
remote sensing  

Article

Parallel Agent-as-a-Service (P-AaaS) Based
Geospatial Service in the Cloud

Xicheng Tan 1,2, Song Guo 3, Liping Di 4, Meixia Deng 4, Fang Huang 5,6, Xinyue Ye 7,
Ziheng Sun 4, Weishu Gong 4, Zongyao Sha 1,2 and Shaoming Pan 8,*

1 International School of Software, Wuhan University, 37 Luoyu Road, Wuhan 430079, China;
xctan@whu.edu.cn (X.T.); zongyaosha@163.com (Z.S.)

2 Engineering Research Center for Geo-Informatics and Digital Technology Authorized by National
Administration of Surveying, Mapping and Geoinformation, Wuhan University, Wuhan 430079, China

3 Shanghai Academy of Spaceflight Technology, Yuanjiang Road 3888, Shanghai 201109, China;
guosonghit@aliyun.com

4 Center for Spatial Information Science and Systems, George Mason University, Fairfax, VA 22030, USA;
ldi@gmu.edu (L.D.); mdeng@gmu.edu (M.D.); zsun@gmu.edu (Z.S.); weishugong@gmail.com (W.G.)

5 School of Resources & Environment, University of Electronic Science and Technology of China,
2006 Xiyuan Ave., Chengdu 611731, China; hfhbhzp@uestc.edu.cn

6 Institute of Remote Sensing Big Data, Big Data Research Center, University of Electronic Science and
Technology of China, 2006 Xiyuan Ave., Chengdu 611731, China

7 Department of Geography, Kent State University, Kent, OH 44242, USA; xinyue.ye@gmail.com
8 State Key Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing,

Wuhan University, Wuhan 430079, China
* Correspondence: pansm@whu.edu.cn

Academic Editors: Sangram Ganguly and Prasad S. Thenkabail
Received: 30 January 2017; Accepted: 13 April 2017; Published: 19 April 2017

Abstract: To optimize the efficiency of the geospatial service in the flood response decision making
system, a Parallel Agent-as-a-Service (P-AaaS) method is proposed and implemented in the cloud.
The prototype system and comparisons demonstrate the advantages of our approach over existing
methods. The P-AaaS method includes both parallel architecture and a mechanism for adjusting
the computational resources—the parallel geocomputing mechanism of the P-AaaS method used
to execute a geospatial service and the execution algorithm of the P-AaaS based geospatial service
chain, respectively. The P-AaaS based method has the following merits: (1) it inherits the advantages
of the AaaS-based method (i.e., avoiding transfer of large volumes of remote sensing data or raster
terrain data, agent migration, and intelligent conversion into services to improve domain expert
collaboration); (2) it optimizes the low performance and the concurrent geoprocessing capability of the
AaaS-based method, which is critical for special applications (e.g., highly concurrent applications and
emergency response applications); and (3) it adjusts the computing resources dynamically according
to the number and the performance requirements of concurrent requests, which allows the geospatial
service chain to support a large number of concurrent requests by scaling up the cloud-based clusters
in use and optimizes computing resources and costs by reducing the number of virtual machines
(VMs) when the number of requests decreases.

Keywords: geospatial service; Open Geospatial Consortium (OGC); remote sensing data processing;
cloud computing; agent; parallel computing

1. Introduction and Background

With the development of Web service technology [1], Web service based applications were
introduced in the field of geographic information. Because of the advantages of Web services and the

Remote Sens. 2017, 9, 382; doi:10.3390/rs9040382 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2017, 9, 382 2 of 16

introduction and popularity of Service Oriented Architecture (SOA) [2–5], geographic information
systems have developed into a new form: geospatial services. Researchers introduced Web services
into the field of geographic information science and built a form of SOA suited to that field [6–8].
Since then, researchers have continued working to optimize and improve geographic science’s
SOA [9–12]. The ISO TC211 standard and the Open Geospatial Consortium (OGC) made great
strides toward standardizing geospatial data and services and have significantly promoted the
development of geospatial services. Today, the standard specifications of geospatial services (i.e.,
Web Map Services (WMS), Web Feature Services (WFS), Web Coverage Services (WCS), Web Processing
Services (WPS), Catalog Service for the Web (CSW), Sensor Web Enablement (SWE), etc.) have been
widely adopted [13–17]. These geospatial service specifications help the users publish Web-based
maps, geospatial data, geoprocessing services, and sensor Web services. Moreover, CSW helps the
users find specific geospatial services and make use of them.

Adhering to a standard for geospatial service based applications has several advantages such
as (1) increasing the ability to share geospatial data and geoprocessing models within a distributed
environment [18–23]; (2) allowing distributed geospatial services to be reused by other systems [9];
(3) enabling geoprocessing to be conducted in a worldwide network environment [24–26]; and
(4) supporting aggregation of distributed geospatial services into composite services or geospatial
service chains to be able to conduct more complex tasks [27].

The advantages listed above have caused the SOA approach—particularly for standard geospatial
services—to be widely adopted and applied throughout the world.

However, because of the current architecture and configuration of traditional Web services,
geospatial services are usually static. In other words, after a geospatial service has been installed
and configured, it runs statically on only one server rather than having any dynamic computing
capabilities [28–30]. This static architecture has seriously limited geospatial service applications and
brings major challenges to traditional geospatial analysis.

The static, traditional SOA based geospatial service architecture causes the following serious
problems in practical applications:

1. The fixed location of traditional SOA services reduces the efficiency of distributed geoprocessing
services because they perform distributed geospatial data transfer inefficiently: the standard
SOA-based geospatial data transfer services such as WCS and WFS are extremely inefficient
when transferring large spatial datasets. This low distributed data transfer efficiency can cause
the geoprocessing tasks to fail. Unfortunately, this situation is only becoming worse as the need
to transfer high-resolution image datasets over the Internet increases.

2. As geospatial applications increase in scale, geospatial services will continue to expand on the
Internet. There is a strong desire to chain these distributed geospatial services by combining them
into more powerful and more complex geospatial services [31]. However, because of the high
instability of the distributed network environment, such service chains will fail frequently due to
various factors (e.g., a node may be powered off, disconnected from the Internet, or experience a
machine failure).

3. The problems of inefficiency and instability in the existing atomic services accumulate in
composite services, causing lower-quality, unstable service chains that weaken the possibilities
for practical utilization of geospatial services.

A number of outstanding studies have been conducted to solve these geospatial service problems.
Service migration methods have been proposed that can move a service over the network to reduce the
data transfer volume required [32,33]. Rebuilding services to be compatible with parallel computing
can speed up geoprocessing, achieving high-performance computing (HPC) geospatial services [34–36].
The moving code approaches are presented to achieve efficient distributed geoprocessing in Spatial
Data Infrastructures (SDI) or sharing geoprocessing logic on the Web [37]. The cloud can be utilized to
achieve better load balancing for geocomputing services [38–42], also, software-as-a-service approaches



Remote Sens. 2017, 9, 382 3 of 16

are utilized to provide efficient and low cost public geospatial services in the cloud [43]. Li proposed
distributed geospatial data compression methods to reduce the large volumes of geography markup
language (GML) or image data to improve the efficiency of geospatial service data transfers [44].
The concept of quality of service (QoS) was proposed. QoS model factors can be extracted to evaluate
a geospatial service or work toward enhancing geospatial service quality. QoS measurements include
collection factors (i.e., efficiency, robustness, security, and so on) [45–47]. Many researchers have
focused on geospatial service aggregation methods to combine existing atomic geospatial services into
composite geospatial services that can address more complex tasks [48–50].

