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Abstract: Determining the soil moisture in agricultural fields is a significant parameter to use
irrigation systems efficiently. In contrast to standard soil moisture measurements, good results might
be acquired in a shorter time over large areas by remote sensing tools. In order to estimate the soil
moisture over vegetated agricultural areas, a relationship between Radarsat-2 data and measured
ground soil moistures was established by polarimetric decomposition models and a generalized
regression neural network (GRNN). The experiments were executed over two agricultural sites
on the Tigris Basin, Turkey. The study consists of four phases. In the first stage, Radarsat-2 data
were acquired on different dates and in situ measurements were implemented simultaneously.
In the second phase, the Radarsat-2 data were pre-processed and the GPS coordinates of the soil
sample points were imported to this data. Then the standard sigma backscattering coefficients with
the Freeman–Durden and H/A/α polarimetric decomposition models were employed for feature
extraction and a feature vector with four sigma backscattering coefficients (σhh, σhv, σvh, and σvv)
and six polarimetric decomposition parameters (entropy, anisotropy, alpha angle, volume scattering,
odd bounce, and double bounce) were generated for each pattern. In the last stage, GRNN was
used to estimate the regional soil moisture with the aid of feature vectors. The results indicated that
radar is a strong remote sensing tool for soil moisture estimation, with mean absolute errors around
2.31 vol %, 2.11 vol %, and 2.10 vol % for Datasets 1–3, respectively; and 2.46 vol %, 2.70 vol %,
7.09 vol %, and 5.70 vol % on Datasets 1 & 2, 2 & 3, 1 & 3, and 1 & 2 & 3, respectively.

Keywords: remote sensing; Radarsat-2; soil moisture; machine learning; GRNN; feature extraction;
Freeman–Durden; H/A/α; polarimetric decomposition

1. Introduction

Soil moisture is commonly defined as the amount of water in the soil particles, and is a very
important parameter in minimizing the harmful effects of drought, preventing salinity caused by
overwatering, protecting agricultural land, and using irrigation systems efficiently [1]. Therefore, to
determine the amount of water available in the soil used by plants, the soil moisture must be measured.
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The retrieval of the soil moisture over large areas by gravimetric methods and digital probes is
time-consuming, costly, and labor-intensive work [2]. However, successful results can be obtained in a
shorter time by using remote sensing techniques. Thus, significant work has been done towards the
application of active microwave sensors to monitoring soil surface moisture content [3]. Among
the active microwave sensors, the Synthetic Aperture Radar (SAR) sensor plays an important
role in agricultural monitoring, especially in plant growth, yield, mapping, and soil moisture
estimation [4]. With the aid of polarimetric SAR, far better information can be derived than with
single polarized SAR. The polarimetric SAR is less susceptible to weather conditions and capable of
generating suitable high-resolution images for the purpose of agricultural soil monitoring. It provides
information by multiple polarizations (hh, hv, vh, and vv) and penetrates the vegetative canopies [5].
Therefore, polarimetric SAR data can be used for soil moisture estimation over bare soil surface and
vegetation-covered fields. In order to facilitate soil moisture estimation over vegetated agricultural
areas, the contribution of the vegetation backscattering and ground scattering component must
be separated from the observed backscattering [6]. Thus, polarimetric decomposition models are
used to discretize the backscattering from the different layers by decomposing a scattering matrix
(covariance matrix) into the linear combinations of some specific scattering mechanisms, like the
odd bounce scattering, the even bounce scattering, and the volume scattering. The polarimetric
decomposition models are based on two main approaches covering coherent decompositions and
incoherent decompositions [7]. Among the decomposition techniques, H/A/α, Freeman–Durden,
Krogager, Touzi, and Yamaguchi are the most widely used models and various works have been done
in the literature with the aid of these models. For example, Jagdhuber et al. [8] used the multi-angular
polarimetric decomposition model for retrieving soil moisture and found a very high estimation rate
with low RMSE (root mean square error). Hajnsek et al. [2] suggested a surface inversion model by
using different model-based decompositions under vegetation cover. Xiaodong et al. [9] improved
an adaptive two-component decomposition to estimate the soil moisture for C band Radarsat-2.
In this study, the eigenvector-eigenvalue based (H/A/α) and the model-based Freeman–Durden
decomposition models were used for the feature extraction process since these models offer an efficient
way to eliminate the effect of vegetation backscattering from the target backscattering in vegetated
agricultural fields [10,11].

