, over the same absorbing area as that inferred from the MODIS RGB image. At the same time,
the AOD values exceeded 1.0 over the investigated region. Unfortunately, because of the OMI row
anomaly problem, some of the scenes over China are not shown, although TANSO-CAI SAI results
are given. For TANSO-CAI SAI, the blue-colored SAI pixels show the cloud edge area and the edge
problem related to TANSO-CAI band 1 [23].
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The agreement and false detection are calculated for TANSO-CAI SAI and OMI UVAI data, to 
evaluate the TANSO-CAI SAI algorithm. However, to reduce the error that arises from the time 
difference, only TANSO-CAI and OMI data within 10 min of each other are compared, whereas all 
TANSO-CAI data are plotted in Figures 8 and 9. In addition, to reduce the statistical error originating 
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Figure 8. OMI UVAI, SSA, and calculated TANSO-CAI SAI for UTC 04:29 on March 17 2012 over the
Korean Peninsula. (a) MODIS RGB has an 8-min time difference compared with OMI; (b) A single path
of OMI lv.2 UVAI (354 and 388 nm) data is projected; (c) OMI lv.2 SSA 388 nm (d) SAI calculated from
TANSO-CAI has a 30-min time difference compared with OMI.
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Figure 9. OMI UVAI, SSA, and calculated CAI-SAI for UTC 04:40 on April 25 2012 over the Korean
Peninsula. (a) MODIS RGB has an 8-min time difference compared with OMI; (b) A single path of
OMI lv.2 UVAI (354 and 388 nm) data is projected. A sun-glint area near the south coast of China
was removed because this area has a brighter surface than other ocean surface areas; (c) OMI lv.2 SSA
388 nm (d) SAI calculated from TANSO-CAI with a 30-min time difference compared with OMI.

The agreement and false detection are calculated for TANSO-CAI SAI and OMI UVAI data, to
evaluate the TANSO-CAI SAI algorithm. However, to reduce the error that arises from the time
difference, only TANSO-CAI and OMI data within 10 min of each other are compared, whereas all
TANSO-CAI data are plotted in Figures 8 and 9. In addition, to reduce the statistical error originating
from inaccurate SSA, only OMI data with an SSA less than 1.0 were used in the comparison. To spatially
compare OMI UVAI and TANSO-CAI, both datasets, as well as SSA from OMI, were re-gridded to a
0.5◦ grid resolution.

Figure 10 shows the agreement and false detection results for the two TANSO-CAI cases. These
two cases of TANSO-CAI SAI, on 17 March 2012 (Figure 10a,b) and 25 April 2012 (Figure 10c,d), were
compared with OMI UVAI. The colored numbers (0.5, 0.7, and 1.0) in Figure 10 indicate the OMI
UVAI threshold. The x-axis denotes TANSO-CAI SAIs, which generally have values between –1 and 3.
TANSO-CAI SAI absorbing aerosol threshold values are tested from–0.5 to 2.0, at 0.2 intervals. The case
on 17 March 2012 (Figure 10a,b) is a moderate absorbing aerosol, while 25 April 2012 (Figure 10c,d)
is a weakly absorbing aerosol. In Figure 10, the agreement consistently decreases with an increasing
TANSO-CAI SAI absorbing aerosol threshold. In contrast, the false detection rate with UVAI values
of 0.7 is almost invariable over all thresholds, especially with an error of <0.1 in Figure 10b. This
indicates that >80% of the TANSO-CAI SAI values qualitatively correspond to UVAI values of >0.7.
However, in Figure 10a,c,d, the false detection rate values are slightly higher than those in Figure 7.
This difference could be caused by the 10-min time difference between TANSO-CAI and OMI, or the
signal contamination during the re-gridding of OMI and TANSO-CAI. Alternatively, it may have
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arisen because the minimum reflectance of TANSO-CAI was different to that of OMI, or because
of a TANSO-CAI calibration issue. Furthermore, the difference could be related to Figure 10a,c,d
not including a strong absorbing aerosol case. For highly absorbing cases (SSA < 0.90), the false
detection rate decreased significantly, indicating that the error in the results originates from a low
aerosol absorption signal.Remote Sens. 2017, 9, 378  16 of 20 
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Figure 10. (a–d) Results of an agreement and false detection test of OMI UVAI and TANSO-CAI SAI
for 17 March and 25 April 2012, respectively. The left column shows the results for OMI SSA values
less than 1.0, while the right column shows the results for SSA values less than 0.95. The SAI value
of 0.5 corresponds to a UVAI value of 0.7. The false detection rate is constant for moderate absorbing
aerosol cases.

