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Abstract: Plant primary production is a key driver of several ecosystem functions in seasonal marshes,
such as water purification and secondary production by wildlife and domestic animals. Knowledge of
the spatio-temporal dynamics of biomass production is therefore essential for the management of
resources—particularly in seasonal wetlands with variable flooding regimes. We propose a method
to estimate standing aboveground plant biomass using NDVI Land Surface Phenology (LSP) derived
from MODIS, which we calibrate and validate in the Doñana National Park’s marsh vegetation. Out of
the different estimators tested, the Land Surface Phenology maximum NDVI (LSP-Maximum-NDVI)
correlated best with ground-truth data of biomass production at five locations from 2001–2015 used
to calibrate the models (R2 = 0.65). Estimators based on a single MODIS NDVI image performed
worse (R2 ≤ 0.41). The LSP-Maximum-NDVI estimator was robust to environmental variation
in precipitation and hydroperiod, and to spatial variation in the productivity and composition
of the plant community. The determination of plant biomass using remote-sensing techniques,
adequately supported by ground-truth data, may represent a key tool for the long-term monitoring
and management of seasonal marsh ecosystems.
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1. Introduction

Plant primary production is a key driver of ecosystem dynamics and can thus influence several
ecosystem functions, such as water purification capacity and secondary production by animals.
Knowledge of the spatio-temporal dynamics of plant biomass production is essential to inform the
management of natural resources, in conservation areas and in agro-pastoral systems [1–4]—particularly
in the Mediterranean and semiarid regions, where inter-annual changes in precipitation often result in
large variations in plant production [5].

Traditional methods for plant biomass estimation are based on in-situ observations. They can be
highly accurate but often involve intensive field work and destructive methods, which makes them
costly and inapplicable to inaccessible or sensitive areas, or when involving endangered species [4,6,7].
Remote sensing constitutes an increasingly used alternative [8], based on the relationship between
satellite-derived metrics and primary production [7]. Remote sensing may allow for the non-destructive,
high-resolution coverage of large, remote, and/or inaccessible areas, such as mountains [9], deserts [10],
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or wetlands [4,11–13]. Remote sensing allows for the reconstruction of historical trends as well, using
satellite image time series: for example, the reconstruction of the hydroperiod in Doñana marsh
from 1974–2014 [14], or the assessment of rangeland conditions in semiarid regions [15]. The most
widely used methods to monitor vegetation are based on the use of vegetation indexes, such as the
Normalized Difference Vegetation Index (NDVI) or the Enhanced Vegetation Index (EVI), as proxies of
aboveground biomass [7,16,17]. However, the use of these indexes is also subjected to limitations and
criticism; for example, they have been shown to saturate asymptotically at high biomass values [12,18].

In general, the assessment of plant production can be based on the analysis of single (i.e., one-date)
images, bi-temporal change detection, or temporal trajectory analysis, followed by the interpretation
of results over time [19]. For vegetation, a traditional group of methods relies on quantifications of the
differences in statistical metrics of the vegetation-index time series like, for example, the beginning and
end of the growing season, the maximum and minimum values, the annual mean, or the variance [9].
In regions with strongly seasonal climates, production is typically assessed by searching for anomalies
in the current NDVI against the average of the whole time series, or against reference values from the
same period of the year, which informs about the current status of vegetation as compared to other
seasons, or to an average condition [20]. This is made at predefined fixed dates, which works well
when seasonal cycles are regular, but is often problematic when they vary across years due to climatic
or environmental variability. In such cases, observed anomalies in NDVI data may simply constitute
a temporal shift of the growth season—i.e., an early (positive NDVI anomaly) or delayed (negative
NDVI anomaly) start of the growth season [10]. Other key problems may be related to the lack of
consistency and reliability of the NDVI images used for analysis due to noise or errors, especially when
a single image per year is used. Examples include variation in viewing and illumination geometry,
resolution and calibration, digital quantization errors, ground and atmospheric conditions, as well as
orbital and sensor degradation [7,21].

To overcome these limitations, the use of smoothed NDVI time series including a number of
consecutive growing seasons (instead of a single image per growing season) is being proposed.
Such time series analyses make use of all the information accumulated at the end of the growing
season to estimate the parameters describing vegetation phenology (e.g., [21,22]). Indeed, the study
of vegetation phenology has become very relevant in several realms, such as productivity and the
carbon cycle (e.g., [23,24]), climate change and its impacts on ecosystems [25–27], as well as crop
and pasture monitoring [10]. During the last decade, on-the-ground phenological studies have been
complemented by studies focusing on large-scale remote sensing [28], technically referred to as Land
Surface Phenology (LSP, [12]). LSP can be defined as the timing of recurring changes in the reflectance of
electromagnetic radiation from the land surface due to concurrent life-cycle changes of vegetation [29].
It is generally measured by deriving either vegetation parameters (e.g., leaf area index (LAI), fraction
of absorbed photosynthetically active radiation (FAPAR) or vegetation indexes (e.g., NDVI, EVI)
from remote-sensing data [9,30–32]. These vegetation indexes are used to maximize the extraction
of variability assigned to certain plant features (e.g., leaf area, canopy cover, photosynthetic activity)
while minimizing other unwanted effects (e.g., geometric, soil color, or atmospheric effects), thus
enhancing the information contained in spectral reflectance data [12,33]. LSP is then characterized
using different mathematical procedures such as the identification of global/local thresholds and
points of maximum increase/decrease, curve fitting and the subsequent extraction of inflection points
or thresholds, and harmonic analysis [20].