To solve the problems of traditional SOA-based composite geospatial services, we proposed
agent and cloud based service chaining method, which substitutes an agent for a fixed geospatial
service, meaning that the service chain can still execute successfully when an individual atomic
service becomes invalid, because the agent can act to replace the invalid service with an available
service [51]. However, in that initial approach, the agent and the cloud-based services communicated
in a non-standard manner (e.g., invoking ResultWFS and ResultWCS services to return results), which
limited the agent’s capabilities and applicability. Hence, we designed an Agent-as-a-Service (AaaS)
based method to improve the efficiency, robustness, and to improve the ability for domain experts to
collaborate [52]. The AaaS exhibits far better capacity than the traditional SOA based method and has
a greater potential to handle disaster responses and environmental risks. However, AaaS performance
is still compromised in some situations. For example, its execution time is still excessive when there
are many concurrent requests, indicating that it may not meet some decision-making requirements.
Moreover, in situations where many agents are trying to migrate to and execute on the same host node,
the AaaS-based method may be unable to handle the load. Hence, both the scalability and performance
of the initial AaaS method require further improvements.

In this paper, we will integrate parallel computing technology into the AaaS-based method to
improve the scalability and performance. The proposed Parallel Agent-as-a-Service (P-AaaS) geospatial
service can handle a larger number of concurrent requests with greater efficiency. The conducted
experiments show the superiority of this improved method.

2. Geocomputing Resource Adjustment Mechanism for P-AaaS Based Geospatial Services

2.1. The P-AaaS Infrastructure

We initially designed the AaaS infrastructure in [52], and according to the designation, the AaaS
infrastructure has five basic Web services, including Agent Registration, Agent Clone, Agent Migration,
Service Generation, and Agent Life Detection. Users can register agents, conduct Agent migration and
generate geospatial services by calling the five services. However, that agent was intended solely for
sequential geoprocessing. Therefore, we optimized the existing AaaS infrastructure to fit a parallel
computing paradigm.

This research develops a MPICH based P-AaaS approach. MPICH is a high performance and
widely portable implementation of the Message Passing Interface (MPI) standard, and can support the
redesign of the existing AaaS infrastructure with the least effort. There are alternative technologies
such as Spark, which has better stability than MPICH. However, if the Spark is adopted, it is necessary
to conduct a large redesign of the existing AaaS approach, including the data storage and the geospatial
data publishing mechanisms. Hence, MPICH is adopted in this P-AaaS architecture.

Figure 1 shows how an agent migrates and converts into a parallel WPS service. With steps 1©
to 5©, the agents will be searched, moved, registered, and transformed into WPS service. For the
detailed procedure of Agent migration, see [52]. After migrating to the target cloud node, the agent
sends message-passing interface (MPI) geocomputing programs to the shared folder of the master
node of the virtual Linux cluster. As shown in Figure 1, the P-AaaS infrastructure has a new added
service, PGEC, that the agent initiates to transfer the MPI parallel programs to the virtual Linux cluster
nodes. This process is conducted by copying the parallel processing program from the AaaS node to



Remote Sens. 2017, 9, 382 4 of 16

the folder of MPI on every VM in the Linux cluster. After the MPI parallel program has been sent to
the target virtual machines (VMs), the parallel geocomputing environment is configured, and parallel
geoprocessing can be launched.

Remote Sens. 2017, 9, 382  4 of 16 

 

cluster nodes. This process is conducted by copying the parallel processing program from the AaaS 
node to the folder of MPI on every VM in the Linux cluster. After the MPI parallel program has been 
sent to the target virtual machines (VMs), the parallel geocomputing environment is configured, and 
parallel geoprocessing can be launched.  

 
Figure 1. P-AaaS architecture. 

2.2. Cloud Computing Resources Management Modules 

To monitor and adjust the scale of the cloud computing resources dynamically, we designed the 
Geocomputing Environment Controller (GEC). The GEC includes the service environment Image 
Manager (IM), the Service Environment Image Configurator (SEIC), a Resource Monitor (RM), and 
Resource Adjustor (RA), as shown in Figure 2. 

 
Figure 2. Computing resources management modules. 

The functions of each of the four main parts are as follows:  

1. The Resources Monitor (RM) monitors real-time performance data (i.e., CPU usage, RAM usage, 
network usage) from the virtual clusters and raises alerts when the cluster reaches threshold 
values.  

2. The Resources Adjustor (RA) takes specific actions based on the various alerts from the RM to 
adjust the resources of a specific service. For example, if there is a lack of computing resources 
(e.g., CPU or RAM), the RA will launch new VMs to increase the cluster size. In contrast, if the 
cluster contains more resources than the service needs, the RA will terminate some VMs to shrink 
the cluster. 

Figure 1. P-AaaS architecture.

2.2. Cloud Computing Resources Management Modules

To monitor and adjust the scale of the cloud computing resources dynamically, we designed the
Geocomputing Environment Controller (GEC). The GEC includes the service environment Image
Manager (IM), the Service Environment Image Configurator (SEIC), a Resource Monitor (RM), and
Resource Adjustor (RA), as shown in Figure 2.

Remote Sens. 2017, 9, 382  4 of 16 

 

cluster nodes. This process is conducted by copying the parallel processing program from the AaaS 
node to the folder of MPI on every VM in the Linux cluster. After the MPI parallel program has been 
sent to the target virtual machines (VMs), the parallel geocomputing environment is configured, and 
parallel geoprocessing can be launched.  

 
Figure 1. P-AaaS architecture. 

2.2. Cloud Computing Resources Management Modules 

To monitor and adjust the scale of the cloud computing resources dynamically, we designed the 
Geocomputing Environment Controller (GEC). The GEC includes the service environment Image 
Manager (IM), the Service Environment Image Configurator (SEIC), a Resource Monitor (RM), and 
Resource Adjustor (RA), as shown in Figure 2. 

 
Figure 2. Computing resources management modules. 

The functions of each of the four main parts are as follows:  

1. The Resources Monitor (RM) monitors real-time performance data (i.e., CPU usage, RAM usage, 
network usage) from the virtual clusters and raises alerts when the cluster reaches threshold 
values.  

2. The Resources Adjustor (RA) takes specific actions based on the various alerts from the RM to 
adjust the resources of a specific service. For example, if there is a lack of computing resources 
(e.g., CPU or RAM), the RA will launch new VMs to increase the cluster size. In contrast, if the 
cluster contains more resources than the service needs, the RA will terminate some VMs to shrink 
the cluster. 

Figure 2. Computing resources management modules.

The functions of each of the four main parts are as follows:

1. The Resources Monitor (RM) monitors real-time performance data (i.e., CPU usage, RAM
usage, network usage) from the virtual clusters and raises alerts when the cluster reaches
threshold values.

2. The Resources Adjustor (RA) takes specific actions based on the various alerts from the RM to
adjust the resources of a specific service. For example, if there is a lack of computing resources
(e.g., CPU or RAM), the RA will launch new VMs to increase the cluster size. In contrast, if the



Remote Sens. 2017, 9, 382 5 of 16

cluster contains more resources than the service needs, the RA will terminate some VMs to shrink
the cluster.

