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Abstract: Actual evapotranspiration (ET) is a major water use flux in a basin water balance
with crucial significance for water resources management and planning. Mapping ET with good
accuracy has been the subject of ongoing research. Such mapping is even more challenging
in heterogeneous and data-scarce regions. The main objective of our research is to estimate ET
using daily Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature
and Global Land Data Assimilation System (GLDAS) weather datasets based on the operational
simplified surface energy balance (SSEBop) algorithm at a 1-km spatial scale and 8-day temporal
resolution for the Mara Basin (Kenya/Tanzania). Unlike previous studies where the SSEBop algorithm
was used, we use a seasonally-varying calibration coefficient for determining the “cold” reference
temperature. Our results show that ET is highly variable, with a high inter-quartile range for
wetlands and evergreen forest (24% to 29% of the median) and even up to 52% of the median for
herbaceous land cover and rainfed agriculture. The basin average ET accounts for about 66% of
the rainfall with minimal inter-annual variability. The basin scale validation using nine-years of
monthly, gridded global flux tower-based ET (GFET) data reveals that our ET is able to explain 64%
of the variance in GFET while the MOD16-NB (Nile Basin) explains 72%. We also observe a percent
of bias (PBIAS) of 1.1% and 2.8%, respectively for SSEBop ET and MOD16-NB, indicating a good
reliability in the ET estimates. Additionally, the SSEBop ET explains about 52% of the observed
variability in the Normalized Difference Vegetation Index (NDVI) for a 16-day temporal resolution
and 81% for the annual resolution, pointing to an increased reliability for longer aggregation periods.
The annual SSEBop ET estimates are also consistent with the underlying primary (i.e., water and
energy) and secondary (i.e., soil, topography, geology, land cover, etc.) controlling factors across
the basin. This paper demonstrated how to effectively estimate and evaluate spatially-distributed
and temporally-varying ET in data-scarce regions that can be applied elsewhere in the world where
observed hydro-meteorological variables are limited.
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1. Introduction

Actual evapotranspiration (ET) is a major component in a basin water balance that interlinks
the biosphere, the hydrosphere and the atmosphere. Accurate information about ET has practical
significance in water resources planning and management, irrigation scheduling, water regulation and
environmental issues, among others [1,2]. ET is highly variable both spatially and temporally because
of the high variability in vegetation, water availability and climate influences [3].

The classic point and/or field-scale ET measurement techniques include a variety of methods
ranging from lysimeters to eddy covariance and scintillometry. The applications of these methods are
limited to field scale [4] and do not provide the spatial distribution over large areas/basins. On the
other hand, the remote sensing-based surface energy balance (SEB) models provide ET estimates
both at field and regional scale [5-7] with reasonable accuracy. Recently, Karimi and Bastiaanssen [7]
reviewed several published validation results on the reliability of remote sensing algorithms to derive
spatially-distributed ET spanning at least one growing season. Their assessment showed that the
absolute values of ET can be estimated with an overall accuracy of 95%. Gowda et al. [6] reported
accuracies that vary from 67% to 97% for daily ET and rise above 94% for seasonal ET. Generally,
the accuracy levels from validation studies indicate that remote sensing-based SEB models are reliable
for mapping ET at different spatial and temporal scales. As noted in McCabe et al. [8], the variability
in accuracy level and ET estimation skills is mainly ascribed to model structures and parametrization
choices and forcing dataset quality. Additionally, Kalma et al. [5] underscored, after reviewing 30
published validation studies, that more complex physical and analytical methods are not necessarily
more accurate than empirical and statistical approaches. Data-intensive, but physically-based SEB
models, such as the Surface Energy Balance System (SEBS), are more sensitive to the quality of the
forcing data than models with fewer inputs [8]. Such findings make the applications of simplified SEB
appealing in data-scarce basins. We therefore use the “Operational Simplified Surface Energy Balance
model” (SSEBop) [9] for mapping ET in this study. Like the more complex SEB model, remotely-sensed
land surface temperature (T) is the primary forcing for the SSEBop.

The SSEBop has been applied at the regional scale for different climates and landscapes [9-11].
Senay et al. [9] produced ET estimates for the contiguous United States and reported that the SSEBop
estimated ET explained 64% of the observed monthly ET across diverse ecosystems. Velpuri et al. [11]
also evaluated annual SSEBop ET estimates using ET estimates from eddy covariance and basin
water balance at point and basin scales across a range of land cover, elevation and climate zones.
Their analyses showed that the SSEBop ET performance variability with coefficient of determination
(R?) values varied from 0.57 to 0.81 (across land cover types), from 0.54 to 0.78 (across climatic zones)
and from 0.57 to 0.75 (across elevation zones).

Several studies compared the performance of SSEBop against more complex SEB models: Surface
Energy Balance Algorithm for Land (SEBAL), Mapping ET at high Resolution with Internalized
Calibration (METRIC), SEBS and the Moderate Resolution Imaging Spectroradiometer (MODIS) global
ET product (MOD16) [11-13]. Velpuri et al. [11] observed a comparable accuracy for SSEBop and
MOD16 monthly ET products across the conterminous United States for several land cover types.
Their inter-comparison showed good performance of MOD16 for cropland (R? = 0.70) and woody
savanna (R? = 0.71) classes, while SSEBop showed higher Taylor skill scores (>0.70) for most of the land
cover types. In contrast, Bhattarai et al. [12] compared daily ET estimates from five SEB models (SEBAL,
SEBS, METRIC, Simplified Surface Energy Balance Index (S-SEBI) and SSEBop) using measured ET at
four sites (marsh, grass and citrus surfaces) in the humid southeastern United States. They found that
SEBS gave the best results, while SSEBop had the lowest performance. Furthermore, they reported
a mean difference of 6 K between the SSEBop cold reference temperature (T;) and the manually-selected
cold pixels for the SEBAL and METRIC models, and the weak performance of SSEBop was mainly
attributed to overestimations in the T,. Partly, this limitation is associated with the constant calibration
coefficient used for determining the T.. Therefore, we propose to use a seasonally-varying calibration
coefficient, as also suggested by Senay et al. [14].
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The transboundary Mara River Basin (Kenya/Tanzania), characterized by rich biodiversity and
diverse agroecosystems, is home to the world-famous Masai-Mara National Reserve and part of
the Serengeti National Park; thereby, the limited water resources have profound socio-economic
and ecological importance. However, the basin’s spatio-temporal water balance dynamics have
not been well investigated, mainly due to poor monitoring of the hydro-meteorological variables.
Therefore, remotely-sensed Earth observation products and global reanalysis weather datasets offer
the opportunity to map ET at low cost that is essential to better understand the underlying factors that
affect the water availability and the water balance. To the best knowledge of the authors, this is the
first contribution focusing on ET modeling for the Mara Basin. Thus, our goal is to map ET at a 1-km
spatial scale and eight-day temporal resolution using routinely-available daily MODIS Ts and Global
Land Data Assimilation System (GLDAS) weather dataset-based modified SSEBop parameterization.
Most studies on ET mapping using a global gridded weather dataset and remote sensing products
have been at the global and regional scale. The reliability of these dataset for modeling ET at the basin
scale has not received much attention, and hence, our paper also contributes towards this. As in situ
ET observations are non-existent in the region, the monthly observation-based, globally-gridded flux
tower network (FLUXNET) ET (GFET) [15] is used to validate our ET estimates and the regional
MOD16 ET product (MOD16-NB (Nile Basin)) at the basin scale. Subsequently, the SSEBop ET and
MOD16-NB are inter-compared to explore the extent of their discrepancy and/or agreements at the
land cover level. The MODIS NDVI time series is also employed for evaluating the ET estimates per
land-cover classes, while Budyko’s principle is used to evaluate the consistency of the SSEBop ET
across watersheds. We believe this research will shed light on the major challenges and available
alternatives for ET modeling in data-scarce basins elsewhere in the world.