In this article, we present a method for estimating plant biomass production in seasonal
wetlands based on the NDVI from the Moderate-resolution Imaging Spectroradiometer (MODIS).
Method development included the comparison of the two different approaches discussed above,
namely the use of single images versus the characterization of LSP using the whole time-series; as well
as the use of different estimators within each of these two approaches to estimate biomass production
across the whole study area for the 16-year series.
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We developed and applied this method in a particularly challenging study area: the semiarid
marsh and wetlands of the Guadalquivir river estuary (Doñana National Park, SW Spain; ‘Doñana
marsh’ hereafter). As in many arid and semiarid regions, the determination of biomass production
is particularly challenging due to the flooding regime, the color influence of soils, and the spatial
variation in vegetation communities and species composition [34–37]. The Doñana marsh consists of
a diverse and complex array of ecosystems affected by a highly dynamic interplay among vegetation,
soil and water [38], whose prolonged land-use history fostered a mix of natural and semi-natural
vegetation [39]. Its vegetation provides habitat and food for a highly diverse fauna, making the area
a biodiversity hotspot; but grazing by wild and domestic herbivores largely determines plant standing
crop and may result in overgrazing, particularly during dry years [40,41]. Studying the primary
production of the marsh vegetation is therefore essential for the management and conservation of the
Doñana National Park; while its huge size and accessibility problems during most of the flooding
period makes this a particularly challenging task using solely on-the-ground approaches.

2. Materials and Methods

2.1. Study Area

The study focuses on the helophyte community of the Doñana marsh, an iconic wetland included
in the Doñana National Park (SW Spain, Figure 1, 37◦01′ N, 6◦26′ W). Doñana has a sub-humid
Mediterranean climate characterized by mild winters and hot summers, and rainfall concentrated in
autumn (October–December) and spring (March–May). The Doñana marsh is a seasonal floodplain
with a flooding regime that depends on rainfall [14,42]. The helophyte community is strongly
synchronized with flooding, starting to grow after the water level reaches a peak (February–March),
then growing rapidly to create a vegetation layer of approximately 1 m height, and becoming
senescent by August when the marsh is dry [42]. More specifically, we focused on nearly-monospecific
stands of saltmarsh bulrush (Bolboschoenus maritimus) belonging to the phytosociological association
Bolboschoenetum maritimi. The saltmarsh bulrush represent one of the key primary producers of the
marsh and thus sustains many elements of its food chain, including wintering waterfowl that consumes
its tubers and seeds (e.g., greylag geese Anser anser; [43,44]). Domestic (cattle and horse) and wild
(red deer, fallow deer and wild boar) ungulates also make use of the study area, grazing on saltmarsh
bulrush and other plants [40].

Vegetation species composition fluctuates interannually as a consequence of climatic variability.
To define the limits of the study area in the Doñana marsh, we selected an area as homogenous as
possible, by performing an unsupervised classification in ENVI 5.4 using five classes and 10 iterations.
We used the descriptive statistics (mean, median, standard deviation, maximum value and minimum
value) of a time series of NDVI images from the Landsat satellite TM and ETM+ sensors from 1984 to
2015 [45]. The resulting class that spatially corresponded better with saltmarsh bulrush dominance for
the study period defined the study area limits.

The study area includes two estates with different ownership regimes (public and communal
land, respectively). During the study period (2001–2015, see below), there were no major changes in
the area apart from natural variation in rainfall (typical in a Mediterranean climate), small changes
in the hydrology of the marsh, and moderate shifts in the stocking rates allowed at communal land
(which had decreased during the 1990s, but remained relatively stable during the 2000s and tended to
increase after 2010).
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Figure 1. (A) Location of the Doñana National Park in the southwest of Spain. (B) Location of the 
study area inside the Doñana National Park marsh. (C) Ground-truth biomass plots inside the study 
area. (D) Zoom to a MODIS validation pixel that exemplifies the sample design stratification. (E) 
Picture of the helophyte community (May 2016). (F) Picture of an area heavily grazed by cattle (June 
2016). 
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raw time series of 387 images provided by the data service platform from the University of Natural 
Resources and Life Sciences of Vienna (BOKU; [46]). This platform offers a modification of Global 
MOD13Q1 data, which is the NDVI vegetation index product provided by NASA Land Processes 
Distributed Active Archive Center, in smooth and raw images (from 2000 to the present) every 16 
days as the product of an algorithm that calculates the Maximum Value Composite [47].  