3. The Image Manager manages image information; because different agents may need specific
environments, the RA can search for a requested image via the IM and then launch new virtual
machines or clusters as new computing resources.

2.3. Adjusting Geoprocessing Resources Dynamically

It is necessary to set the scale of a cluster; we can define the scale using experience and the
efficiency that users and decision makers require. The higher the idle percentage, the higher the
efficiency that can be obtained. In the procedures described above, after an AaaS virtual machine
(VM) has been created and the appropriate agents migrated to that VM, the cloud Resources Adjustor
will query the cluster’s status and availability and then determine whether to create new VMs or
terminate existing VMs. In this study, the number of VMs required is determined by the RA according
to the number of concurrent requests being serviced. The rules for adjusting the parallel geoprocessing
resources are as follows:

1. VM Creation Conditions. A predetermined number of fundamental VMs is assigned to handle
group concurrent requests. For example, when the performance requirement is set to level
1, 24 two-core fundamental VMs are launched for every 15 concurrent requests. When the
performance requirement is set to level 5, 28 two-core fundamental VMs are launched for every
15 concurrent requests. Consequently, as the number of concurrent requests increases, based on
the performance requirement level, a corresponding number of additional VMs will be launched
in the cluster.

2. VM Termination Conditions. Whenever the number of concurrent requests is reduced by 15, idle
VMs will be terminated to reduce the scale of the cluster; a fixed number of fundamental VMs
will be terminated from the cluster. For example, if the number of concurrent requests were to fall
from 30 to 15, at the level 1 performance requirement, 24 fundamental VMs would be terminated.
Similarly, at the level 5 performance requirement, 28 fundamental VMs would be terminated.

3. The P-AaaS Parallel Geoprocessing Mechanism

As additional job requests appear to be scheduled by the agent, concurrent jobs are submitted to
the cluster via the Portable Batch System (PBS). The sub-tasks of these jobs are scheduled to VMs that
have computational resources available. During geoprocessing task execution, the task is decomposed
into smaller sub-tasks that share the same logic. These subtasks execute in separate worker threads
in Single Instruction Multiple Data (SIMD) mode. The geospatial task decomposition and result
combination is shown in Figure 3.

After the geoprocessing task has been decomposed logically into subtasks, the main thread
sends equal numbers of subtask indices to the slave threads, and the worker threads then conduct
the geoprocessing. Then the sub-results are sent to the master thread, which writes them into the
combined result. Finally, the combined result will be copied to the shared folder of the AaaS node and
then registered into the Geoserver as a data service (i.e., through WFS or WCS). We designed a parallel
geoprocessing algorithm for agents as shown in Figure 4.

After completing the parallel environment configuration, when a WPS service is requested, the
Agent will acquire the input data and save it to a folder shared with the login Linux node. After the
required data have been copied to the login Linux node, the data are shared with all the other Linux
worker nodes via NFS, thereby allowing all Linux worker nodes to acquire the needed data. Then,
geocomputing starts by sending the input task-related parameters to the parallel program. The MPI
program will then perform the geocomputing tasks in a parallel manner.



Remote Sens. 2017, 9, 382 6 of 16

Remote Sens. 2017, 9, 382  6 of 16 

 

 

Figure 3. Geospatial task decomposition and result combination. 

In this approach, a master/slave mode is adopted to conduct geocomputing tasks. The master 
thread decomposes the geocomputing task logically and sends the appropriate indexes of the 
decomposed task to slave threads via the MPI_send() function. The slave threads read the task data 
from the shared folder, extract the index number of the subtask, and start to conduct the computation. 
When a subtask completes, the slave thread save the result sub-tile data in the shared folder and 
sends the indexes of resulting sub-tile data to the master thread via MPI_send(). The master thread 
combines the finished resulting sub-tile data into the final result and copies it to the shared folder of 
the AaaS node. Finally, the Agent obtains the results and registers them into the Geoserver as the 
data services response. 

 
Figure 4. P-AaaS task scheduling mechanism. 

Figure 3. Geospatial task decomposition and result combination.

In this approach, a master/slave mode is adopted to conduct geocomputing tasks. The master thread
decomposes the geocomputing task logically and sends the appropriate indexes of the decomposed
task to slave threads via the MPI_send() function. The slave threads read the task data from the shared
folder, extract the index number of the subtask, and start to conduct the computation. When a subtask
completes, the slave thread save the result sub-tile data in the shared folder and sends the indexes of
resulting sub-tile data to the master thread via MPI_send(). The master thread combines the finished
resulting sub-tile data into the final result and copies it to the shared folder of the AaaS node. Finally, the
Agent obtains the results and registers them into the Geoserver as the data services response.

Remote Sens. 2017, 9, 382  6 of 16 

 

 

Figure 3. Geospatial task decomposition and result combination. 

In this approach, a master/slave mode is adopted to conduct geocomputing tasks. The master 
thread decomposes the geocomputing task logically and sends the appropriate indexes of the 
decomposed task to slave threads via the MPI_send() function. The slave threads read the task data 
from the shared folder, extract the index number of the subtask, and start to conduct the computation. 
When a subtask completes, the slave thread save the result sub-tile data in the shared folder and 
sends the indexes of resulting sub-tile data to the master thread via MPI_send(). The master thread 
combines the finished resulting sub-tile data into the final result and copies it to the shared folder of 
the AaaS node. Finally, the Agent obtains the results and registers them into the Geoserver as the 
data services response. 

 
Figure 4. P-AaaS task scheduling mechanism. Figure 4. P-AaaS task scheduling mechanism.



Remote Sens. 2017, 9, 382 7 of 16

4. P-AaaS Based Geospatial Service Chain Execution Algorithm

We described the details of the AaaS-based geospatial service aggregation mechanism in [52].
In this study, to improve the scalability and performance of the AaaS-based geospatial service, we
redesigned the mechanism by which geospatial services execute, as shown in Figure 5.

Remote Sens. 2017, 9, 382  7 of 16 

 

4. P-AaaS Based Geospatial Service Chain Execution Algorithm 

We described the details of the AaaS-based geospatial service aggregation mechanism in [52]. In 
this study, to improve the scalability and performance of the AaaS-based geospatial service, we 
redesigned the mechanism by which geospatial services execute, as shown in Figure 5.  

 
Figure 5. Execution mechanism of the P-AaaS based geospatial service. 

The redesigned portion of Figure 5 shows that during the execution of P-AaaS based 
geoprocessing service, after the Agent migrates to the data, the procedure to conduct parallel 
geoprocessing operations is as follows: 

1. Determine whether the geoprocessing service can be executed in parallel. This depends on 
whether the geoprocessing service supports parallel geoprocessing. 

2. When computing resources are available for the task, it immediately begins conducting 
geoprocessing; 

Figure 5. Execution mechanism of the P-AaaS based geospatial service.

The redesigned portion of Figure 5 shows that during the execution of P-AaaS based geoprocessing
service, after the Agent migrates to the data, the procedure to conduct parallel geoprocessing operations
is as follows:

1. Determine whether the geoprocessing service can be executed in parallel. This depends on
whether the geoprocessing service supports parallel geoprocessing.

2. When computing resources are available for the task, it immediately begins conducting geoprocessing;



Remote Sens. 2017, 9, 382 8 of 16

3. When more concurrent requests are submitted and have been processed by the geoprocessing
resources adjusting mechanism as described in Section 2.3, the elastic geocomputing resources
adjustment process will be conducted to accommodate the geoprocessing requirements.