2. Materials and Methods

2.1. The Study Area

The Mara River basin, a transboundary river basin shared by Kenya and Tanzania, drains an area
of 13,750 km? (Figure 1a). This river originates from the forested Mau Escarpment (about 3000 m) and
flows through agricultural and rangelands before entering the Masai-Mara Game Reserve in Kenya
and the Seregenti National Park in Tanzania and, finally, joins Lake Victoria. The Amala River and the
Nyangores River are the only perennial tributaries draining the head water region. The Talek River
and the Sand River are the two most notable seasonal rivers stemming from the Loita Hills.

Rainfall is highly variable in the basin with the highest and lowest mean annual rainfall being
1750 mm/yr (Mau region) and 600 mm/yr (south east part), respectively [16]. This is mainly due to
its equatorial location and its range of land forms, including high mountains, expansive plains and
a large inland lake. The rainfall pattern in most parts of the basin is bimodal, with a short rainy season
(October-December) driven by convergence and southward migration of the Intertropical Convergence
Zone (ITCZ) and a long rainy season (March—-May) driven by southeasterly trade winds. The mean
annual temperature is approximately 25.5 °C, and in general, temperature increases southwards.

The Mara basin is endowed with significant biodiversity features through a sequence of zones
from moist montane forest on the escarpment through dry upland forest to scattered woodland and
then the extensive grasslands of savanna, with areas of scrub and thorn trees (Figure 1b).
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Figure 1. (a) Location of the Mara Basin. Elevation zones are based on the 30-m Shuttle Radar
Topographic Mission (SRTM) Digital Elevation Model (DEM) along with the location of watersheds
(W1-W5) with different landscape and climatic characteristics; (b) land-cover classes of the Mara Basin
based on the Africover map [17]. The stripped polygons depict locations where the Normalized

Vegetation Index (NDVI) is extracted.

2.2. Preprocessing the Forcing and Ancillary Datasets

2.2.1. The Earth Observation Products

The advancement in Earth observing systems (EOS) has been providing unprecedented
comprehensive information about the Earth’s land, oceans and atmosphere, over an increasingly
refined spectral resolution [18]. Terra (morning) and Aqua (afternoon) satellites carry on board the
MODIS, which has the highest number of spectral bands and nearly global coverage, since 1999 and
2002, respectively [19]. MODIS land surface products are available with different levels of processing
(raw to Level 4). All of the MODIS products used in this research (Table 1) are Level 3 (Version 5) in
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sinusoidal grid projection, whereby the necessary atmospheric and geometric corrections have been
implemented. We acquired these products from the Land Processes Distributed Active Archive Center
(LPDAAC) of National Aeronautics and Administration (NASA) [20].

The MOD11A1 T is retrieved based on the generalized split-window land surface temperature
algorithm [21,22]. Wan [21] reported an accuracy better than 1 K in 39 out of 47 clear-sky cases by
comparing Version 5 MODIS T; with in situ values. This study also marked that the quantity and
quality of MODIS T Version 5 products depend on the clear-sky conditions because of the inherent
limitation of the thermal infrared remote sensing. T is one of the key drivers in the physics of
land-surface processes, such as SEB. Previous studies highlighted the influence of the quality of T;
on the accuracy of the ET estimates from SEB [23,24]. Therefore, we used only cloud-free Ts images
with quality flag 0 and/or an accuracy level within 1 K. Given the tropical location of the study area,
there are gaps in the Ts images, particularly in the mountainous region, due to cloud contamination.
Consequently, a gap-filling approach was applied using the R raster package [25] in the R environment.
Hereby, missing data are replaced by the mean of the neighboring (non-gap) pixels within a 3 by 3 pixel
window. If no cloud-free pixels are available within a 3 by 3 pixel window, a temporal interpolation is
used. This gap-filling procedure is conceptually similar to the method suggested by Weiss et al. [26] to
generate spatially-continuous Enhanced Vegetation Index (EVI) and T data for the African continent.
After the quality check and gap-filling, we obtained a total of 945 images for the period between 2002
and 2010, which assures eight images per month on average.

Table 1. List of Earth observation (EO) products and reanalysis dataset used. NB, Nile Basin; GFET,

global flux ET.
Product Temporal/Spatial Scale Variable Reference
Earth observation (EO)

MOD11A1 Daily/1 km Ts [21]

MOD13A1 16 day/500 m NDVI [27]

MOD16-NB Monthly /1 km ET [28]

1L TRMM Daily/5 km Rainfall [29]

GFET Monthly /50 km ET [15]

Reanalysis dataset
Air temperat 3-hourly (~25 km) Max and min [30]
ir temperature ourly m temperature

Relative humidity 3-hourly (~25 km) Mean relative humidity [30]

Wind speed 3-hourly (~25 km) Mean wind speed [30]

Solar radiation 3-hourly (~25 km) Mean solar radiation [30]

1 Bias-corrected satellite rainfall.

The MOD13A1 provide NDVI estimates at 16-day intervals. The theoretical basis of the
MODIS NDVI product algorithm and validation results are detailed in Huete et al. [27]. Vegetation
indices have been correlated with various vegetation parameters, such as the Leaf Area Index,
the biomass, the canopy cover and the fraction of absorbed photosynthetically-active radiation (FAPAR).
Furthermore, several studies showed a strong linear relationship between ET and NDVI [5,31-35].