2.3. Biomass Data 

Plant biomass data consisted of two datasets: one used to calibrate and select among alternative 
remote sensing models, and another used to validate the best model. The calibration dataset belongs 
to a long-term study on the impact of ungulate grazing initiated in 1982 by Ramón Soriguer (Doñana 
Biological Station). Currently, it is the only long-term data set available on above-ground biomass for 
the Doñana marsh. It was designed neither for this study nor to be a ground-truthing set for data 
extracted from satellite images; hence, it presents some limitations such as being restricted to 
localities that remain accessible in high-flood years [40]. Calibration data consisted of regular annual 
harvests of aboveground biomass production (standing crop, in kg dw/ha) in five fixed locations 
within the Doñana marsh (Figure 1) from 2001 to 2015, amounting to 75 samples [40]. These five 
locations were selected due to their accessibility and representativeness of the saltmarsh bulrush 
community. One of the calibration pixels (C.1 in Figure 1) was placed outside the study area, but it 
showed a similar vegetation community (dominated by saltmarsh bulrush) and ecological 
characteristics. For each calibration location and date, biomass production values are based on 5 

Figure 1. (A) Location of the Doñana National Park in the southwest of Spain. (B) Location of the study
area inside the Doñana National Park marsh. (C) Ground-truth biomass plots inside the study area.
(D) Zoom to a MODIS validation pixel that exemplifies the sample design stratification. (E) Picture of
the helophyte community (May 2016). (F) Picture of an area heavily grazed by cattle (June 2016).

2.2. Satellite Data

Remote sensing data consisted of satellite images from the MODIS (Moderate Resolution Imaging
Spectroradiometer) sensor onboard the TERRA satellite (NASA). In particular, we used a raw time
series of 387 images provided by the data service platform from the University of Natural Resources
and Life Sciences of Vienna (BOKU; [46]). This platform offers a modification of Global MOD13Q1
data, which is the NDVI vegetation index product provided by NASA Land Processes Distributed
Active Archive Center, in smooth and raw images (from 2000 to the present) every 16 days as the
product of an algorithm that calculates the Maximum Value Composite [47].

2.3. Biomass Data

Plant biomass data consisted of two datasets: one used to calibrate and select among alternative
remote sensing models, and another used to validate the best model. The calibration dataset belongs
to a long-term study on the impact of ungulate grazing initiated in 1982 by Ramón Soriguer (Doñana
Biological Station). Currently, it is the only long-term data set available on above-ground biomass
for the Doñana marsh. It was designed neither for this study nor to be a ground-truthing set for data
extracted from satellite images; hence, it presents some limitations such as being restricted to localities
that remain accessible in high-flood years [40]. Calibration data consisted of regular annual harvests
of aboveground biomass production (standing crop, in kg dw/ha) in five fixed locations within the
Doñana marsh (Figure 1) from 2001 to 2015, amounting to 75 samples [40]. These five locations were
selected due to their accessibility and representativeness of the saltmarsh bulrush community. One of
the calibration pixels (C.1 in Figure 1) was placed outside the study area, but it showed a similar
vegetation community (dominated by saltmarsh bulrush) and ecological characteristics. For each
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calibration location and date, biomass production values are based on 5 samples spaced 40 meters along
a 200 m transect. Each sample consist of the aboveground biomass present in a randomly oriented
rectangle 10 cm wide by 100 cm long, clipped at ground level using an electric grass shear. Samples
were transported to the lab, sorted by species discarding dry biomass from the previous year, dried in
paper envelopes (72 h at 60 ◦C) and weighted (accuracy: ±0.01 g). After two years of monthly sampling
to assess the phenological cycle, harvests were taken twice a year: (i) one in May–August to estimate
peak biomass production (date adjusted to flooding levels, which determine plant phenology), and
(ii) another in September-October to estimate biomass “leftovers” (biomass production not consumed
by herbivores after the end of the growth season) [40]. We used as ground-truth the annual maximum
biomass estimate sampled at each location regardless of the month in which it was collected.

Validation data were collected in August 2016 following a new stratified random sampling scheme.
In order to ensure that the sampling areas covered adequately the complete productivity range, we
first classified the study area in three biomass-production categories using the averaged value of
maximum NDVI from 2001 to 2015: low (<0.5 NDVI), medium (0.5–0.6 NDVI) and high (>0.6 NDVI).
These thresholds divided the area in three sub-areas of similar size. Then, among all the MODIS
pixels we randomly selected 3 pixels within each NDVI category (250 × 250 m, 9 MODIS pixels in
total). Within each MODIS pixel we randomly selected 3 Landsat pixels (30 × 30 m). Within each
Landsat pixel we randomly selected four sampling points (1 × 1 m; Figure 1). This design resulted
in a total of 108 sampling points (12 biomass estimates per MODIS pixel). The design was chosen to
adequately sample the spatial variability in biomass in the study area, to obtain more precise estimates
of mean MODIS pixel biomass. The sampling design was aimed at also providing information on
the spatial scale at which variation in biomass production occurs and how it relates to the resolution
provided by MODIS and Landsat images. Aboveground biomass samples were collected using
100 × 100 cm squares with the electric grass shear. Samples were transported to the lab, sorted by
species discarding dry biomass from the previous year, dried in paper envelopes (72 h at 80 ◦C), and
weighted (accuracy: ±0.1 g).

2.4. Environmental Data

Environmental data were used to evaluate model robustness and analyze model results.
They consisted of two variables: (1) hydroperiod, i.e., the number of days that each pixel remained
flooded in each annual cycle estimated by Díaz-Delgado et al. [14]; and (2) precipitation data, in
particular the cumulative precipitation in the hydrometeorological year from 1 September to 31 August
(data provided by Doñana’s Long-Term Monitoring program, ESPN at ICTS-RBD).