After the geospatial service chain begins executing, agents that support parallel computing will
execute with enhanced performance; however, if the service is intended to process only simple and
fast tasks, it is unnecessary to parallelize them. In this manner, the P-AaaS method can not only utilize
the mobile computing capability of existing agents but can also make use of the capacity of parallel
computing. This approach optimizes the efficiency of the AaaS-based method and will act to improve
the execution speed of the geospatial service chain.

5. Model and Experimental System

To illustrate the feasibility of the P-AaaS method described above, we used the same flood
response model described in [52]. This model includes the requisite analyses during the flooding.
Decision makers and participants can execute the model during the flooding or at any time to simulate
the flooding response. To demonstrate the efficiency of the P-AaaS method, we need to parallelize
the specific Agents, which are time consuming and can benefit from the parallelization. According to
the execution time of the involved Agents, the flood submergence analysis and multi-spectral remote
sensing data based crop extraction analysis consume the main part of the execution time. The other
Agents handle smaller geospatial dataset or vector data processing, which are not time consuming in
the model. Hence, they are still executed sequentially. However, if a very large vector data is involved,
the execution time of the Agent might increase, and need to be parallelized. Consequently, we build
two parallelized agents (i.e., parallel flood submergence analysis and parallel crop extraction analysis).
The model is shown in Figure 6.

Remote Sens. 2017, 9, 382  8 of 16 

 

3. When more concurrent requests are submitted and have been processed by the geoprocessing 
resources adjusting mechanism as described in Section 2.3, the elastic geocomputing resources 
adjustment process will be conducted to accommodate the geoprocessing requirements. 

After the geospatial service chain begins executing, agents that support parallel computing will 
execute with enhanced performance; however, if the service is intended to process only simple and 
fast tasks, it is unnecessary to parallelize them. In this manner, the P-AaaS method can not only utilize 
the mobile computing capability of existing agents but can also make use of the capacity of parallel 
computing. This approach optimizes the efficiency of the AaaS-based method and will act to improve 
the execution speed of the geospatial service chain.  

5. Model and Experimental System 

To illustrate the feasibility of the P-AaaS method described above, we used the same flood 
response model described in [52]. This model includes the requisite analyses during the flooding. 
Decision makers and participants can execute the model during the flooding or at any time to 
simulate the flooding response. To demonstrate the efficiency of the P-AaaS method, we need to 
parallelize the specific Agents, which are time consuming and can benefit from the parallelization. 
According to the execution time of the involved Agents, the flood submergence analysis and multi-
spectral remote sensing data based crop extraction analysis consume the main part of the execution 
time. The other Agents handle smaller geospatial dataset or vector data processing, which are not 
time consuming in the model. Hence, they are still executed sequentially. However, if a very large 
vector data is involved, the execution time of the Agent might increase, and need to be parallelized. 
Consequently, we build two parallelized agents (i.e., parallel flood submergence analysis and parallel 
crop extraction analysis). The model is shown in Figure 6. 

(2) Flood Subme-
rgence Analysis

(4) Flood-affected 
population Statistic

(5) Refuges Location 
Analysis

(6) Evacuation 
Route Planning

(7)
The schedule 

of rescue 
workers

(8)
The schedule 

of the 
emergency 

supply 
materials

(9)
The schedule 

of the 
medical care 

resources

(10)
The schedule 

of the 
volunteer

(11)
Submerged 

Crops 
Analysis and 
Agricultural 
Loss Statistic

(3) Crop Extraction 
Analysis

(1) Flood Level Data 
Input

P-AaaS Based 
Geospatial Services

AaaS Based 
Geospatial Services

 
Figure 6. Flood response model. 

Figure 6. Flood response model.



Remote Sens. 2017, 9, 382 9 of 16

We switched the cloud platform from Alibaba Cloud to QingCloud, a cloud platform in China
that can provide global IaaS, PaaS, and SaaS services. QingCloud is featured by per second billing
technology, and it opens the programming API to utilize the cloud resources efficiently. All these
features helps the cloud users use the capability of cloud computing and reduce the cost. The Agents
and data distribution of the use case are listed in Table 1.

Table 1. Agents and data distribution.

Cloud
Node ID Owner

Cloud Region

Agent Data
Retained Data

VolumeRegion
Name Location

Cloud 1 FCDRO PEK2 Beijing1 None Flood depth, safe area,
FDZ data 0.5 GB

Cloud 2 MLR PEK2 Beijing1 None 1 m DEM,
topographic map 162.25 GB

Cloud 3 MT PEK3A Beijing2 None Transportation and
road data 0.5 GB

Cloud 4 BS GD1 Guangzhou None Population and economic
statistics data 0.32 GB

Cloud 5 MA PEK3A Beijing2 None

Landsat TM multispectral
remote sensing data,
agricultural multispectral
sample library

16.5 GB

Cloud 6 ARO AP1 Hong Kong

Parallel flood submergence
analysis; flood-affected
population evaluation; refuge
location analysis and
evacuation route planning;
scheduling of rescue workers,
emergency supply materials,
medical care resources, and
volunteers; parallel crop
extraction analysis, submerged
crop analysis and agricultural
loss evaluation.

None 0

To build the P-AaaS based geospatial service system, six Windows Server 2008 R2 cloud VMs
were created. The P-AaaS infrastructure, Geoserver 2.7, Openlayers 3.0, Grass GIS 6.44, and 52◦ North
WPS were installed in the Windows image to publish the geospatial data and conduct geographic
analysis. The CentOS instance was created in the cloud cluster, and MPICH was used to build the
parallel geoprocessing program.

Figure 7 shows the prototype system of P-AaaS-based flood response. After users click the “START
ANALYSIS” button, the flood response analysis task begins to execute according to the flood response
model described above. When the task is completed, the submerged corps data, evacuation routes, and
refuge locations are created and overlapped on the flood affected area as shown in Figure 7. Then, users
can query the requirement level for food and fresh water, rescue workers, emergency supply materials,
medical care resources, and volunteers by clicking on the refuge location area. These geoprocessing
results can help decision makers make sound flood response decisions rapidly.



Remote Sens. 2017, 9, 382 10 of 16 

 

 
Figure 7. Flood response results. 

 

Submerged 
crop 

Evacuation 
routes 

Refuges 
location 

Figure 7. Flood response results.

6. Discussion

The P-AaaS geospatial service execution performance and data acquisition is compared to the
existing AaaS service; the new characteristics of the P-AaaS method are also tested. The configurations
of the AaaS and P-AaaS approaches are listed in Table 2.

Table 2. System configurations for the tests.

Approach Machine Configuration Deployment of Data and Agents

1 Six QingCloud Windows VMs, each with eight VCPUs with
2.6 GHz, 64 GB of RAM, a 50-GB disk and DTR of 10 Mbps As shown in Table 1

2

Six QingCloud Windows VMs, each with four VCPUs with
2.6 GHz, 32 GB of RAM, 50-GB disks and DTR of 10 Mbps
Virtual Clusters: QingCloud Virtual Clusters, each node with
dual-core CPUs with 2.1 GHz, 32 GB of RAM, can increase or
decrease Linux nodes dynamically

As shown in Table 1

6.1. Performance for Different Concurrent Requests

We conducted performance comparisons between the AaaS-based method and traditional SOA
methods in [52]; these comparisons showed that the AaaS-based method had far better performance
than the SOA methods. Therefore, we do not compare AaaS or P-AaaS with SOA methods here, but
instead compare the performances of the AaaS-based method and the P-AaaS based method, and the
performance requirement is set to level 4. The results are shown in Figure 8.