As in situ ET measurements are non-existent in the study area, we used the NDVI to evaluate the
SSEBop ET estimates at 16-day, monthly and annual temporal scales for various land-cover classes.
We created a land cover mask for each representative land cover class (see Figure 1b), based on the
Africover map [36] and Google Earth images, to reduce the likely uncertainty from mixed covers.
For this analysis, we considered only pixels of MOD13A1 with reliability flag 0 for each sample land
cover mask. NDVI values below 0 and NDVI values with a random increase greater than 0.4 in 16 days
were rejected and then replaced by linear interpolation. Finally, to remove the remaining noise in the
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NDVI time series, we applied a modified iterative Savitzky—Golay filter [37] method as described by
Chen et al. [38].

2.2.2. The MODIS Evapotranspiration

The MODIS global evapotranspiration product (MOD16) provides global ET estimates over
vegetated areas at a 1-km spatial scale for 8-day, monthly and annual temporal resolutions. This product
is based on the Penman—Monteith approach [39], as described in detail in Mu et al. [28,40]. The MOD16
algorithm uses MODIS land cover, albedo, the LAI, the fPAR, the Enhanced Vegetation Index (EVI)
and a daily meteorological reanalysis dataset from NASA’s Global Modeling and Assimilation Office
(GMAQO, v. 4.0.0, 2004).

Recently, the improved MOD16 algorithm was applied regionally to the Nile Basin countries
(MOD16-NB) to estimate ET not only for vegetated areas, but also for deserts, urban areas and inland
water bodies (rivers and lakes) at a 1-km regular grid [41]. For this research, we compared the monthly
and annual MOD16-NB (Table 1) data with the SSEBop estimates at various spatial scales.

2.2.3. The Gridded FLUXNET Dataset

The gridded observation-based global ET (GFET) is produced by empirically up-scaling the global
network of eddy covariance measurement (FLUXNET), meteorological data and the fPAR data, among
others using the model tree ensembles (MTE) [15]. The GFET data are available at 50-km spatial
resolution on a monthly time scale for the period of 1982-2011 at the Max Planck Institute, Germany.
Further detailed descriptions on the processing algorithm are provided in Jung et al. [15].

2.2.4. The Reanalysis Dataset

The weather variables required to compute ET( based on Allen et al. [42] are not available in
the basin. Thus, we used the Global Land Data Assimilation System (GLDAS) dataset at 3-hourly
and 0.25° (~25 km) resolution. Table 1 depicts all of the GLDAS weather variables used for the
ETy calculation. The GLDAS reanalysis dataset [30] is a synthesis of various reanalysis, remote
sensing and ground data, including National Oceanic and Atmospheric Administration Global Data
Assimilation System (NOAA /GDAS) atmospheric fields, Climate Prediction Center (CPC) Merged
Analysis of Precipitation fields (CMAP) and observation-driven shortwave and longwave radiation
using the Air Force Weather Agency’s AGRicultural METeorological modeling system (AGRMET).

Initially, we computed the daily reference evapotranspiration (ET,-25km) based on procedures
and assumptions as stated in Allen et al. [42] at the GLDAS native spatial scale. As our interest is to
estimate ET at the MODIS T; spatial scale (i.e., 1 km), the ET;—25km requires downscaling such that
the spatial variability within 25 km is accounted for. For this purpose, we used the high resolution
(i.e., 30 arc second) observation-based global climatological potential evapotranspiration (ET7z—1km)
dataset of Trabucco and Zomer [43]. The ETrz-1km was produced using observed maximum and
minimum temperatures (1950-2000) and elevation information based on a modified Hargreaves
approach [43]. ET(p—25km was downscaled from 25 km to 1 km as follows:

ETTZ —1km

ETO - ETTZ —25km

x ETy — 25 km 1)

Figure 2 presents the downscaled GLDAS-based daily average seasonal ETy. In general,
the downscaling approach increases ET( at the pixel level (particularly in high elevation areas)
and reduces the inconsistencies in gridded global forcing [8]. The downscaled ET values for the
head water regions are comparable with the observed ET, values reported in Alemayehu et al. [44].
Using the high resolution observation-based global ETj for downscaling not only improved the
spatial variability, but also increased the magnitude of the downscaled ET by about 93 mm/yr
(on average). Even though the downscaled ETy was not evaluated against observations, the spatial
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variation reflects the topography well, and the temporal variations correspond with the seasonal solar
energy availability pattern.

Jan Feb Mar Apr

Aug

Dec

ET, (mmid)

Figure 2. Downscaled daily average seasonal grass reference evapotranspiration based on the Food and
Agriculture Organization (FAO) Penman-Monteith equation [42] using a GLDAS dataset (2002-2010)
at a 1-km spatial scale. The downscaling was made using the Trabucco and Zomer [43] global
observation-based climatological ET}.

2.2.5. Satellite Rainfall

The Tropical Rainfall Measuring Mission (TRMM) product provides rainfall estimates that
are important to analyze the basin hydrology at fine scales (0.25° and 3-hourly; [45]). Recently,
Roy et al. [29] bias-corrected TRMM Multisatellite Precipitation Analysis (TMPA) for the Mara Basin.
In this study, we used this bias-corrected product at a 4-km spatial resolution. The reader is referred to
Roy et al. [29] for details on the bias-correction procedures.

2.2.6. The Land- Cover Classes

The land-cover classes for the study area were adopted from the Africover map for East Africa [17].
This map is based on expert interpretation of Landsat Thematic Mapper (TM) imagery acquired
at different dates (from 1990-2004). The Land Cover Classification System (LCCS) methodology
comprises 50 land-cover classes, and the classified map was validated with fieldwork [46]. For this
study, the Africover classes for the Mara Basin were reclassified to 15 classes and used to aggregate the
ET per land cover class (Figure 1b).

2.3. Summary of the Fundamental Principles of the SSEBop Algorithm

SSEBop is a simplified SEB algorithm that calculates ET as a fraction of the ET, in which the ET
fraction is determined using Ts and predefined hot and cold reference temperatures [9]. The ET is
computed as:

ET = ETf x k x ETy 2)

where ET) is the grass reference evapotranspiration for the location (mm/d); k is a coefficient that
scales ETy for an aerodynamically rough crop (-). The recommended value for k is about 1.2; however,
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due to the absence of a calibration dataset, we assume a value of 1.0, following the practice discussed
in Senay et al. [9], and this will remain a source of potential error. The ET fraction (ETy) is computed as:

T, —T.
ETf_l—( o > 3)

where T; is the land surface temperature (K); and dT is the difference between the hot reference
temperature (T}) and cold reference temperature (T;) (K).

The difference between the hot and cold reference temperatures is predefined for each location and
period using a simplified climatological energy balance procedure [9]. The cold reference temperature
is calculated as a fraction of the maximum daily air temperature, based on the assumption that for

a given clear-sky day, the land surface would experience an ET rate equal to the potential rate for
a well-watered surface (with healthy vegetation and/or soil).