2.5. Biomass Production Models

We used three approaches to model annual biomass production based on NDVI data and selected
the best-performing model using the calibration dataset (see above). The calibration dataset was also
used to select among alternative model parameters (see model 3, below) and to obtain a relationship
between NDVI-based estimates and biomass production. The three model types were based on the
following information:

1. The maximum NDVI value observed in each given year and MODIS pixel (‘Maximum-NDVI’
hereafter).

2. The NDVI value at the time at which peak biomass occurs in an average year (8 May), for each
given year and MODIS pixel (“May-NDVI” hereafter). The average time of the biomass peak was
calculated as the mean date of the maximum NDVI values observed at the five MODIS pixels
included in the calibration dataset from 2001 to 2015.

3. The maximum and small integral NDVI values derived from phenological models fitted using
the Land Surface Phenology (LSP) techniques available in the software package TIMESAT [48]
(“LSP-Maximum-NDVI” and “LSP-Accumulated-NDVI” hereafter). The model was fit to the
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complete series of observed NDVI data (2001–2015) and then compared to the calibration data.
The calibration procedure was also used to inform the choice of three settings that must be
decided by the user before fitting the curves to NDVI data [49], namely: (1) The baseline value
of the phenological curve, a parameter that discards all the values below a specific NDVI value
from the growth season under analysis. (2) The criterion that defines the beginning and end of
the growth season. We evaluated two options: a fixed threshold value and a fixed proportion of
the seasonal amplitude observed during each growth season. (3) The fitting method used to filter
noise in the data: Savitzky-Golay filter, Asymmetric Gaussian and Double Logistic. For all other
settings, we used the default values in TIMESAT, namely: no spike method, one season per year,
no adaptation to the upper envelope of the curve, and normal adaptation strength.

All subsequent analyses were done using packages “car” [50] and “lmodel2” [51] in R [52].
We fitted linear regression models using the annual ground-truth values of biomass production
(calibration dataset) at each location and year as response variables and the NDVI-based estimates at
a MODIS pixel and year as predictor variables. Models were fitted to untransformed and transformed
variables (linear, exponential, logarithmic, power and log-log regressions), to test for an improved fit.
We selected among alternative models using the proportion of explained variance as estimated by the
R2 [53], the root mean square error (RMSE) and the percentage of the normalized RMSE (calculated
dividing for the mean value).

In addition, we used the calibration data and the best model to evaluate the robustness of model
predictions, i.e., to test whether the relationship between NDVI-based estimates and observed biomass
production was influenced by (i) changes in two key environmental variables (precipitation and
hydroperiod), and (ii) spatial variation in productivity (i.e., among-site variation in soil fertility).
For the first purpose, we used multiple regression of observed biomass production on NDVI-based
estimates and either precipitation or hydroperiod, and compared them to the univariate regression
(only NDVI-based estimates) using F-tests [53], and adjusted R2 values. For the second purpose,
we compared the relationship between biomass production and NDVI-based estimates among the
five calibration locations (which showed consistent differences in biomass-production range across
the whole data series; Figure 2). We used an Analysis of Covariance (ANCOVA, [53]) to assess the
differences in the mean slope of biomass in relation to the sampling locations used for calibration.
We included “location” as a fixed, categorical factor. A significant effect of the interaction between
the continuous (NDVI-based estimates) and fixed (location) factors would indicate that the slopes of
the relationship between NDVI and biomass production varies significantly among localities, thus
a common calibration line should not be used across the whole study area.

2.6. Model Validation

The best model was validated with the new validation (2016) dataset. For validation, we regressed
with a major axis regression the biomass field data on the predictions of the best NDVI-based model,
evaluating whether the slope differed significantly from 1 (i.e., whether model predictions significantly
over- or under-estimated observed values), and estimating model performance with the RMSE and the
percentage of the normalized RMSE. In addition, since field data indicated a high variability in species
composition in the validation dataset, we evaluated whether model performance was affected by such
variability (i.e., if model predictions were better in areas dominated by B. maritimus). For this purpose,
we performed a multiple regression with NDVI-based estimates and plant composition (the proportion
of B. maritimus biomass present in each sample) as independent variables, following arcsine (square
root) transformation of the latter variable to ensure residuals’ normality and homoscedasticity.

2.7. Trend Analysis

After model validation, we evaluated the spatial and temporal patterns of biomass production
in the Doñana marsh by generating model predictions for the study area and time range (2001–2016).
We used these estimates to analyze the spatial and temporal variability in biomass production. Change in
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spatial variability over time was analyzed using IDRISI Earth Trends Modeler [54] to calculate the
Theil-Sen slope estimator. This is a temporal trend estimator more robust than the least-squares slope
because it is much less sensitive to outliers and skewed data. In our analysis, it was used to identify
pixels where biomass increased or decreased, considering a significance level of (α = 0.05). The main
driver of temporal variability in biomass production was analyzed by regressing biomass production
(averaged across the whole study area) on cumulative precipitation, calculated over five different time
intervals (September–March, September–April, September–May, September–June and September–July)
to identify the period over which precipitation was most influential (i.e., the one providing the best fit).