Although the AaaS-based method improved performance over the traditional (i.e., SOA-based)
methods, the data shows that the performance of the AaaS-based method is not promising in
some situations. For example, it requires approximately 5 h to execute when there are more than
15 concurrent requests. When there are 60 concurrent requests, the AaaS method’s execution time
increases to more than 50 h. This indicates that the AaaS-based method may not be suitable for meeting
some decision-making requirements when there are many concurrent requests. In contrast, the P-AaaS
method required only approximately 2.66 h to service 15 concurrent requests. When the number of
requests increased to 30, 45, and 60, the P-AaaS method’s execution times were approximately 2.7,
4.8, and 5.8 h, respectively, indicating that the P-AaaS based method achieves dramatically better
performance than the AaaS-based method when there are many concurrent requests. Figure 8 also



Remote Sens. 2017, 9, 382 11 of 16

shows that the data acquisition time comprises the dominant portion of the execution time for the
P-AaaS based method. Moreover, as the number of concurrent requests increases, the data acquisition
time increases accordingly. This occurs because when there are multiple concurrent requests, the IO
performance of the data server degrades accordingly. In future work, we plan to enhance the data
acquisition capability of the proposed approach.

Remote Sens. 2017, 9, 382  11 of 16 

 

increases, the data acquisition time increases accordingly. This occurs because when there are 
multiple concurrent requests, the IO performance of the data server degrades accordingly. In future 
work, we plan to enhance the data acquisition capability of the proposed approach. 

 
Figure 8. Execution times of the AaaS-based and P-AaaS based methods. 

6.2. Performance Adjustability 

The prototype system also has the capability to adjust performance by setting the performance 
requirement level. If higher performance is required, the user can raise the performance level to level 
5. Conversely, when high performance is not required, the user can reduce the performance level to 
level 1. We variously set the performance level between 1 and 5 and tested the system with 30 
concurrent requests and a 1-Mbps network. Under these conditions, the execution times of the tests 
are illustrated in Figure 9.  

 
Figure 9. Performance of P-AaaS based method at different performance requirement levels.  

As Figure 9 shows, under different performance requirement levels, the P-AaaS method can 
meet users’ needs by adjusting its performance. When the performance level is set to level 1, the 
average computing time for all requests is approximately 2.28 h, and the total execution time is 4.3 h. 
When the performance requirement level is set to level 5, the average computing time falls to 

Figure 8. Execution times of the AaaS-based and P-AaaS based methods.

6.2. Performance Adjustability

The prototype system also has the capability to adjust performance by setting the performance
requirement level. If higher performance is required, the user can raise the performance level to
level 5. Conversely, when high performance is not required, the user can reduce the performance
level to level 1. We variously set the performance level between 1 and 5 and tested the system with
30 concurrent requests and a 1-Mbps network. Under these conditions, the execution times of the tests
are illustrated in Figure 9.

Remote Sens. 2017, 9, 382  11 of 16 

 

increases, the data acquisition time increases accordingly. This occurs because when there are 
multiple concurrent requests, the IO performance of the data server degrades accordingly. In future 
work, we plan to enhance the data acquisition capability of the proposed approach. 

 
Figure 8. Execution times of the AaaS-based and P-AaaS based methods. 

6.2. Performance Adjustability 

The prototype system also has the capability to adjust performance by setting the performance 
requirement level. If higher performance is required, the user can raise the performance level to level 
5. Conversely, when high performance is not required, the user can reduce the performance level to 
level 1. We variously set the performance level between 1 and 5 and tested the system with 30 
concurrent requests and a 1-Mbps network. Under these conditions, the execution times of the tests 
are illustrated in Figure 9.  

 
Figure 9. Performance of P-AaaS based method at different performance requirement levels.  

As Figure 9 shows, under different performance requirement levels, the P-AaaS method can 
meet users’ needs by adjusting its performance. When the performance level is set to level 1, the 
average computing time for all requests is approximately 2.28 h, and the total execution time is 4.3 h. 
When the performance requirement level is set to level 5, the average computing time falls to 

Figure 9. Performance of P-AaaS based method at different performance requirement levels.

As Figure 9 shows, under different performance requirement levels, the P-AaaS method can meet
users’ needs by adjusting its performance. When the performance level is set to level 1, the average



Remote Sens. 2017, 9, 382 12 of 16

computing time for all requests is approximately 2.28 h, and the total execution time is 4.3 h. When the
performance requirement level is set to level 5, the average computing time falls to approximately
0.4 h, and the total execution time is 2.5 h. This adjustable feature is advantageous for different
applications. For example, during a disaster (e.g., a flood or typhoon response), a higher performance
requirement level is necessary, but for applications that are not urgent such as science data analysis,
a lower performance requirement level is recommended, which saves cloud computing resources.
The figure also shows that during execution of the P-AaaS based method, although it can save time in
transferring distributed spatial data, its data acquisition time would be far below that of the traditional
SOA-based method. This feature was demonstrated in [52], but data transfer time is still a dominant
factor here. Again, even in this highly concurrent system, the efficiency of disk IO and geospatial data
services (i.e., WFS and WCS) still requires more optimization.

6.3. Resources Requirement Analysis

It is obvious that the sequential AaaS-based method requires fewer computing resources, but when
many concurrent requests occur, its performance is poor. In comparison, the P-AaaS based method
requires more computing resources but can obtain a much better performance. Figure 10 shows how the
P-AaaS based method utilizes cloud platform capabilities to launch new VMs dynamically according
to the number of concurrent requests. When more requests and higher performance requirements
are anticipated, the system can launch more VMs in the cluster and when fewer concurrent requests
occur or lower performance requirements are needed, the system can terminate unused VMs in the
cluster. Hence, when there are few concurrent requests (e.g., less than 15), idle computing resources
can be used by other applications. This approach also helps geospatial service vendors save on
capital investments—which is critical for smaller institutes that would like to be able to offer or use
high-performance geospatial services.

Remote Sens. 2017, 9, 382  12 of 16 

 

approximately 0.4 h, and the total execution time is 2.5 h. This adjustable feature is advantageous for 
different applications. For example, during a disaster (e.g., a flood or typhoon response), a higher 
performance requirement level is necessary, but for applications that are not urgent such as science 
data analysis, a lower performance requirement level is recommended, which saves cloud computing 
resources. The figure also shows that during execution of the P-AaaS based method, although it can 
save time in transferring distributed spatial data, its data acquisition time would be far below that of 
the traditional SOA-based method. This feature was demonstrated in [52], but data transfer time is 
still a dominant factor here. Again, even in this highly concurrent system, the efficiency of disk IO 
and geospatial data services (i.e., WFS and WCS) still requires more optimization.  