T, = ¢ X Tmax 4)

Most previous studies [9,12] consider a constant calibration coefficient (c). In this study, however,
we consider a seasonally-variable c, as also recommended in Senay et al. [14]. Hereby, c is determined
as a quotient of T; and maximum air temperature (Tmax) for pixels located in mixed wetland and
shallow water. We note, on average, up to a 2 K reduction and 1.3 K increment of T, during dry and wet
months, respectively, when using a seasonally-varying calibration coefficient rather than a constant ¢
(i.e., the seasonal mean).

The predefined dT is computed by solving the SEB for a bare and dry soil, whereby the latent
heat flux (i.e., ET) and the soil heat flux are assumed to be 0 and the sensible heat flux (H) is assumed
to be at maximum. Thus, by replacing H with the net available radiation (R,) in the classical sensible
heat flux equation, dT is equated as follows:

o Rn X Tan
Pa X Cp

aT ®)
where 1, is the aerodynamic resistance to heat transfer from a hypothetical dry, bare surface (110 s/m),
P is the density of air (kg/m?) and ¢, is the specific heat of air at constant pressure (1004 J/kg/K).
The calculations of the net radiation under clear-sky conditions are based on Allen et al. [42], and
the reader is referred to Senay et al. [9] for a detailed description of the SSEBop parameterization.
Figure 3 shows the dynamics of the clear sky Ts, T, and T}, (i.e., Tc + dT) for selected land-cover classes
from 2002-2010. It is important to note that dT, as well as the reference temperatures are unique for
each period (daily in this study) and location, but the value does not vary from year to year since it is
calculated under a clear-sky condition.

In the absence of cloud-free images, ET is estimated by combining ET( and ETy from the available
closest date. The maximum gap for the ETy interpolation is less than 8 days in most cases. The 8-day,
16-day, monthly and annual ET are computed as an aggregation of daily ET estimates.
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Figure 3. Temporal dynamics of the cloud free land surface temperature (Ts) for different land-cover
classes. The predefined hot (T;,) and cold (T;) reference temperature envelope Ts on most of the
cloud-free days. The time of overpass of the Terra satellite is 10:30 a.m.

2.4. Model Performance and Uncertainty Analysis Methodologies

2.4.1. Basin Scale Validation

The accuracy of SSEBop ET and MODI16-NB is validated using the only available
observation-based monthly GFET from 2002-2010 (i.e., 108 months) at the basin scale. The GFET
has been used to verify modeled ET across several river basins in the U.S. [11] and Europe [47].
Velpuri et al. [11] reported the reliability of this product by comparing against basin water balance ET
and flux tower measurement across the U.S. In this research, the performances of monthly and annual
SSEBop ET and MOD16-NB are determined based on multiple statistical measures using GFET as the
reference dataset. The evaluation measures include the root mean squared error (RMSE), the percent
of bias (PBIAS) and the Pearson correlation coefficient ().

2.4.2. The MOD16-NB-Based Evaluation

The SSEBop ET estimates are compared with MOD16-NB across different spatial scales (land-
cover type and basin level) and temporal scales (monthly, seasonal and annual) to explore the extent
of discrepancy and/or agreement using multiple statistical metrics. Nevertheless, it should be noted
that the MOD16-NB is not based on in situ measured weather variables, albeit the only public domain
1-km ET product for the study area. Further, previous validation studies [11,28,48-50] also revealed
limitations of the product for certain land-cover classes, climate zones and elevation zones. Yet, such
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a comparison of ET estimates is useful to shed light on differences on ET estimates due to forcing data,
model structure and its parameterization.

In addition to the error deviation measures, we use a non-parametric statistical test to assess
whether the two ET estimates are similar in their means and variances. The difference between the
means and the variances of SSEBop ET and MOD16-NB for each land cover class are tested using the
Wilcoxon rank sum test [51] and Levene’s test [52], respectively. The hypotheses testing was carried
out at the 95% confidence level.

2.4.3. The Evaluation Based on Vegetation Indices and Natural Drivers

The NDVlI is a measure of canopy greenness that is linked to physiological processes, such as
transpiration and photosynthesis [34,53]. Glenn et al. [53] reported linear correlations between ET and
the NDVI with R? values of 0.81 for agricultural crops and natural ecosystems. Such strong linear
association between the NDVI and ET have been instrumental to predict ET at different spatial and
temporal scales [31-35]. As such, Loukas et al. [34] noted a good agreement of the NDVI-derived ET
and the ET from the water balance method for both wet and water-limiting conditions.

In this research, we use the MOD13A1 NDVI to evaluate the SSEBop estimated ET at 16-day,
monthly and annual scales assuming that the magnitude and pattern of the SSEBop ET should linearly
associate with the NDVI and hence serves as a proxy for the reliability of our ET estimates. Towards
this, the R? and the r are used to measure the strength of the linear relationship. The necessary steps
taken to reduce the noises and errors from the NDVI time series are described in Section 3.1.

Budyko [54] hypothesized that the long-term annual evapotranspiration (ET) is primarily
controlled by the available energy (i.e., climatic potential evapotranspiration ETy) and water
(i.e., climatic rainfall P), whereas the landscape characteristics (soil, topography, geology, land cover,
etc.) play a secondary role [55,56]. Recently, Troch et al. [55] demonstrated the existence of strong
interactions between climate, vegetation and soil that lead to specific hydrologic partitioning at the
watershed scale. As elaborated in Zhang et al. [56], the rational function approach developed by
Fu [57] is useful in understanding the dynamic nature of catchment water balance and its intra-annual
variability while considering only the primary controlling factors. In Fu’s equation (see Equation (6))
the parameter (w) represents, in a lumped way, the effects of landscape characteristics on the

partitioning of P [56].
ET ET, ETy\ 1™
P—1+P°—{1+(p°>} ©6)

Under data limited circumstances, linking the natural watershed characteristics with the dominant
water balance component using Fu’s equation is not only useful to assess the consistency of the ET
estimates with varying drivers, but also to scrutinize if the aggregated annual ET values are within
the expected physical bounds. For this purpose, as shown in Table 2, we identified five watersheds
(W1-W5) across the basin with varying landscape characteristics and climate (see Figure 1a). Therefore,
we illustrate the evaporative index (i.e.,, ET to P) and the aridity index (i.e., ETy to P) for these
watersheds using the Budyko diagram and hence highlight their differences qualitatively. Additionally,
we optimize the w parameter in Equation (6) such that watersheds with a relatively high annual ET
rate will cluster around a Fu’s curve with a high w value for a similar climate [56].
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Table 2. Selected watershed characteristics. P, ETy and ET represent mean annual (2002-2010) rainfall,
grass reference evapotranspiration and modeled evapotranspiration, respectively.