After the feature extraction process, a number of inversion models have been improved to
estimate soil surface parameters from the texture features. The inversion models withstand three basic
approaches in the literature, including the empirical/semi-empirical model [12–14], the theoretical
model [10,15], and the machine learning model [4,16–20]. In the first approach, the empirical/semi
empirical models are based on the scattering attitude of experimental measurements [16] and build a
basic relationship between soil surface features and backscattering coefficients reflected from the target
point [4]. Among the empirical models, Oh [12] and Dubois [13] are the most used inversion models.
However, these models have a restricted range of practicability since they depend on site-specific
surface parameters and empirical equations are inadequate to solve complex and nonlinear problems.
Therefore, theoretical models are preferred as a second approach for soil moisture inversion due to
their ability to consider situations that have not been regarded by the empirical models [16]. The
Integral Equation Model (IEM) [15] is one of the most popular theoretical inversion models and can
be used effectively over bare fields owing to its broad availability spectrum of surface roughness.
However, this model is limited over vegetated areas since the vegetation causes complex volume
backscattering. Moreover, the model requires some in situ measurements, such as surface morphology,
which limits its applicability. Thus, the restraint of the model makes the inversions of such models
highly complex and infeasible. To solve this problem, numerical inversion models such as machine
learning must be considered as a third approach [18].

In machine learning models, soil surface moistures have been estimated successfully over bare
and vegetated areas, and these models are used effectively in situations where both empirical and
theoretical models are inadequate. Among the machine learning models, Support Vector Regression
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(SVR) [4,6], Bayes Theorem [21], and Artificial Neural Network (ANN) [21–25] are commonly used
inversion techniques for soil moisture retrieval. In the literature, a number of studies have been
done using machine-learning-based inversion models. For instance, Weimann et al. [22] derived
simulated data from the theoretical backscattering model over bare fields and used this data for
training of ANN. They also improved the ANN training system by using remotely sensed ERS-2/ESAR
data and observed low RMSE values between estimated soil moisture and ground soil moisture.
Paloscia et al. [21] investigated the capabilities of the ENVISAT/ASAR data to provide soil moisture
maps over agricultural areas. They compared the performances of three inversion algorithms including
a feedforward neural network (ANN), a statistical Bayes’ theorem, and the iterative Nelder–Mead
method. The results indicated that the estimated data of the three methods were very close to the
measured data and the accuracy of ANN was slightly higher than the other methods. Zhang et al. [4]
investigated TerraSAR-X and Radarsat-2 data for soil moisture retrieval over bare agricultural areas
using both statistical (SVR) and semi-empirical (Modified Dubois) approaches. Their results indicated
that the TerraSAR-X and Radarsat-2 were proper remote sensing tools for soil moisture estimation
with a low RMSE value. Notarnicola et al. [16] employed the ANN and statistical Bayesian methods
for retrieving soil moisture from the active and passive data. The results showed that each method has
similar performance, but the performance of the ANN was enhanced with increasing input number.
Pasolli et al. [18] proposed two non-linear machine learning methods containing MLP Neural Network
and SVR to estimate soil moisture from active and passive microwave data. The performance of these
methods was then compared and the results showed that SVR was an alternative approach to MLP
since it indicated better accuracy values in the case of limited samples. Said et al. [17] used ANN
to retrieve the soil moisture over bare and vegetated surfaces with the aid of ERS-2 SAR data. The
results showed a good correlation between the estimated and measured soil moisture. Moreover, ANN
produced more precise results than multiple statistical regressions.