6.3. Resources Requirement Analysis 

It is obvious that the sequential AaaS-based method requires fewer computing resources, but 
when many concurrent requests occur, its performance is poor. In comparison, the P-AaaS based 
method requires more computing resources but can obtain a much better performance. Figure 10 
shows how the P-AaaS based method utilizes cloud platform capabilities to launch new VMs 
dynamically according to the number of concurrent requests. When more requests and higher 
performance requirements are anticipated, the system can launch more VMs in the cluster and when 
fewer concurrent requests occur or lower performance requirements are needed, the system can 
terminate unused VMs in the cluster. Hence, when there are few concurrent requests (e.g., less than 
15), idle computing resources can be used by other applications. This approach also helps geospatial 
service vendors save on capital investments—which is critical for smaller institutes that would like 
to be able to offer or use high-performance geospatial services. 

 
Figure 10. Computing resource requirements of the P-AaaS based method. 

6.4. Transferability and Generalization Analysis 

Transferability and generalization capability is usually a significant factor to evaluate the 
superiority of a method. The proposed P-AaaS method in this paper is built based on the OWS 
specifications, which makes the P-AaaS method has superior transferability. Moreover, the P-AaaS 
works on Windows and Linux systems, which are supported by the popular cloud platforms. Hence, 
the P-AaaS can also be moved to other IaaS cloud environments (e.g., Amazon AWS, Azure, etc.). To 
generalize this method in other scenarios (e.g., earthquake, tsunami, etc.), we need to build field 
related parallel Agent and aggregate them into the service chain according to the models. On the 
other hand, the P-AaaS method still needs more optimizations. In this research, not all tasks are 
parallelized, and we determine which Agent need to be parallelized empirically. However, if the 

Figure 10. Computing resource requirements of the P-AaaS based method.

6.4. Transferability and Generalization Analysis

Transferability and generalization capability is usually a significant factor to evaluate the
superiority of a method. The proposed P-AaaS method in this paper is built based on the OWS
specifications, which makes the P-AaaS method has superior transferability. Moreover, the P-AaaS
works on Windows and Linux systems, which are supported by the popular cloud platforms. Hence,
the P-AaaS can also be moved to other IaaS cloud environments (e.g., Amazon AWS, Azure, etc.).



Remote Sens. 2017, 9, 382 13 of 16

To generalize this method in other scenarios (e.g., earthquake, tsunami, etc.), we need to build field
related parallel Agent and aggregate them into the service chain according to the models. On the other
hand, the P-AaaS method still needs more optimizations. In this research, not all tasks are parallelized,
and we determine which Agent need to be parallelized empirically. However, if the method is going to
be adopted widely, more efforts need to be put on the management and description of the Agents and
build the rules of choosing parallel Agent or sequential Agent automatically. We will continue to do
more work on the generalization of the P-AaaS approach to make it easier to be implemented in more
geospatial applications.

7. Conclusions

In this paper, we proposed a performance-adjustable P-AaaS based geospatial service approach
that can address the performance problems of the sequential AaaS-based method. Although the
performance of the AaaS-based method is much better than the traditional SOA-based methods,
we still found that the sequential AaaS-based method experiences performance challenges when
handling many concurrent requests. To solve these problems, P-AaaS utilizes cloud-enabled parallel
computing technology to optimize the efficiency of the agents introduced for the AaaS-based method.
P-AaaS approach also provides a new manner to aggregate the cloud-based parallel remote sensing
data processing with the geospatial service chain. The P-AaaS based method not only inherits the
capabilities of the AaaS-based method (i.e., avoiding the transfer of large volumes of data, agent
migration, intelligent service conversion, improving domain expert collaboration, etc.), but also,
based on the experiments described in this paper, shows how the remote sensing data involved
composite geoprocessing service chains or workflows can obtain higher performance. It is usually
not easy to obtain high performance geoprocessing in a distributed environment, but, using the
method proposed here, when domain experts utilize a distributed geospatial service concurrently,
this method provides an acceptable level of geoprocessing performance, which is critical during
emergency and natural disaster responses, particularly when large-volume remote sensing data or
big spatial data are involved. The experiments also demonstrated that the P-AaaS method can adjust
the performance of the geospatial service chain when facing different performance requirements.
The performance-adjusting ability of the proposed method is useful for those users who have different
performance requirements. Moreover, in the future, our efforts will focus on accurately controlling the
execution time of the geospatial service chain or geoprocessing models by adjusting the performance.
This will enable domain experts to accurately specify the performance requirements of their geospatial
services, which will improve the efficiency of emergency responses, making them more predictable and
controllable. Finally, the experiment demonstrated that the P-AaaS based method can automatically
change the scale of the computing resources employed based on the number of concurrent requests
and on performance requirements. Consequently, geospatial services can be provided in a green and
less expensive manner. Our future efforts will also involve researching the temporal-spatial rules that
govern changes in the number of requests and using that information to adjust the available cloud
computing resources in advance, offering users an even better experience.

Finally, data acquisition time is still a dominant factor when there are many concurrent requests
because of the capabilities of data services (i.e., WCS, WFS, and the Geospatial server (e.g., Geoserver)).
Therefore, our future work will address data service efficiency through scaling the data server
by adopting big data processing methods (e.g., HDFS and NoSQL) to optimize data acquisition
performance and obtain a superior cost performance.



Remote Sens. 2017, 9, 382 14 of 16

Acknowledgments: We thank the editors and the reviewers for their outstanding comments and suggestions,
which greatly helped to improve the technical quality of the manuscript. This study was supported in part by
the National Science Foundation of China (NSFC) (Nos. 51277167, 41371371, 41671382, and 41271398), Shanghai
Aerospace Science and Technology Innovation Fund (No. SAST2016006), and the Key Laboratory of Spatial Data
Mining & Information Sharing of the Ministry of Education, Fuzhou University (No. 2016LSDMIS06).

Author Contributions: Xicheng Tan and Shaoming Pan contributed to design the main idea, implemented and
developed the proposed methodology, and wrote the paper; Liping Di, Meixia Deng and Fang Huang contributed
some ideas; Ziheng Sun, Weishu Gong and Song Guo contributed to the discussion of the methodology and
results; Zongyao Sha and Xinyue Ye revised the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Papazoglou, M.P.; van den Heuvel, W. Service oriented architectures: Approaches, technologies and research
issues. VLDB J. 2007, 16, 389–415. [CrossRef]

2. Fang, Y.; Lee, B.; Chou, T.; Lin, Y.; Lien, J. The implementation of SOA within grid structure for disaster
monitoring. Expert Syst. Appl. 2009, 36, 5784–5792. [CrossRef]

3. Rotem-Gal-Oz, A.; Bruno, E.; Dahan, U. SOA Patterns; Manning: Shelter Island, NY, USA, 2012.
4. Pasley, J. How BPEL and SOA are changing web services development. IEEE Internet Comput. 2005, 9, 60–67.

[CrossRef]
5. Schroth, C.; Janner, T. Web 2.0 and SOA: Converging concepts enabling the internet of services. IT Prof. 2007,

9, 36–41. [CrossRef]
6. Karantzalos, K.; Bliziotis, D.; Karmas, A. A scalable geospatial web service for near real-time, high-resolution

land cover mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4665–4674. [CrossRef]
7. Castronova, A.M.; Goodall, J.L.; Elag, M.M. Models as web services using the open geospatial consortium

(OGC) web processing service (WPS) standard. Environ. Model. Softw. 2013, 41, 72–83. [CrossRef]
8. Kussul, N.; Shelestov, A.; Skakun, S.; Li, G.; Kussul, O.; Xie, J. Service-oriented infrastructure for flood

mapping using optical and SAR satellite data. Int. J. Digit. Earth 2014, 7, 829–845. [CrossRef]
9. Di, L.; Zhao, P.; Yang, W.; Yue, P. Ontology-driven automatic geospatial-processing modeling based on

web-service chaining. In Proceedings of the 6th Annual NASA Earth Science Technology Conference, College
Park, MD, USA, 27 June 2006; pp. 27–29.