Area (km?)  Elevation (meters) 1 Land Cover 1 80il P (mm) ET, (mm) ET (mm) 2AI

W1 691 2397 Forest (63%) Andosols (100%) 1606 1511 1039 0.9
W2 288 2684 Forest (45%) Andosols (100%) 1392 1346 927 1.0
W3 386 1507 Grassland (79%)  Luvic Phaeozems (67%) 1184 1705 802 14
W4 1391 1892 Grassland (92%)  Eutric Planosols (62%) 762 1622 605 21
W5 621 1292 Wetland (40%) Eutric Planosols (56%) 1380 1702 1046 12
Basin 13,422 1729 Grassland (35%)  Eutric Planosols (40%) 1116 1632 813 1.5

I Dominant land cover/soil; 2 Aridity Index (ETy/P).

2.4.4. The Evaluation of the Uncertainty of the SSEBop ET Estimates

Assessing the uncertainty of model simulated variables is a crucial procedure particularly for
model simulation in data-scarce regions. The major sources of uncertainties include the input
uncertainty, the model parameter uncertainty and the model structure uncertainty [58]. In this study,
we quantified a 95% confidence interval for the mean annual ET estimates at the land cover and basin
level using a non-parametric bootstrapping approach [59]. Hereby, 2000 samples were generated with
replacement from the annual estimates to determine the lower (2.5%) and upper (97.5%) boundaries of
the confidence interval. A similar approach has been used to assess the uncertainties of water balance
terms for a catchment in East Africa [60]. The robustness of the confidence interval depends on the
quality of the original sample, and therefore, we considered only annual ET estimates as (i) the SEB
approach generally yields reliable estimates of ET at an annual resolution [6,7,9] and (ii) annual values
eliminate any potential intra-seasonal variations in the ET estimates.

3. Results and Discussion

3.1. The ET Estimates at Different Temporal and Spatial Scales

The key confounding factors that control the dynamics of ET both in space and time include:
elevation, soil type, land cover, weather and water availability. The Mara Basin is characterized
by significant heterogeneities of the aforementioned factors and so does ET. Figure 4 presents the
summary of 8-day aggregated SSEBop ET across several land-cover classes over a period of nine
years. The highest and lowest 8-day median ET values are noted for areas with wetland/water
cover (28.1 mm) and herbaceous covers (14.5 mm), respectively. The land-cover classes with less
soil moisture variability, such as wetlands and evergreen montane forest, reveal an inter-quartile
range (IQR: 6.6 mm/8-day (24% of the median) and 7.8 mm/8-day (29% of the median), respectively).
Remarkably, the IQR for agriculture and herbaceous cover increases up to 52% of the median ET,
suggesting that the modeled ET estimates are within the expected physical bounds. In general, the IQR
for all of the land-cover classes depicts a noticeable temporal variation of ET.

Figure 5 illustrates the annual basin ET distribution at the 1-km spatial scale. It is apparent from
annual ET maps that (i) ET is low in the eastern portion of the basin and (ii) the head water and
the river mouth regions show consistently high ET values. At the basin scale, the nine-year mean
annual ET is about 817 (£32) mm/yr; the low standard deviation (STD) indicates minimal inter-annual
variability. However, as shown in Figure 5, the high STD magnitudes at the 1-km spatial scale signify
the existence of significant spread in ET across the basin. Furthermore, we observe in Figure 5 that
the basin experiences low annual ET values in 2006 (767 mm) and 2009 (782 mm). These estimates
are consistent with the observed drought in 2005/2006, due to a short rain failure [61], and in 2009,
due a delayed onset of the long rains [62] in Kenya. This suggests that the ET estimates are reliable in
the sense that they are able to capture climatic variation (in this case drought).
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Figure 4. Boxplot of the eight-day aggregated ET (2002-2010) across different land cover classes over
the Mara Basin. The vertical boxes represent the interquartile range, while the horizontal line shows

the median ET.
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Figure 5. The spatial distribution of SSEBop ET at 1 km in the Mara Basin from 2002-2010. The standard
deviation (STD) shows ET variability across the basin.

3.2. An Evaluation of the ET Estimates

3.2.1. Validation

Figure 6 presents the comparison of basin-scale monthly SSEBop ET and MOD16-NB against the
reference GFET for the period of 2002-2010. Visually, we observe that our SSEBop ET and MOD16-NB
reproduced well both the magnitude and temporal dynamics of monthly GFET. This is supported by
a high statistically-significant linear correlation of 0.80 (0.86), a PBIAS of 1.1% (2.8%) and an RMSE
of 0.26 (0.19) mm/d between SSEBop (MOD16-NB) and GFET. As shown in Figure 6, we notice
differences in monthly range among the ET products, which could be caused by differences (unlike
the others, SSEBop relies on thermal) and similarities (MOD16 and GFET share inputs as noted in
Velpuri et al. [11]) in approaches to show a larger dynamics that could imply more sensitivity associated
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with the role of Ts. Understanding the significance of these differences requires more evaluation in
other hydro-climatic settings at multiple spatio-temporal scales.

Monthly ET (mm) @ (b)

1809 _greT
—SSEBop
—MOD16-NB 80 800

SSEBop

100 - *MOD16-NB

7071

4'02002 20‘03 20‘04 20‘05 20‘06 2(;07 20‘08 20‘09 20‘10
Figure 6. Illustration of monthly basin average dynamics of evapotranspiration (ET) over the Mara
Basin (2002-2010) using gridded flux tower network (FLUXNET) ET (GFET), regional MODIS ET
product (MOD16-NB) and SSEBop ET. The scatter plot of MOD16-NB and SSEBop ET against GFET
at the monthly (a) and annual (b) temporal scale.

At the annual scale, we note RMSE of 0.05 (0.08) mm/d and r of 0.85 (0.82) for SSEBop ET
(MOD16-NB), suggesting an improvement in accuracy at coarser temporal aggregation. Furthermore,
a visual inspection of Figures 5 and 7 reveals a general match in the spatial pattern of ET. Overall,
the validation results indicate the reasonableness of the monthly and annual SSEBop ET and
MOD16-NB at the basin level for the study area.
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Figure 7. The spatial distribution of ET at 1 km in the Mara Basin using MODIS ET for the Nile Basin
countries (MOD16-NB) from 2002-2010. The standard deviation (STD) shows ET variability across
the basin.

3.2.2. The Comparison of the SSEBop ET with the MOD16-NB Data

Table 3 summarizes the comparison of the SSEBop ET against the MOD16-NB data at the monthly,
seasonal and annual scale for different land-cover classes. It is worth noting that the ET is aggregated
using the Africover classes [17], whereas the MOD16-NB used land cover data from MODIS [28].
The average daily RMSE for the monthly ET ranges from 0.28 mm/d (open savanna) to 0.73 mm/d
(wetland /water) while the largest and lowest PBIAS are about 22% (wetland /water) and 0.3% (open
savanna), respectively. The linear correlation between SSEBop ET and MO16-NB across several
land-cover classes ranges from 0.39-0.75 at the monthly scale and from —0.07-0.92 at the annual
scale (Table 3). As shown in Table 3, the low RMSE and the relatively high correlation for the
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seasonal ET suggest that the two estimates agree with the seasonal pattern of ET for most of the
land-cover classes.