The purpose of this study is to determine a relationship between the fully polarimetric Radarsat-2
data and the ground soil moisture measurements as well as estimate the soil moisture over both
vegetated and bare agricultural areas based on the determined relationship. The Radarsat-2 data
were acquired on different dates in order to extract the sigma backscattering coefficients (σhh,
σhv, σvh, and σvv), which describe the soil surface content. Furthermore, the H/A/α and
Generalized Freeman–Durden methods were applied on fully polarimetric Radarsat-2 data and various
backscattering parameters (entropy, anisotropy, alpha angle, volume scattering, surface scattering, and
double bounce) and were derived for the feature extraction stage. After this step, GRNN was used to
evaluate the potential of C-band SAR data for soil moisture inversion.

2. Materials

2.1. Study Area

The study area is located at the Tigris Basin in Diyarbakır province, Turkey (40◦04′–40◦26′ E,
37◦46′–38◦04′ N) and consists of two different agricultural lands that cover an average of 6 km2

and 16 km2 within the boundaries of the Dicle University campus (Figure 1). The mean slope
of the study area is 3.05% and the mean elevation is 650 m. The average annual precipitation is
approximately 496.0 mm/year and the average annual temperature is nearly 23.8 ◦C. This study
area was dominated by cropland, which mostly includes wheat and barley during the period of SAR
acquisitions (February 2015, April 2015, and June 2015). Hence, we concentrated on soil moisture
estimation over vegetated agricultural areas.
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Figure 1. The location of the study area, presented as both (a) Radarsat-2 image and (b) Google 
Earth image. The black rectangular areas indicate the coverage of two experimental sites. 

2.2. Ground Measurements 

The ground measurements in the Tigris Basin were organized during 27 February, 8 April, and 
10 June 2015 and carried out over two experimental areas at the same time as the Radarsat-2 
acquisition. The experimental areas were divided into 100 × 100 m grids and soil surface samples 
were taken from at least one point of each grid, at 3–5 cm depth. An average of 300 ground soil 
samples were collected simultaneously with the Radarsat-2 transition for each period. These soil 
samples were then placed in 100 cm3 metal cylinders and the location of each sample point was 
recorded with the help of a global positioning system (GPS). The distance between the sample 
points was nearly 100 m and the soil moisture content (SMC) for each sample was measured using 
gravimetric methods at the Dicle University Science and Application Research Center (DUBTAM). 
The gravimetrical soil moisture measurements (SM) for each period are given in Table 1. 

Table 1. General information about gravimetrical soil moisture (%). 

Measurement 
Period 

Experimental Area # Sample 
Points 

Min 
SM 

Max 
SM 

Mean 
SM 

SD of 
SM 

27 February 2015 Sparsely Vegetated 335 18.76 43.6 29.72 4.76 
8 April 2015 Densely Vegetated 285 20.24 41.37 30.36 3.93 
10 June 2015 Bare 272 0.79 44.73 7.46 7.01 

Figure 1. The location of the study area, presented as both (a) Radarsat-2 image and (b) Google Earth
image. The black rectangular areas indicate the coverage of two experimental sites.

2.2. Ground Measurements

The ground measurements in the Tigris Basin were organized during 27 February, 8 April, and
10 June 2015 and carried out over two experimental areas at the same time as the Radarsat-2 acquisition.
The experimental areas were divided into 100 × 100 m grids and soil surface samples were taken
from at least one point of each grid, at 3–5 cm depth. An average of 300 ground soil samples were
collected simultaneously with the Radarsat-2 transition for each period. These soil samples were then
placed in 100 cm3 metal cylinders and the location of each sample point was recorded with the help
of a global positioning system (GPS). The distance between the sample points was nearly 100 m and
the soil moisture content (SMC) for each sample was measured using gravimetric methods at the
Dicle University Science and Application Research Center (DUBTAM). The gravimetrical soil moisture
measurements (SM) for each period are given in Table 1.

Table 1. General information about gravimetrical soil moisture (%).