10. Yue, P.; Di, L.; Yang, W.; Yu, G.; Zhao, P. Semantics-based automatic composition of geospatial web service
chains. Comput. Geosci. 2007, 33, 649–665. [CrossRef]

11. Deng, M.; Di, L. Facilitating Data-Intensive Research and Education in Earth Science—A Geospatial Web Service
Approach; LAP LAMBERT Academic Publishing GmbH: Saarbrücken, Germany, 2010.

12. Kalluri, S.; Gundy, J.; Haman, B.; Paullin, A.; Van Rompay, P.; Vititoe, D.; Weiner, A. A high performance
remote sensing product generation system based on a service oriented architecture for the next generation of
geostationary operational environmental satellites. Remote Sens. 2015, 7, 10385–10399. [CrossRef]

13. Di, L. A framework for developing Web-service-based intelligent geospatial knowledge systems.
Geogr. Inf. Sci. 2005, 11, 24–28. [CrossRef]

14. Di, L.; Chen, A.; Yang, W.; Wei, Y.; Mehrotra, P. The development of a geospatial data grid by integrating
OGC web services with globus-based grid technology. Concurr. Comput. Pract. Exp. 2008, 20, 1617–1635.
[CrossRef]

15. Di, L.; Yu, G.; Shao, Y.; Bai, Y.; Deng, M.; McDonald, K.R. Persistent WCS and CSW services of GOES data for
GEOSS. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS),
Honolulu, HI, USA, 25–30 July 2010; pp. 1699–1702.

16. Bielski, C.; Gentilini, S.; Pappalardo, M. Post-disaster image processing for damage analysis using
GENESI-DR, WPS and grid computing. Remote Sens. 2011, 3, 1234–1250. [CrossRef]

17. Hu, C.; Guan, Q.; Chen, N.; Li, J.; Zhong, X.; Han, Y. An observation capability metadata model for EO
sensor discovery in sensor web enablement environments. Remote Sens. 2014, 6, 10546–10570. [CrossRef]

18. Du, W.; Chen, N.; Yan, S. Online soil moisture retrieval and sharingusing geospatial web-enabled BDS-R
service. Comput. Electron. Agric. 2016, 121, 354–367. [CrossRef]

19. Chen, Z.; Lin, H.; Chen, M.; Liu, D.; Bao, Y.; Ding, Y. A framework for sharing and integrating remote sensing
and GIS models based on Web service. Sci. World J. 2014, 2014, 354919. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s00778-007-0044-3
http://dx.doi.org/10.1016/j.eswa.2008.06.091
http://dx.doi.org/10.1109/MIC.2005.56
http://dx.doi.org/10.1109/MITP.2007.60
http://dx.doi.org/10.1109/JSTARS.2015.2461556
http://dx.doi.org/10.1016/j.envsoft.2012.11.010
http://dx.doi.org/10.1080/17538947.2013.781242
http://dx.doi.org/10.1016/j.cageo.2006.09.003
http://dx.doi.org/10.3390/rs70810385
http://dx.doi.org/10.1080/10824000509480597
http://dx.doi.org/10.1002/cpe.1292
http://dx.doi.org/10.3390/rs3061234
http://dx.doi.org/10.3390/rs61110546
http://dx.doi.org/10.1016/j.compag.2016.01.005
http://dx.doi.org/10.1155/2014/354919
http://www.ncbi.nlm.nih.gov/pubmed/24901016


Remote Sens. 2017, 9, 382 15 of 16

20. Lin, H.; Yu, B.; Chen, Z.; Ge, R. A geospatial web portal for sharing and analyzing greenhouse gas data
derived from satellite remote sensing images. Front. Earth Sci. 2013, 7, 295–309. [CrossRef]

21. Han, W.; Di, L.; Zhao, P.; Shao, Y. DEM explorer: An online interoperable DEM data sharing and analysis
system. Environ. Model. Softw. 2012, 38, 101–107. [CrossRef]

22. Li, X.; Di, L.; Han, W.; Zhao, P.; Dadi, U. Sharing geoscience algorithms in a web service-oriented environment
(GRASS GIS example). Comput. Geosci. 2010, 36, 1060–1068. [CrossRef]

23. Yang, C.; Raskin, R. Introduction to distributed geographic information processing research. Int. J. Geogr.
Inf. Sci. 2009, 23, 553–560. [CrossRef]

24. Chen, J.; Xiang, L.; Gong, J. Virtual globe-based integration and sharing service method of geospatial
information. Sci. China Earth Sci. 2013, 56, 1780–1790. [CrossRef]

25. Chen, N.; Di, L.; Yu, G.; Gong, J. Geo-processing workflow driven wildfire hot pixel detection under sensor
web environment. Comput. Geosci. 2010, 36, 362–372. [CrossRef]

26. Chen, A.; Di, L.; Wei, Y.; Bai, Y.; Liu, Y. Use of grid computing for modeling virtual geospatial products. Int. J.
Geogr. Inf. Sci. 2009, 23, 581–604. [CrossRef]

27. El Hadad, J.; Manouvrier, M.; Rukoz, M. TQoS: Transactional and QoS-aware selection algorithm for
automatic web service composition. IEEE Trans. Serv. Comput. 2010, 3, 73–85. [CrossRef]

28. Jensen, J.L.; Bohonak, A.J.; Kelley, S.T. Isolation by distance, web service. BMC Genet. 2005, 6. [CrossRef]
[PubMed]

29. Curbera, F.; Duftler, M.; Khalaf, R.; Nagy, W.; Mukhi, N.; Weerawarana, S. Unraveling the web services web:
An introduction to SOAP, WSDL, and UDDI. IEEE Internet Comput. 2002, 6, 86–93. [CrossRef]

30. Foster, I. Service-oriented science. Science 2005, 308, 814–817. [CrossRef] [PubMed]
31. Yue, P.; Gong, J.; Di, L. Augmenting geospatial data provenance through metadata tracking in geospatial

service chaining. Comput. Geosci. 2010, 36, 270–281. [CrossRef]
32. Cai, H.; Peng, C.; Deng, R.H.; Jiang, L. A novel service-oriented intelligent seamless migration algorithm

and application for pervasive computing environments. Future Gener. Comput. Syst. 2013, 29, 1919–1930.
[CrossRef]

33. Byun, E.; Kim, J. Dynagrid: A dynamic service deployment and resource migration framework for
WSRF-compliant applications. Parallel Comput. 2007, 33, 328–338. [CrossRef]

34. Yang, C.; Raskin, R.; Goodchild, M.; Gahegan, M. Geospatial cyberinfrastructure: Past, present and future.
Comput. Environ. Urban Syst. 2010, 34, 264–277. [CrossRef]

35. Huang, F.; Liu, D.; Tan, X.; Wang, J.; Chen, Y.; He, B. Explorations of the implementation of a parallel IDW
interpolation algorithm in a Linux cluster-based parallel GIS. Comput. Geosci. 2011, 37, 426–434. [CrossRef]

36. Huang, F.; Zhou, J.; Tao, J.; Tan, X.; Liang, S.; Cheng, J. PMODTRAN: A parallel implementation based on
MODTRAN for massive remote sensing data processing. Int. J. Digit. Earth 2016, 9, 819–834. [CrossRef]

37. Matthias, M.; Lars, B.; Johannes, B. Moving code in spatial data infrastructures—Web service based
deployment of geoprocessing algorithms. Trans. GIS 2010, 14, 101–118.