Figures 8 and 9 exhibit the discrepancies between SSEBop ET and MOD16-NB at the pixel and
land cover level. MOD16-NB shows higher values of ET (up to 178 mm/yr) as compared to the SSEBop
ET for agricultural cover types, as well as herbaceous cover, shrubland and woody savanna. These
differences are notable with a shift and skewness of the histogram (see the third row in Figure 9).
Similar observations were reported in Velpuri et al. [11]. Their comparisons with observed ET from
flux towers showed a better performance of MOD16 for cropland and woody savanna cover than
SSEBop, while both models underestimate ET as compared to the observations. Alemu et al. [10] also
compared ET for the Nile Basin using MOD16-NB and the U.S. Geological Survey (USGS) SSEBop
product for Africa and marked similar observations. On the other hand, our results show that SSEBop
ET is higher than the MOD16-NB for wetland and flood plain areas and for forest covers. On average,
SSEBop ET is 232 mm/yr higher than MOD16-NB for wetlands or water mixed land cover. Similarly,
Alemu et al. [10] showed a large difference for wetlands in the Nile Basin. The SSEBop ET (1286
mm/yr) is comparable with the SEBAL ET estimates for wetlands and swamps in the Upper Pangani
Basin (Kenya/Tanzania) (1291 mm/yr) [60], suggesting the better reliability of our estimates.

Table 3. Discrepancy analysis of the modeled ET estimates against the MODIS ET estimates for the
Nile Basin countries (MOD16-NB) for different temporal and spatial scales. Note that the monthly
and seasonal estimates show statistically-significant correlations for all land-cover classes at the 95%
confidence level.

3
Land-Cover Classes Monthly Seasonal Annual
PBIAS%  RMSE? r RMSE ! r RMSE 2 r
Closed natural forests 3.5 0.29 0.72 0.15 0.89 0.11 0.60
Dense evergreen forest 9.2 0.47 0.72 0.33 0.90 0.31 0.45
Herbaceous cover -10.1 0.39 0.74 0.28 0.89 0.23 0.71
Irrigated fruits 1.9 0.35 0.64 0.18 0.84 0.11 0.49
Mixed species agro-forestry 8.7 0.35 0.74 0.22 0.96 0.21 0.39
Open natural forest 8.1 0.32 0.72 0.21 0.91 0.19 0.62
Open savanna 0.3 0.28 0.82 0.14 0.94 0.04 0.92
Tea/open forest 14 0.39 0.48 0.18 0.76 0.10 0.27
Rainfed Cereals —104 0.51 0.61 0.38 0.68 0.26 0.80
Rainfed fruits -17.2 0.68 0.57 0.59 0.69 0.51 0.32
Rainfed non-cereal crops —4.4 0.30 0.73 0.19 0.85 0.12 0.79
Rainfed vegetables —2.6 0.30 0.73 0.20 0.84 0.09 0.70
Shrubland and mesquite -7 0.35 0.75 0.22 0.90 0.17 0.78
wetlands/water 22 0.73 0.39 0.65 0.75 0.65 —0.07
wetlands and Marsh 8.9 0.36 0.73 0.25 0.91 0.23 0.61
Woody savanna -7.7 0.42 0.62 0.26 0.82 0.21 0.59
Basin -1.6 0.27 0.77 0.14 0.92 0.06 0.79

! The monthly RMSE values are divided by 30 (mm/d); 2 the annual RMSE values are divided by 365 (mm/d);
3 represents the long-term monthly averages (January-December).

r
1.0

0.8
0.6
0.4
0.2

0.0

Figure 8. Pixel level correlation between monthly SSEBop ET and the MODIS ET estimates for
the Nile Basin countries (MOD16-NB) (2002-2010).
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Figure 9. Density plots showing the distribution of the monthly ET from the MOD16 for the Nile Basin
countries (MOD16-NB) and SSEBop (2002-2010).

The overall modest agreements of SSEBop ET and MOD16-NB estimates (Table 3) are further
corroborated by the Wilcoxon rank sum test that shows the means of the SSEBop and MOD16-NB
ET values are similar at a 95% confidence level. However, Leven’s test reveals that the variances of
the two ET estimates are different, partly attributed to differences both in model structure and input
datasets used in MOD16-NB (mainly GMAO weather dataset 1.0° x 1.25° resolutions and MODIS
fPAR/ LAI, among others) and SSEBop (mainly downscaled GLDAS weather dataset at 1 km and
MODIS Ts).

The low correlation pixels are mostly noted for areas with covers such as wetland /water, mixed
savanna, as well as for rainfed agriculture (i.e., vegetables, fruits and crops). This is consistent with
our observation of discrepancies based on the Africover classes in Table 3 and Figure 8, indicating that
the differences in the ET estimates from the two models are not so much due to the land cover-based
aggregation, but rather from the ultimate difference in inputs, parameterization and model structure.
This is partly in agreement with McCabe et al. [8] who reported a spread in the performance of
ET models, despite using similar forcing, due to differences in parameterization and model structure.
For instance, the way spatial heterogeneity (i.e., land-cover classes) is accounted for in the SSEBop and
MOD16 algorithms partially explains some of the observed discrepancy in ET estimates. Whereas the
MOD16 algorithm explicitly accounts for the cover heterogeneity using biome specific fPAR and LAI
inputs, the SSEBop primarily depends on the T pixel resolution. It has been demonstrated that the
accuracy of the SEB including SSEBop is influenced by the spatial scale of Ts where there is significant
sub-pixel heterogeneity [1,63]. The underestimation of ET for wetlands located in a semi-arid climate by
MOD16-NB can be partly attributed to the soil water stress parameterization that uses only atmospheric
vapor pressure deficit (VPD) and relative humidity. This is in agreement with Hu et al. [50] who
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observed underestimation of global MOD16 ET estimates in a semi-arid climate even though the soil
water content in the topsoil layer is high.

3.2.3. The NDVI-Based Evaluation

Figure 10a—c shows the relationship between the NDVI and the SSEBop ET at varying temporal
aggregation levels for several land-cover classes. The SSEBop ET explains about 52%, 63% and 81% of
the observed variability in the NDVI at a 16-day, monthly and annual temporal resolution, respectively.
Markedly, we observe weak linear association of NDVI and ET at 16-day and monthly temporal
resolution in humid highland regions and semi-arid areas with continuous moisture supply such as
wetlands. This result is in agreement with Mutiga et al. [64] who noted a weak correlation between
daily NDVI and SEBAL ET for elevations beyond 2100 m.a.s.l. in the upper Ewaso Ng'iro North Basin,
Kenya. It is worth noting that ET shows appreciable temporal variability mainly depending on the
availability of energy and transport capacity (i.e., wind) in moist regions; however, the NDVI shows
less temporal variation. This highlights the weakness of the NDVI as a proxy to ET for shorter temporal
scales for areas with sufficient soil moisture storage.