Measurement
Period

Experimental
Area

# Sample
Points Min SM Max SM Mean SM SD of SM

27 February 2015 Sparsely
Vegetated 335 18.76 43.6 29.72 4.76

8 April 2015 Densely
Vegetated 285 20.24 41.37 30.36 3.93

10 June 2015 Bare 272 0.79 44.73 7.46 7.01
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2.3. SAR Data Collection

In this study, the Radarsat-2 data was used over the experimental areas. Radarsat-2 is a world
observation satellite that was successfully launched by the Canadian Space Agency in December 2007.
It has a SAR sensor that runs at the C-band (5.33 GHz) of the microwave spectrum. Furthermore, it is
fully polarimetric and provides multiple imaging modes [26]. In this study, three single-look complex
(SLC) products that keep the resolution, phase, and amplitude information of the SAR data were used
for estimating soil moistures [27]. Three Radarsat-2 data with Fine-Quad mode polarization were
obtained during the different periods of product development. Each Radarsat-2 has a spatial resolution
of 5.83 m and coverage of 30 km × 30 km.

2.4. Preprocessing of SAR Data

The preprocessing to be applied to the RADARSAT-2 data was performed in the following
steps. Sentinel-1 Toolbox (S1TBX) [28] was used to read the SAR data and extract backscattering
coefficients. The data were calibrated to correct SAR images radiometrically and a Refined Lee filter
with 7 × 7 windows was used to remove the speckle noise. The filtered data were then geocoded
using a SRTM-3 Digital Elevation Model (DEM) and Geographical Latitude/Longitude (WGS84) was
chosen as the default output map projection. The GPS values of the sample points were converted
to shp-extended vectors by ARCGIS 10.2, then imported to the Radarsat-2 data with the aid of
the Sentinel-I toolbox. The accurate geographical registration among the field measurements and
Radarsat-2 data was accomplished by utilizing the corner reflectors in the study area. The preprocessed
Radarsat-2 images are shown in Figure 2.
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Figure 2. Three Radarsat-2 images were acquired over the Tigris Basin, Diyarbakır and 
preprocessed on (a) 27 February 2015; (b) 8 April 2015; and (c) 10 June 2015. The Dual pol (hh + vv) 
RGB image was obtained by combining three different (R = hh; G = vh; B = hh/hv) bands of 
Radarsat-2 data. 

Figure 2. Three Radarsat-2 images were acquired over the Tigris Basin, Diyarbakır and preprocessed
on (a) 27 February 2015; (b) 8 April 2015; and (c) 10 June 2015. The Dual pol (hh + vv) RGB image was
obtained by combining three different (R = hh; G = vh; B = hh/hv) bands of Radarsat-2 data.
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3. Methods

3.1. Feature Extraction from SAR Data

After the pre-processing step, each GPS value of the sampling point, which corresponds to a SAR
pixel, was represented by a cell (3 × 3 pixels) using a 3 × 3 window. These cells are different patterns
of the training set and the backscattering coefficients of these patterns were calculated by taking the
average of the coefficients in the cell. In order to form a feature vector for each pattern, three feature
extraction models were used in this study. In the first approach, four sigma backscattering coefficients
(σhh, σhv, σvh, and σvv) were derived from the patterns of different bands (hh, hv, vh, and vv) using
standard SAR backscattering coefficients. In the second approach, six backscattering coefficients in
total were extracted by using the Freeman–Durden (odd bounce, even bounce, and volume scattering)
and H/A/α (entropy, anisotropy, and alpha angle) decomposition models.

3.1.1. Freeman–Durden Decomposition Model

The Freeman–Durden decomposition model is based on three independent scattering mechanisms
including volume scattering, double bounce, and odd bounce, and they can be interpreted
physically [29]. Figure 3 shows the scattering mechanisms.
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Figure 3. Three surface scattering mechanisms.