5. Discussion

UVAI is a practical parameter for assessing aerosol absorption and type, with a principle of
measuring the spectral contrast in the UV range. Currently, UVAI is provided from OMI with a
13 × 24 km2 nadir resolution. In contrast, an instrument such as TANSO-CAI cannot provide UVAI,
thus demonstrating a limitation in providing information on the absorbing aerosol type, which leads
to errors in AOD, CO2, and relevant products, although the instrument has a higher spatial resolution
of 500 m. A single UV channel on TANSO-CAI makes this challenging. To address this challenge, an
SAI algorithm was developed.

The results of SAI from the OMI hyperspectral band and the TANSO-CAI broadband are compared
with the OMI UVAI. By applying the SAI algorithm to OMI and TANSO-CAI, we found that the false
detection rate of the results is consistently low for both instruments. This suggests that the current SAI
rarely detects non-absorbing aerosols. In other words, the TANSO-CAI SAI results are consistent with
the OMI SAI results. This also implies that the SAI absorbing aerosol threshold primarily depends on
SSA. However, it is difficult to decide on the exact threshold of SAI, because SAI could detect absorbing
aerosol pixels with <20% error, at least for moderate absorbing aerosol cases. Error ranges become
even smaller for highly absorbing aerosol cases.
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The effectiveness of the SAI directly depends on the proper selection of the background AI. To use
SAI in the operational algorithm in stable conditions, the following methods are recommended for a
further investigation in the future.

First, the empirical parameter background AI should be investigated seasonally and globally.
In this study, the background AIs of M2 for a 30-day window composite was similar to those for 40-day,
50-day, and 60-day window composite durations. However, seasonally and globally, a 30-day window
composite could be affected by cloud [32]. Similarly, Kim et al. [31] have shown improved AOD results
after proper background optical depth correction.

Second, a cloud screening algorithm should be strictly applied. If cloud has not been strictly
screened out, background AI could have a large negative value, and this would affect the SAI. In this
study, a simple LER cut method is applied as a cloud screening algorithm to retrieve CAI SAI. Therefore,
CAI SAI is possibly affected by cloud.

Moreover, the error due to using spherical model particles for dust aerosols should be
re-considered. In this study, UVAI and SAI are simulated with spherical models, including dust
aerosols. Since the principle of the UVAI is to measure the spectral contrast in the UV range, UVAI might
be less affected by phase function differences between spherical particles and spheroid particles [10,26].
However, SAI simulation results may be affected by phase function differences between spherical
particles and spheroid particles [34,35]. Therefore, in a further study, it is recommended that dust
aerosols are calculated with a non-spherical database [26,36].

To our knowledge, this is the first time that a single UV channel has been used for an absorbing
aerosols detection algorithm. The algorithm has the potential to be used with other sensors that have
just a single UV channel. In addition, the absorbing aerosol detection product can be used for the
quantitative retrieval of aerosol optical thickness, by forcing the algorithm to select a lookup table
generated for absorbing aerosol models.

6. Conclusions

We developed an SAI algorithm using the OMI hyperspectral band and the TANSO-CAI
broadband, and compared it with OMI UVAI to detect aerosol absorption from UV-constrained
satellites. The SAI is physically defined as a measure of the degree to which the absorbing aerosols
differ from purely molecular atmosphere conditions. Radiative transfer calculations for representative
aerosols were assessed to calculate the sensitivity of UVAI and SAI at the TOA, before applying the
SAI algorithm. An empirical model for adopting the best background AI was developed and analyzed.