The interesting point to draw from Figure 10c is the existence of a clear and strong spatial and
temporal pattern between the NDVI-ET relationship. A similar conclusion can be drawn from Figure 9d
concerning the link between the NDVI and the MOD16-NB, even though the MOD16 algorithm
uses MODIS vegetation indices as an input. This is consistent with the general understanding that
NDVI is indicative of the biophysical processes, such as the transpiration and the gross primary
productivity [31,32,53]. Therefore, the strong empirical relationship of NDVI and ET that encompasses
several land-cover classes at an annual level is particularly attractive to estimate the annual ET
in data-scarce basins, as suggested in Loukas et al. [34].
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Figure 10. Mean NDVI versus cumulative SSEBop ET at 16-day (a), monthly (b) and annual (c) temporal
scale for selected land-cover classes. (d) The relationship of mean annual NDVI with the MOD16
for the Nile Basin countries (MOD16-NB). Note that both the monthly and annual relationships are
statistically significant at the 95% confidence level.
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3.2.4. The Consistency of the ET Estimates across the Basin

Due to the absence of in situ ET measurements in the study area, we investigated the
reasonableness of the SSEBop ET estimates by comparing with other MODIS-based products
(i.e., MOD16-NB and NDVI) and GFET. The results obtained are encouraging. Furthermore, we
evaluated SSEBop ET by plotting watershed average ET values in the Budyko diagram. Figure 11
illustrates the scatter plot of the evaporative index (ET to P) versus the aridity index (ET to P) across
five watersheds, ranging from humid to semi-arid climates. It can be observed that the watersheds
clustered close to Fu’s curve [57] with w of 2.7 tend to experience a high ET rate. Two groups of clusters
consisting of Cluster 1 (W1, W2 and W5 with Al: 0.9-1.2); and Cluster 2 (W3 and W4 with Al: 1.4-2.1)
are identified in the scatter diagram. Forest-dominated semi-humid watersheds and wetlands follow
the Fu’s curve of w equal to 2.7 (Cluster 1), and grassland-dominated semi-arid watersheds follow the
Fu’s curve of w equal to 1.9 (Cluster 2). The relative positioning of the clusters makes physical sense
and is in line with the hydro-climatic and landscape characteristics of the watersheds (see Table 2),
indicating the reliability of the SSEBop ET. Therefore, the Budyko diagram analysis and fitting the
Fu’s w parameter reinforce the consistency of our results with the primary and secondary controlling
factors, albeit using downscaled GLDAS-based forcing.

ET/P

1.5 7
Dry limit,
1
w=2.7
[m] .. oN + w=1.9
g T
< Q=N
g +
054 =
— Water-energy limits & W3
— Fu (1981) + w4
a w1 X W5
o W2 ® Basin
0 T T T 1
0 1 2 3 4
ETo/P

Figure 11. Scatterplot of the evaporative index (ET/P) against the aridity index (ETy/P). The markers
represent different watersheds (W1-W5) while the solid lines (thin) show the relationships represented
by Fu [57] for w values of 2.7 and 1.9.

Recently, McCabe et al. [8] observed poor performances across all ET models (SEBS, Global
Land Evaporation Model Amsterdam (GLEAM), Priestley-Taylor Jet Propulsion Laboratory (PT-JPL)
and Penman-Monteith-based Mu (PM-Mu) that are forced by gridded global data in reproducing
tower-based ET across several biome and climate zones. According to their analyses, the poor
performances were mainly attributed to internal inconsistencies within the gridded forcing data,
and yet, the ET models with fewer input requirements were less sensitive. We believe that the
consistent ET estimates noted in our study at several spatial and temporal scales could be partly
attributed to the downscaling of the GLDAS-based ET(—25km using observation-based ET7z—1km.
Furthermore, the minimal model parameterization requirements of the SSEBop and the improvements
on cold reference temperature (T.) estimation might have contributed to the favorable results obtained.
This has been depicted by a relatively strong correlation (r = 0.81) between the SSEBop ET and NDVI
across several land-cover classes in the Mara Basin. The good correlations obtained in this study are
stronger than the correlations reported for similar land covers in Alemu et al. [10] in the Nile Basin,
using a similar SSEBop algorithm.
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3.3. Seasonality of ET

The rainfall (and hence soil moisture) distribution is one of the main governing factors of the
seasonality and spatial variability of ET. In this basin, the water year that is based on the rainfall
seasonality starts on 1 October and ends on 30 September [16]. Figure 12 illustrates the monthly
variability of ET in the Mara Basin. The figure shows that ET is high from October-May, due to the
availability of energy and soil moisture during this period. On the other hand, we note a relatively low
ET during the dry season months (June-September). However, the land-cover classes located in the
humid part of the basin, such as evergreen forest and tea/open forest, show less seasonality since there
is ample rainfall throughout the year. Additionally, for wetlands and marsh covers, we observe less
monthly variability as there is a continuous supply of water from the Mara River and Lake Victoria.
In conclusion, the SSEBop ET estimates reflect fairly well the seasonal rainfall distribution pattern in
the basin.

Figure 13 presents the aggregated ET (upper row) and rainfall (bottom row) during the main rainy
season (March-May), the dry season (July-September) and the small rainy season (November-January)
at 1- and 4-km scales, respectively. The seasonally-aggregated ET maps show not only the high
heterogeneity of ET, but also its intra-annual variations that fairly match the rainfall patterns.
The cumulated ET exceeds the cumulative rainfall for the dry season months (see Figure 13). This is
ascribed to the availability soil moisture supply after the main rainy season and the water extraction
by deep rooted vegetation. Generally, our results indicate that the eastern portion of the catchment has
low ET fluxes, which is consistent with the low rainfall input and sparse vegetation cover in that part
of the basin.
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Figure 12. The seasonal variability of the monthly ET for 2002-2010 in the Mara Basin. The months are
arranged according to the water year (October-September).
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Figure 13. Seasonally-aggregated SSEBop ET (upper row) and bias-corrected satellite rainfall (lower
row) in the Mara Basin (2002-2010). Note that the spatial resolution is 1 km for ET and 4 km for
the rainfall.