3. Results

3.1. Biomass Production Models

3.1.1. Model Parametrization

Estimators based on a single image (Maximum-NDVI and May-NDVI) were obtained directly
from the MODIS images. For the two NDVI estimators modeled using TIMESAT (LSP-Maximum-NDVI
and LSP-Accumulated-NDVI), the first step was to choose the three model settings that resulted in the
best calibration:

• Baseline value: The best results were obtained with a baseline value of 0.27, which corresponds to
the average value of NDVI in September across the whole study area—i.e., the NDVI value of
senescent B. maritimus vegetation on dry marsh soil. This baseline value resulted in a much better
regression fit than using no fixed baseline value (R2 = 0.63 vs. R2 = 0.22, in the best-performing
model and filter: LSP-Accumulated-NDVI with Savitzky-Golay, see below). Other baseline values,
like the NDVI value of open water (NDVI = 0.31), resulted in the failure to recognize the growing
season—probably because it results in large variations in baseline values between early- and
late-flooding years, which is unrelated with plant primary production.

• Beginning and end of the growth season: The criterion based on a proportion of the seasonal
amplitude performed better than the one based on a fixed threshold value, which resulted
in TIMESAT failing to recognize the growth season for most of the years, due to their strong
inter-annual variability. Among the different threshold-amplitude values tested, a value of
10% performed best (R2 = 0.65, as compared to R2 = 0.63 for 3% and R2 = 0.61 for 5%, in the
best-performing model and filter: LSP-Maximum-NDVI with Savitzky-Golay, see below), allowing
for the recognition of the growth season of all years and succeeding with the filtering of the noise.

• Fitting method: The metrics derived from the Savitzky-Golay filter performed slightly better
than those obtained with the other two methods (Table 1). Hence, we solely use and report this
method hereafter.

Table 1. Comparison among TIMESAT curve-fitting methods to predict B. maritimus biomass using R2.

Asymmetrical Gaussian Double Logistic Savitzky-Golay

LSP-Maximum-NDVI 0.60 0.62 0.63
LSP-Accumulated-NDVI 0.53 0.54 0.61

3.1.2. Model Calibration

The results showed that there was a statistically significant relationship between each of the four
NDVI biomass estimators (Maximum-NDVI, May-NDVI, LSP-Maximum-NDVI, LSP-Accumulated-NDVI)
and biomass production. The best results were obtained with a log transformation of the response variable
(ground-truth biomass production), (Table 2; Appendix A Table A1). The two estimators based on Land
Surface Phenology models performed considerably better, with LSP-Maximum-NDVI providing the best
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fit. Parameter values from this calibration fit (Table 2, Figure 2) are used hereafter to estimate biomass
production from LSP-Maximum-NDVI values.

Table 2. Results of model calibration. Relationship between each of the four NDVI estimators tested
and biomass production. Best fits were obtained with ln (y) = a * x + b transformation. The other two
transformations, y = a * x + b and ln (y) = a * ln (x) + b, are included in Appendix A. SE = Standard
Error. RMSE = Root mean square error. %RMSE = Percentage of RMSE.

Predictor Intercept ± SE Slope ± SE F-Test DF p-Value R2 RMSE %RMSE

Maximum-NDVI 4.75 ± 0.39 4.51 ± 0.63 51 1, 73 5.71 × 10−10 0.41 0.96 12.9
May-NDVI 5.00 ± 0.70 4.46 ± 0.65 47.3 1, 73 1.76 × 10−9 0.39 0.97 13.1

LSP-Maximum-NDVI 3.77 ± 0.34 6.71 ± 0.59 128 1, 69 < 2.2 × 10−16 0.65 0.74 10.1
LSP-Accumulated-NDVI 5.88 ± 0.19 0.75 ± 0.08 97 1, 69 8.1 × 10−15 0.59 0.81 11.0
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Figure 2. Model calibration. Relationship between the best NDVI estimator tested (LSP-Maximum-NDVI)
and the logarithm of biomass production (kg dw/ha). Continuous line: regression line. Dotted lines:
95% confidence intervals. The dot colors represent the five different locations of the calibration
biomass plots.

The use of multiple regression models including as a second predictor a key environmental
variable (either precipitation or hydroperiod) did not improve the fit of the best model with a single
predictor (LSP-Maximum-NDVI, Table 3). Therefore, the relationship between LSP-Maximum-NDVI
and biomass production was apparently not influenced by either of these two environmental variables.

The ANCOVA including the five calibration locations as a categorical factor indicated that the
slopes were not heterogeneous (i.e., the interaction location * LSP-Maximum-NDVI was not significant:
F (9, 61) = 0.36, P = 0.83). However, the model with location without interaction showed a better
fit (adjusted R2 = 0.85) than the model without location (R2 = 0.64, Table 3). This indicates that the
localities differ significantly in average biomass production across the years, but the slope between
LSP-Maximum-NDVI and biomass production is not affected by such variation.
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Table 3. Model robustness to environmental and spatial variation. Results of multiple regression
models of biomass production on LSP-Maximum-NDVI plus a key environmental variable (either
precipitation or hydroperiod, as continuous variables) or spatial location (as a categorical variable).
Adj.R2 = adjusted R2. DV = dummy variable. SE = Standard Error. RMSE = Root mean square error.
%RMSE = Percentage of RMSE.