38. Yang, C.; Goodchild, M.; Huang, Q.; Nebert, D.; Raskin, R.; Xu, Y. Spatial cloud computing: How can the
geospatial sciences use and help shape cloud computing? Int. J. Digit. Earth 2011, 4, 305–329. [CrossRef]

39. Li, Z.; Yang, C.; Huang, Q.; Liu, K.; Sun, M.; Xia, J. Building model as a service to support geosciences.
Comput. Environ. Urban Syst. 2014. [CrossRef]

40. Tan, X.; Di, L.; Deng, M.; Fu, J.; Shao, G.; Gao, M.; Sun, Z.; Gong, W.; Ye, X.; Sha, Z.; Jin, B. Building an
elastic parallel OGC web processing service on a cloud-based cluster: A case study of remote sensing data
processing service. Sustainability 2015, 7, 14245–14258. [CrossRef]

41. Kussul, N.; Mandl, D.; Moe, K.; Mund, J.-P.; Post, J.; Shelestov, A.; Skakun, S.; Szarzynski, J.;
van Langenhove, G.; Handy, M. Interoperable infrastructure for flood monitoring: SensorWeb, grid and
cloud. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1740–1745. [CrossRef]

42. Li, W.; Song, M.; Zhou, B.; Cao, K.; Gao, S. Performance improvement techniques for geospatial web services
in a cyberinfrastructure environment—A case study with a disaster management portal. Comput. Environ.
Urban Syst. 2015, 54, 314–325. [CrossRef]

43. Elsaghir, Z.; Elghety, H.S.; Abdelaziz, M. Data quality in software as a service implementation of public
geographic information system. IJECCE 2012, 3, 1063–1066.

44. Li, H.; Zhu, Q.; Yang, X.; Xu, L. Geo-information processing service composition for concurrent tasks:
A qos-aware game theory approach. Comput. Geosci. 2012, 47, 46–59. [CrossRef]

http://dx.doi.org/10.1007/s11707-013-0365-z
http://dx.doi.org/10.1016/j.envsoft.2012.05.015
http://dx.doi.org/10.1016/j.cageo.2010.03.004
http://dx.doi.org/10.1080/13658810902733682
http://dx.doi.org/10.1007/s11430-013-4627-0
http://dx.doi.org/10.1016/j.cageo.2009.06.013
http://dx.doi.org/10.1080/13658810902733666
http://dx.doi.org/10.1109/TSC.2010.5
http://dx.doi.org/10.1186/1471-2156-6-13
http://www.ncbi.nlm.nih.gov/pubmed/15760479
http://dx.doi.org/10.1109/4236.991449
http://dx.doi.org/10.1126/science.1110411
http://www.ncbi.nlm.nih.gov/pubmed/15879208
http://dx.doi.org/10.1016/j.cageo.2009.09.002
http://dx.doi.org/10.1016/j.future.2013.02.008
http://dx.doi.org/10.1016/j.parco.2007.02.005
http://dx.doi.org/10.1016/j.compenvurbsys.2010.04.001
http://dx.doi.org/10.1016/j.cageo.2010.05.024
http://dx.doi.org/10.1080/17538947.2016.1144800
http://dx.doi.org/10.1080/17538947.2011.587547
http://dx.doi.org/10.1016/j.compenvurbsys.2014.06.004
http://dx.doi.org/10.3390/su71014245
http://dx.doi.org/10.1109/JSTARS.2012.2192417
http://dx.doi.org/10.1016/j.compenvurbsys.2015.04.003
http://dx.doi.org/10.1016/j.cageo.2011.10.007


Remote Sens. 2017, 9, 382 16 of 16

45. Wang, X.; Zhu, J.; Zheng, Z.; Song, W.; Shen, Y.; Lyu, M.R. A spatial-temporal QoS prediction approach for
time-aware web service recommendation. ACM Trans. Web 2016, 10, 1–25. [CrossRef]

46. Khanouche, M.E.; Amirat, Y.; Chibani, A.; Kerkar, M.; Yachir, A. Energy-centered and QoS-aware services
selection for internet of things. IEEE Trans. Autom. Sci. Eng. 2016, 13, 1256–1269. [CrossRef]

47. Sun, Y.; White, J.; Eade, S.; Schmidt, D.C. Roar: A QoS-oriented modeling framework for automated cloud
resource allocation and optimization. J. Syst. Softw. 2016, 116, 146–161. [CrossRef]

48. Wang, Q.; Wang, J. Intelligent Web map service aggregation. In Proceedings of the 2009 International
Conference Computational Intelligence and Natural Computing, Wuhan, China, 6–7 June 2009; Volume 2,
pp. 229–231.

49. Yue, P.; Guo, X.; Zhang, M.; Jiang, L.; Zhai, X. Linked data and SDI: The case on web geoprocessing workflows.
ISPRS J. Photogramm. Remote Sens. 2016, 114, 245–257. [CrossRef]

50. Zhou, Z.; Cheng, Z.; Ning, K.; Li, W.; Zhang, L. A sub-chain ranking and recommendation mechanism for
facilitating geospatial web service composition. Int. J. Web Serv. Res. 2014, 11, 52–75. [CrossRef]

51. Tan, X.; Di, L.; Deng, M.; Chen, A.; Huang, F.; Peng, C.; Gao, M.; Yao, Y.; Sha, Z. Cloud- and agent-based
geospatial service chain: A case study of submerged crops analysis during flooding of the Yangtze River
Basin. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1359–1370. [CrossRef]

52. Tan, X.; Di, L.; Deng, M.; Huang, F.; Ye, X.; Sha, Z.; Sun, Z.; Gong, W.; Shao, Y.; Huang, C.
Agent-as-a-service-based geospatial service aggregation in the cloud: A case study of flood response.
Environ. Model. Softw. 2016, 84, 210–225. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/2801164
http://dx.doi.org/10.1109/TASE.2016.2539240
http://dx.doi.org/10.1016/j.jss.2015.08.006
http://dx.doi.org/10.1016/j.isprsjprs.2015.11.009
http://dx.doi.org/10.4018/ijwsr.2014070103
http://dx.doi.org/10.1109/JSTARS.2014.2376475
http://dx.doi.org/10.1016/j.envsoft.2016.07.001
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction and Background 
	Geocomputing Resource Adjustment Mechanism for P-AaaS Based Geospatial Services 
	The P-AaaS Infrastructure 
	Cloud Computing Resources Management Modules 
	Adjusting Geoprocessing Resources Dynamically 

	The P-AaaS Parallel Geoprocessing Mechanism 
	P-AaaS Based Geospatial Service Chain Execution Algorithm 
	Model and Experimental System 
	Discussion 
	Performance for Different Concurrent Requests 
	Performance Adjustability 
	Resources Requirement Analysis 
	Transferability and Generalization Analysis 

	Conclusions 