3.4. The Annual ET (Water Use) by Land Cover

Table 4 presents the mean annual SSEBop ET (i.e., the water use) and rainfall for different
land-cover classes. On average, dense evergreen forest (1228 (£59) mm/yr) and wetlands
(1286 (£44) mm/yr) are the highest water consumers, whereas herbaceous cover (698 (£46) mm/yr)
and rainfed cereals (706 (£69) mm/yr) are the lowest consumers. The basin average water use is
about 817(£32) mm/yr and accounts for 66% of the rainfall. Unlike what is the case for rainfall,
the STD values for the annual ET for the different land-cover classes are low, thus suggesting a minimal
inter-annual variability (Table 4). The intra-annual variability is, however, high.

Table 4. Mean annual SSEBop estimated water use (ET) and rainfall (P) aggregated per land cover
class in the Mara Basin for 2002-2010.

Land-Cover Classes Area (km?) ET (mm/yr) P (mm/yr) 1c1
Mean STD Mean STD

Closed natural forests 426 948 33 1447 252 41
Dense evergreen forest 293 1228 59 1802 285 73
Herbaceous cover 2496 698 46 1073 180 55
Irrigated fruits 35 949 43 1549 256 56
Mixed species agro-forestry 534 882 30 1419 237 38
Open natural forest 1137 885 24 1242 205 30
Open savanna 2326 798 37 1204 188 45
Rainfed Cereals 11 706 69 1021 208 84
Rainfed fruits 110 853 63 1555 289 84
Rainfed non-cereal crops 117 823 34 1323 239 42
Rainfed vegetables 191 841 33 1436 236 43
Shrub land and mesquite 1649 742 42 1087 178 52
Wetlands/water 2521 1286 44 1474 255 55
Wetlands and Marsh 911 976 29 1394 230 37
Woody savanna 827 737 51 994 125 63
Basin 13,584 817 32 1239 114 39

1 The 95% confidence interval for the mean annual ET using 2000 bootstrap sampling (mm/yr).
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3.5. The Assessment of the Uncertainties on the ET Estimates

It is imperative to assess the uncertainties of the ET estimates as there are inherent sources of
uncertainty related to input data and parameterization of the SSEBop algorithm.

As shown in Table 4 (Column 6), the 95% confidence interval ranges from 3-12% (of the mean
annual ET) across different land-cover classes. Of all of the land-cover classes, agricultural land
cover shows a relatively high variability (wider confidence interval) on the mean annual ET estimates.
As discussed in Section 3.2.1, this is perhaps attributed to the limitation of the coarse (1 km) spatial
scale of MODIS T; to capture the spatial variability of Ts as marked in Krishnan et al. [65] and
McCabe et al. [63] since agriculture in this basin is mainly the plot scale. Additionally, the year-to-year
variation in types of crops growing in the field might also contribute to the wider confidence interval.
The 95% confidence interval for basin mean annual SSEBop ET estimates is 39 mm/yr, which is
comparable with 42 mm/yr using the GFET dataset. Overall, uncertainties in the mean annual ET from
this study are similar with the reported uncertainties in Kiptala et al. [60] using SEBAL in the Upper
Pangani River Basin (Kenya/Tanzania) and with other published validation results [11]. This indicates
the reliability of the ET estimates derived in this study for various hydrological applications.

4. Conclusions

This paper demonstrated how to effectively estimate and evaluate spatially-distributed and
temporally-varying ET in data-scarce regions. Our main objective is to map ET (1 km/8-day)
using data from the Moderate Resolution Imaging Spectroradiometer (MODIS) land surface
temperature (Ts) and from the Global Land Data Assimilation System (GLDAS) weather dataset
based on the Operational Simplified Surface Energy Balance (SSEBop) algorithm in the Mara Basin
(Kenya/Tanzania). We validate the SSEBop ET estimates and the regional MODIS evapotranspiration
for the Nile countries (MOD16-NB) using globally-gridded flux tower measurements network monthly
ET (GFET) [15] at the basin scale. Additionally, the SSEBop ET estimates were inter-compared and
evaluated using the MOD16-NB and MODIS Normalized Vegetation Index (NDVI) at different spatial
and temporal scales.

Our results show that ET in the study area is highly variable spatially and intra-annually.
The land-cover classes with low variability in soil moisture reveal an inter-quartile range (IQR),
e.g., 6.6 mm/8-day (24% of the median) for wetlands and 7.8 mm/8-day (29% of the median) for
evergreen montane forest. Remarkably, the IQR for agriculture and herbaceous cover increases up to
52% of the median ET, suggesting the modeled ET estimates are within the expected physical bounds.
On average, the basin-wide ET is about 817 (£32) mm/yr, or 66% of the rainfall.

The basin scale validation using nine-years of monthly GFET data reveals that our ET is able to
explain 64% of the variance in GFET, while the MOD16-NB explains 72%. Additionally, we observe
1.1% and 2.8% percent of bias (PBIAS) for SSEBop ET and MOD16-NB, respectively, indicating a good
reliability in the ET estimates. Notwithstanding the comparable performance of SSEBop ET and
MOD16-NB in reproducing the basin-level GFET, we note high discrepancies between SSEBop ET and
MOD16-NB for wetlands and forest (with MOD16-NB being up to 232 mm/yr lower) and rainfed
agriculture (with SSEBop ET being up to 178 mm/yr lower). The former differences are partly
attributed to the soil water stress parameterization in the MOD16-NB that uses the atmospheric vapor
pressure deficit (VPD) and the relative humidity, particularly for the wetland located in a semi-arid
climate; whereas the latter could be associated with the limitation of the 1-km scale MODIS T; (i.e.,
one of the major input to SSEBop), as also noted in McCabe et al. [63] and Krishnan et al. [65], to
capture the spatial variability of Ts where there is significant sub-pixel heterogeneity.

SSEBop ET explains about 52%, 63% and 81% of the observed variability of the NDVI at 16-day,
monthly and annual temporal resolution, respectively, using several representative land-cover classes.
Our results also show a good consistency in annual ET estimates by reflecting the underlying primary
(i.e., availability of water and energy) and secondary (i.e., soil, topography, geology, land cover,
etc.) controlling factors across the basin. The consistent and fair performance of the SSEBop ET can
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be related to the use of a seasonally-varying calibration coefficient to determine the cold reference
temperature (i.e., improved parameterization) and improvements on the quality of the forcing ET, data
(i.e., improved forcing consistency). Overall, the uncertainty on the mean annual ET, as calculated by
us on the land cover level, is less than 12%. This is comparable with the results of Kiptala et al. [60] who
used SEBAL data in the Upper Pangani River Basin (Kenya/Tanzania) and other published validation
results [11].

The strong empirical relationship developed in this study between ET and NDVI using
representative land cover sites at an annual scale can be used to compute basin average ET with
operational NDVI information. This is particularly interesting for water balance analysis and
hydrological model parameterization, as in situ hydro-meteorological stations are scarce.

The methodological framework developed in this study, mapping ET using Earth observation
products and global gridded weather data can be applied elsewhere in the world where observed
hydro-meteorological variables are limited.
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