Predictors Estimates ± SE T-test p-Values Whole-model Parameters

F-test DF p-Value Adj. R2 RMSE %RMSE

Intercept 3.69 ± 0.41 9.01 2.4 × 10−16

63.6 2, 68 2.7 × 10−16 0.64 0.75 10.1LSP-Maximum-NDVI 6.61 ± 0.63 10.4 9.9 × 10−16

Precipitation 2.8 ± 6.3 × 10−4 0.45 0.66

Intercept 3.73 ± 0.34 10.8 5.0 × 10−16

63.0 2, 63 9.3 × 10−16 0.66 0.74 10.0LSP-Maximum-NDVI 6.73 ± 0.64 10.5 1.7 × 10−15

Hydroperiod 1 6.3 ± 14 × 10−4 0.46 0.65

Intercept 6.98 ± 0.45 15.2 < 2.2 × 10−16

4.1 9, 61 < 2.2 × 10−16 0.85 0.46 6.2Location

DV1 −1.59 ± 0.22 −6.69 1.98 × 10−9

DV2 −0.11 ± 0.19 −0.60 0.55
DV3 −2.17 ± 0.29 −7.47 2.56 × 10−10

DV4 −0.09 ± 0.18 −5.51 0.61
LSP-Maximum-NDVI 2.26 ± 0.63 3.61 5.91 × 10−4

1 Model based on fewer observations (N = 66), due to missing hydroperiod data for 2015.

3.2. Model Validation

Biomass production varied considerably among validation plots, ranging from less than
500 kg dw/ha to almost 3000 kg dw/ha (mean = 1595 kg dw/ha, median = 1524 kg dw/ha, standard
deviation = 678 kg dw/ha) (Figure 3). Species composition showed an unexpectedly high variation
among sampling localities. B. maritimus represented 47% of the biomass production, followed by
Eleocharis palustris (28%) and Scirpus lacustris (10%). B. maritimus was dominant in 5 of the 9 MODIS
pixels, while the other 4 pixels were dominated by E. palustris (3 pixels) and S. lacustris (1 pixel).
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nine MODIS pixels sampled. N = 12 sample plots per pixel.

The results of the validation exercise showed that the model based on LSP-Maximum-NDVI could
explain a reasonable percentage of the variance of the biomass (R2 = 0.70; Figure 4), particularly regarding
the high spatial and temporal variability present in the study area. The prediction error estimate, based
on RMSE, was 354 kg dw/ha and the %RMSE was 22%. The slope of the predicted-observed relationship
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did not differ significantly from 1 (95% CI = 0.30; 1.07), indicating that model predictions neither
under-nor over-estimate observed biomass production.Remote Sens. 2017, 9, 392  10 of 18 
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Variability in species composition did not significantly influence the relationship between
measured and predicted biomass production. Results of the multiple regression model including
LSP-Maximum-NDVI and the proportion of B. maritimus showed that the latter did not significantly
influence biomass yield (Adj. R2 = 0.61 in contrast to R2 = 0.70; significance of proportion of B. maritimus
t-test = −0.39, p-value = 0.71).

3.3. Trend Analysis

Based on our LSP-Maximum-NDVI model, we produced 16 maps representing biomass
production per pixel (in kg dw/ha) for each growth season between 2001 and 2016 (Figure 5).
The average value per pixel (across all years) was 3869 ± 1781 kg dw/ha. The maps reveal a high
spatial variation in biomass production, resulting from a combination of high spatial heterogeneity
and high inter-annual variation. In some years, such as 2010, there were extensive areas with high
biomass production (up to 10,000 kg dw/ha); while in other years, such as 2005, biomass production
was one order of magnitude lower (i.e., it did not reach 1000 kg dw/ha at any pixel across the study
area). However, the areas with high and low biomass production were not stationary, but strongly
varied among years. For example, in 2001 biomass production peaked at the southern part of the study
area, while in 2010 it peaked at its northernmost part.

Values of the Theil-Sen slope estimator showed that there is a general trend towards diminishing
biomass production over the last 16 years—i.e., there were more areas where biomass production
decreased than areas where it increased (Figure 6A). Biomass production tended to decrease in the
central part of the study area, whereas it tended to increase in its periphery. A comparison with
the spatial distribution of the average biomass production from 2001 to 2016 revealed that biomass
production tended to decrease in areas with high productivity (high average biomass production) and
to increase in areas with low productivity (low average biomass production) (Figure 6A,B) (R = −0.24,
t-test (725) = −6.51, p-value = 1.38 × 10−10). Disentangling the causes behind this pattern probably
deserves further analyses.



Remote Sens. 2017, 9, 392 11 of 18

Remote Sens. 2017, 9, 392  11 of 18 

 

 

Figure 5. Model predictions. Estimated biomass production (in kg dw/ha) per pixel across the study 
area. 

 
Figure 6. Trend analysis. (A) Changes in biomass production from 2001 to 2016, based on the Theil-
Sen slope estimator. Positive values (blue colors): increase. Negative values (red colors): decrease.  
(B) Average biomass production (kg dw/ha) from 2001 to 2016. All categories except the one for “non-
significant results” indicate Theil-Sen slope estimator values significantly different from zero. 

Figure 5. Model predictions. Estimated biomass production (in kg dw/ha) per pixel across the study area.

Remote Sens. 2017, 9, 392  11 of 18 

 

 

Figure 5. Model predictions. Estimated biomass production (in kg dw/ha) per pixel across the study 
area. 

 
Figure 6. Trend analysis. (A) Changes in biomass production from 2001 to 2016, based on the Theil-
Sen slope estimator. Positive values (blue colors): increase. Negative values (red colors): decrease.  
(B) Average biomass production (kg dw/ha) from 2001 to 2016. All categories except the one for “non-
significant results” indicate Theil-Sen slope estimator values significantly different from zero. 