SAI showed a proportional relationship with SSA, which implies that SAI has an aerosol
absorption signal. In addition, an agreement and false detection test with UVAI was developed,
which showed that the false detection signal did not change with respect to the UVAI absorbing
threshold value. This means that SAI rarely detects non-absorbing signals. The results were not
dependent on the type of satellite instrument.

The advantage of the SAI algorithm is its adaptability to other satellite platforms that only have a
single UV channel. A Geostationary Ocean Color Imager(GOCI)-2 is another instrument with a single
UV channel, to be launched in 2019. This opens up the possibility of absorbing aerosol detection for the
next generation of satellite sensors, as well as past satellite data. However, the absorption threshold
of SAI is dependent on the instrument, which limits this research. Therefore, future work is needed
to identify a global threshold from several absorbing cases, to extend climate research. This study is
meaningful for the detection of aerosol absorption using instruments with a single UV channel. Future
work will involve the adaptation of the SAI-based algorithm to several satellite instruments that cover
a large area for a long duration.
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Appendix A

Use of Spherical Particle Approximation in Mineral Dust Aerosols

Dust is known to be comprised of spheroid particles, so it should be simulated with non-sphericity
consideration using a T-matrix code for e.g., with Dubovik data [26] or a Ping Yang’s database [36].
By Mishchenko et al. [37], it is known that the non-sphericity of desert dust particles can cause
scattering properties significantly different from those predicted by the standard Mie theory, especially
in the scattering angle range 100-180◦. The importance of dust particle shape in radiance and flux
simulations has also been pointed out by Kahnert and Kylling [34] and Yi et al. [35]. Kahnert and
Kylling [34] pointed out that spherical assumed dust at 550 nm can cause errors in the diffuse spectral
radiance between −16% and 115% at the top of the atmosphere (TOA), and could have an uncertainty in
the extinction optical depth τ between 0.5τ and 2τ at the TOA. Yi et al. [35] simulated the uncertainties
from the particle shape and refractive index with the Ping Yang database, and pointed out that the
particle shape effect is found to be related to the dust optical depth and the surface albedo can be an
important uncertainty source in radiative transfer simulation. Even though near-UV measurement
is insensitive to aerosol phase function effects, as discussed by Torres et al. [10], the research done
by Gasso et al. [38] showed that the dust LUT applied by the T-matrix code resulted in an increasing
retrieval of AOD. However, a non-spherical model did not affect to SSA retrieved results, as noted by
Kroktov et al. [39] and Dubovik et al. [26].

The error related to dust spherical particle approximation is mainly due to the misrepresentation
of the aerosol phase function by the spheres, as mentioned by Kahnert and Kylling [34].
Dubovik et al. [26] presented the simulation results of the dust phase function with spheroids and a
spherical aerosol model at 440 nm, 500 nm, 670 nm, 870 nm, and 1020 nm. When it comes to retrieving
AOD, the AOD difference between spheroids and a sphere originates from the difference in the phase
function of the spheroid and spherical model at the same wavelength. However, when it comes to
retrieving UVAI, the only difference is the measurement wavelength, and the assumed phase function
is the same. Therefore, we expect that the UVAI results between spheroids and the spherical model
might not exhibit a big difference.

Moreover, Torres et al. [10] showed that, in the 320–400 nm range, the use of spherical particle
approximation to retrieve aerosol products produces smaller errors than a similar estimate in the
visible bands, because of the larger multiple-scattering contribution to the total backscattered intensity
in the near UV. Furthermore, Van de Hulst. [40] said that the effect of particle shape on the scattering
properties of non-spherical particles becomes weaker when increasing the imaginary component of
the refractive index. Since the desert dust imaginary refractive index in the UV is almost an order of
magnitude larger than at 630 nm, the effect on non-sphericity on the phase function may also be less
important in the UV than in the visible spectrum.
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