Figure 6. Trend analysis. (A) Changes in biomass production from 2001 to 2016, based on the Theil-Sen
slope estimator. Positive values (blue colors): increase. Negative values (red colors): decrease.
(B) Average biomass production (kg dw/ha) from 2001 to 2016. All categories except the one for
“non-significant results” indicate Theil-Sen slope estimator values significantly different from zero.
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Inter-annual variability in biomass production (summed across the whole study area) was strongly
influenced by annual precipitation—with cumulative precipitation from September to April exerting
the strongest influence of all periods tested. The best fit between both variables was obtained using
a log-log transformation, which indicates that the effect is stronger at low precipitation values and
saturates when precipitation is very high (R2 = 0.69, F(1, 14) = 30.8, p-value = 7.15 × 10−5; Figure 7).
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4. Discussion

We have shown that MODIS Global MOD13Q1 NDVI data provides a good source of information
for estimating biomass production in a challenging situation—a seasonal marsh characterized by high
spatio-temporal variation in precipitation and hydroperiod [55]. While the use of a single image per
growth season provided estimates of reasonable quality (39–41% of variance explained in the calibration
dataset), modeling the phenological cycle using Land Surface Phenology (LSP) techniques considerably
improved the quality and robustness of such estimates (65% and 70% of variance explained using
LSP-Maximum-NDVI, in the calibration and the validation datasets, respectively; see also [56]).
Furthermore, biomass production estimates derived from the best-performing model for the whole
study area and time period indicate a strong role of a key climatic driver, the inter-annual variation
in precipitation; and a pattern of spatio-temporal change (decreasing yields in the most productive
areas) that could be consistent either with changes in vegetation community composition due to marsh
siltation and changes in hydroperiod [14] or with the impact of a key biotic driver, overgrazing by
domestic and wild herbivores.

The modeling process was particularly challenging because marshes are highly dynamic and
heterogeneous wetland ecosystems where the reflectance signal can change rapidly, sometimes
within hours or days [6,38]. Despite these challenges, the four different, NDVI-based estimators
predicted biomass production with reasonable quality (39–65% of variance explained during calibration).
However, the two NDVI biomass estimators derived from TIMESAT models of LSP performed
significantly better than those based on a single image per year only—reinforcing previous suggestions
that LSP may improve biomass determination in complex ecosystems [20,57]. The improved performance
of LSP estimators is probably caused by the higher sensitivity of single-image estimators to several
sources of error and noise, such as sensor resolution and calibration, digital quantization errors, ground
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and atmospheric conditions, or orbital and sensor degradation [7]; and to the rapid changes in the
NDVI signal in heterogeneous ecosystems—which may bias such estimators, for example, if an image
is taken after a rainfall episode [38]. LSP makes use of the information gathered across the complete
growth season to produce a smooth NDVI curve that integrates the whole vegetation cycle, thus
reducing noise and errors [12,21,58,59]. On the one hand, the difference among fitting methods
was marginal for the best-performing predictor (LSP-Maximum-NDVI; Table 1), suggesting that the
smoothing provided by all fitting procedures sufficed to remove noise and ensure predictor quality—in
contrast with works reporting that the over-smoothing introduced by the Asymmetric Gaussian and
Double Logistic methods affected the accuracy of parameter estimates [21]. On the other hand, the
use of a baseline criterion that removed the influence of water removed the strong bias introduced on
NDVI-based estimates by early-flooding years—which caused a drop in NDVI values, unrelated to
plant productivity.

Besides their statistical properties, the choice of estimator may influence its potential use by
managers or policy makers. Management applications that rely on an early prediction of the season’s
standing crop, for example to adjust the stocking rates of domestic herbivores (cattle and horses),
will be best served by those based on single images taken at early dates—such as the May-NDVI,
chosen to coincide with the average NDVI maximum without requiring the uptake of ulterior images
to identify the exact time of the season’s maximum. Similarly, one of the two indicators based on LSP
can be calculated at a much earlier point than the other—since LSP-Maximum-NDVI only requires
the maximum value to be reached, while LSP-Accumulated-NDVI can only be calculated at the
end of the growth season. Under such circumstances, it might be more useful to use a statistically
weaker estimator that can be estimated earlier, as long as the associated decrease in accuracy is
acceptable. Unfortunately, single-image estimators such as May-NDVI had a much lower accuracy
than LSP-based estimators (39–41% vs. 65–70% of variance explained). We therefore recommend the
use of LSP-Maximum-NDVI, which provides the best estimates at a relatively early date.

Estimators based on NDVI have been shown to saturate asymptotically at high biomass
values [12,18]. While the relationship between NDVI and biomass production was multiplicative (i.e., the
slope decreased with increasing NDVI, following a logarithmic relationship), the best-performing
estimator LSP-Maximum-NDVI was far from reaching a plateau at the highest biomass production
values we measured. As a consequence, estimates based on LSP-Maximum-NDVI performed reasonably
well in the validation exercise. We cannot rule out, however, a saturation of these estimators in situations
(years or localities) with higher biomass production—which would result in a disproportionate increase
in prediction errors. We decided to build our models using NDVI because it is the most frequently
used vegetation index, but as it is prone to saturation, and to noise caused by soil color and water, it
would be interesting to test whether models can be improved using EVI, a vegetation index less prone
to these problems [60].

Testing the robustness and validating the performances of the best estimator with independent
data was particularly relevant given the high heterogeneity, complexity and unpredictability of
the Doñana marsh ecosystems [14,61]. Validation yielded satisfactory levels of predictive ability,
particularly given the characteristics of the study system and the high variation in species composition
detected. More importantly, the estimator also proved to be robust to the influence of environmental
variables (precipitation and hydroperiod), spatial variation in baseline productivity, and species
composition—suggesting that it can be safely used under the variety of situations present in the
Doñana marshes, as well as in similar systems.

The analysis of the spatial and temporal variation of biomass production in the Doñana marsh
confirmed that production is both highly variable and highly heterogeneous. Based on previous studies
we expected precipitation, which determines the flooding regime, to account for a large percentage of
the variation in biomass production [62]. Indeed, precipitation explained 69% of the temporal variation
in biomass production (summed across the study area). The relationship between precipitation and
biomass production was however non-linear, indicating that biomass production is strongly dependent
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on precipitation in dry years but it tends to saturate in very wet years (similar to what Coe et al. [63]
report). Whether this saturation results from self-thinning effects (intra- and inter-specific competition)
and/or from the negative effect of prolonged inundation on plant development remains a topic for
future studies.

The effect of herbivores on the marsh vegetation is another important source of variability.
Specifically, changes in plant consumption caused by variation in the number and distribution of
domestic (cattle and horses) and wild (fallow deer Dama dama, red deer Cervus elaphus, wild boar Sus
scrofa) herbivores have been shown to determine the abundance and distribution of plant biomass,
reducing it severely in dry years [40]. The spatio-temporal trends detected using the Theil-Sen slope
estimator suggest that biomass production has decreased, during the last 16 years, precisely in the
areas where this production was more abundant. This pattern could be consistent with changes in
vegetation community composition due to temporal trends in mean hydroperiod [14] probably due
to marsh siltation. However, they could also be reflecting the effect of overgrazing by herbivores,
which may be expected to concentrate their grazing (thus consuming more biomass) in the areas with
higher biomass yield—particularly in dry years with low biomass production. Indeed, herbivores do
not distribute uniformly in the marsh; they move tracking food and water availability, and avoiding
heavily flooded areas. Mapping the biomass is an important first step to monitor and manage the
effects of herbivores [5,39,64]. It can support management programs that rationalize the number of
domestic animals and find a dynamic balance between cattle and vegetation [65,66], helping to prevent
land degradation, soil erosion and biodiversity loss [67]. In this regard the study of the vegetation
patterns could be improved by correlating the changes in vegetation biomass with hydroperiod trends,
and with the spatial distribution and movements of domestic and wild herbivores. The modeling
process in a heterogeneous ecosystem such as the Doñana marsh could also benefit from increasing the
spatial resolution using other sensors such as Landsat.

5. Conclusions

We show that by using Land Surface Phenology (LSP) techniques and relatively simple statistical
models, it is possible to provide accurate estimations of plant biomass production in a large seasonal
wetland, the Doñana marsh. Estimators based on LSP models provided substantially better predictions
than those based on a single image, and were robust to environmental variation and spatial heterogeneity.
Model predictions indicate that the marsh areas with highest productivity coincide with those in which
productivity has been declining during the last 16 years—suggesting changes in vegetation communities
or the potential effect of overgrazing by wild and domestic herbivores. The estimation of plant biomass
using remote-sensing techniques, adequately supported by ground-truth data, may represent a key tool
for the long-term monitoring and management of ecosystems, especially in protected areas where the
natural world and human activities coexist.
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Appendix A

Table A1. Results of model calibration. Relationship between each of the four NDVI estimators
tested and biomass production with different transformations: y = a * x + b and ln(y) = a * ln(x) + b.
SE = Standard Error. RMSE = Root mean square error. %RMSE = Percentage of RMSE.

Predictor Intercept ± SE Slope ± SE F-Test DF p-Value R2 RMSE %RMSE

y = a * x + b

Maximum-NDVI −1270 ± 783 7023 ± 1267 30.7 1, 73 4.52 × 10−7 0.29 1919 66.5
May-NDVI −1104 ± 718 7348 ± 1259 34.7 1, 73 1.36 × 10−7 0.32 1888 65.5
LSP-Maximum-NDVI −3641 ± 629 12 085 ± 1110 118.5 1, 69 < 2.2 × 10−16 0.63 1400 48.6
LSP-Accumulated-NDVI 21 ± 327 1400 ± 133 110.7 1, 69 5.49 × 10−16 0.61 1430 49.6

ln (y) = a *
ln (x) + b

Maximum-NDVI 8.26 ± 0.18 1.36 ± 0.21 39.6 1, 73 2.09 × 10−8 0.35 1.01 13.5
May-NDVI 8.85 ± 0.22 2.11 ± 0.28 55.8 1, 73 1.40 × 10−10 0.43 0.94 12.7
LSP-Maximum-NDVI 9.60 ± 0.21 3.31 ± 0.29 133.5 1, 68 < 2.2 × 10−16 0.64 0.74 10.0
LSP-Accumulated-NDVI 6.89 ± 0.11 1.18 ± 0.11 109 1, 69 7.68 × 10−16 0.61 0.79 10.6
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