Among these components, the volume scattering expresses the canopy scattering generated by
randomly oriented dipole clouds. It is supposed that the radar signal is backscattered from a cloud
of randomly oriented scatterers, which are very thin and cylinder-like. In order to simulate such
scatterers, it is assumed that an elementary dipole is oriented horizontally in the perpendicular linear
x–y plane. Let the volume scattering be symbolized by the scatterers, which are in standard orientation,
as shown in the scattering matrix in Equation (1) [29]:

S2X2,dipole =

(
SV 0
0 SH

)
, SV >> SH . (1)

In this equation, SV and SH denote complex scattering coefficients and they are considered
SV >> SH since the dipole is oriented horizontally. If a dipole is turning around the radar look direction
under the θ angle, the scattering matrix of the oriented dipole (scatterer) is as in Equation (2):

Sϑ =

[
Svv SHV
SVH SHH

]
=

[
SVCos2(θ) + SHSin2(θ) (SV − SH)Cos(θ)Sin(θ)
(SV − SH)Cos(θ)Sin(θ) SHCos2(θ) + SVSin2(θ)

]
. (2)

Since the radar transmitter and receiver coordinate systems are the same, the created scattering
matrix becomes symmetric; thus, SHV and SVH are considered equal. Scatterers (dipoles) can be
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randomly directed by the p(θ) probability density function (PDF) in the radar look direction. The
expected value of any function f (θ) is given by Equation (3):

〈 f 〉 =
w 2π

0
f (ϑ)p(ϑ)dϑ. (3)

The covariance matrix for volume (canopy) scattering is represented in Equation (4) and the
matrix elements are generated using Equation (3):

C3X3 = S ∗ ST∗ =

 SHHS∗HH
√

2SHHS∗HV SHHS∗VV√
2SHVS∗HH 2SHVS∗HV

√
2SHVS∗VV

SVVS∗HH
√

2SVVS∗HV SVVS∗VV

. (4)

In order to simplify the equations, the uniformly distributed probability function is assumed to be
p(θ) = 1 and the thin cylindrical scatterers are SV = 1 and SH = 0. Thus situated, the covariance matrix
for volume (canopy) scatter is expressed in Equation (7) using the parameters of Equations (5) and (6):

〈SHHS∗HH〉 =
〈

SHH
2
〉
=
〈

SVV
2
〉
= 1, 〈SHHS∗VV〉 =

〈
SHV

2
〉
= 1/3 (5)

〈SHHS∗HV〉 = 〈SHVS∗VV〉 = 0 (6)

〈
C3,vol

〉
=

 SHHS∗HH
√

2SHHS∗HV SHHS∗VV√
2SHVS∗HH 2SHVS∗HV

√
2SHVS∗VV

SVVS∗HH
√

2SVVS∗HV SVVS∗VV

 =
fV
3

 3 0 1
0 2 0
1 0 3

. (7)

Here, fv represents the effect of volume scattering on the|Svv|2 factor.
The double bounce scattering is the second component of the Freeman–Durden decomposition,

in which a dihedral corner reflector is used to model the scattering stage. For example, the surfaces
of a tree trunk and the ground can be used as a dihedral reflector. The covariance matrix for this
component is described in Equation (10) using Equations (8) and (9) [29]:

〈SHHS∗HH〉 =
〈

SHH
2
〉
= |α|2,

〈
SVV

2
〉
= 1, 〈SHHS∗VV〉 = α,

〈
SHV

2
〉
= 0 (8)

〈SHHS∗HV〉 = 〈SHVS∗VV〉 = 0 (9)

〈
C3,db

〉
=

 SHHS∗HH
√

2SHHS∗HV SHHS∗VV√
2SHVS∗HH 2SHVS∗HV

√
2SHVS∗VV

SVVS∗HH
√

2SVVS∗HV SVVS∗VV

 = fd

 |α|
2 0 α

0 0 0
α∗ 0 1

, (10)

where fd indicates the contribution of the double bounce scattering to the |Svv|2 factor. Lastly, the
odd bounce scattering refers to the backscattering from a rough surface and a first-order Bragg surface
scattering model is used to represent the rough surfaces in this mechanism. The covariance matrix for
this component is described in Equation (13) with the aid of Equations (11) and (12) [29]:

〈SHHS∗HH〉 =
〈

SHH
2
〉
= |β|2,

〈
SVV

2
〉
= 1, 〈SHHS∗VV〉 = β,

〈
SHV

2
〉
= 0 (11)

〈SHHS∗HV〉 = 〈SHVS∗VV〉 = 0 (12)

〈C3,sur〉 =

 SHHS∗HH
√

2SHHS∗HV SHHS∗VV√
2SHVS∗HH 2SHVS∗HV

√
2SHVS∗VV

SVVS∗HH
√

2SVVS∗HV SVVS∗VV

 = fs

 |β|
2 0 β

0 0 0
β∗ 0 1

, (13)
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where fs shows the contribution of surface scattering to the |Svv|2 factor. On account of this, the
measured covariance matrix of the Freeman–Durden decomposition can be defined as the summation
of three covariance scattering matrices, as shown in Equation (14) [29]:

〈C3〉 =
〈
C3,vol

〉
+
〈
C3,db

〉
+ 〈C3,sur〉. (14)

3.1.2. H/A/α Decomposition Model

The H/A/α decomposition model is built on the eigenvalue and eigenvector analysis of the
coherency matrix T3, which is expressed as in Equation (15) [30]:

〈T3〉 = 1
2


〈
|SHH + SVV |2

〉 〈
(SHH + SVV)(SHH − SVV)

∗〉 〈2S∗HV(SHH + SVV)〉〈
(SHH − SVV)(SHH + SVV)

∗〉 〈
|SHH − SVV |2

〉
〈2S∗HV(SHH − SVV)〉〈

2SHV(SHH + SVV)
∗〉 〈

2SHV(SHH − SVV)
∗〉 〈

4|SHV |2
〉

, (15)

where the coherency matrix T3 is represented in Equation (16):

〈T3〉 = u3λu3
−1 , λ =

 λ1 0 0
0 λ2 0
0 0 λ3

. (16)

Here, the λ matrix consists of the eigenvalues computed from T3. Additionally, the calculated
eigenvectors ui are shown in Equation (17):

ui =

 cosαi
sinαicosβiejδi

sinαicosβiejγi

. (17)

Three eigenvectors (for i = 1, 2, 3) are then used to form the u3 unitary matrix, as shown in
Equation (18):

u3 = [u1 u2 u3] =

 cosα1 cosα2 cosα3

sinα1cosβ1ejδ1 sinα2cosβ2ejδ2 sinα3cosβ3ejδ3

sinα1cosβ1ejγ1 sinα2cosβ2ejγ2 sinα3cosβ3ejγ3

, (18)

where α is the incidence angle, β is the orientation angle, and γ and δ explain the relation of phases.
One of the most important aspects of this decomposition model is that the parameters are invariant
and constant for rotation around the radar line. Thus, three statistical features including polarimetric
entropy (H), anisotropy (A), and alpha angle (α) have been described to make the analysis of this
model easier, as shown in Equations (19)–(21), respectively [30]:

H = −
3

∑
i=1

Pilog3(Pi) , Pi =
λi

3
∑

r=1
λr

, 0 ≤ H ≤ 1 (19)

A =
λ2 + λ3

λ2 − λ3
, 0 ≤ A ≤ 1 (20)

_
α =

3

∑
i=1

Piαi , 0 ≤ _
α ≤π

2
. (21)

Here, Pi represents the probability of each eigenvalue λi.
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3.2. GRNN Algorithm

The Generalized Regression Neural Network (GRNN) is a strong and nonlinear machine learning
technique and it has the ability to retrieve complex, dynamic, and non-linear patterns from the
data [31,32]. It was used to estimate the soil moisture by way of a relationship between measured
ground soil moisture and the backscattering coefficient. GRNN has input, pattern, summation, and
output layers. The pattern and summation layers can be named hidden layers because they are inside
the neural network and do not have any contact with the external surroundings.

The architecture of the GRNN model is indicated in Figure 4. Ten neurons corresponding to
different backscattering parameters (σhh, σhv, σvh, σvv, entropy, anisotropy, alpha angle, volume
scattering, surface scattering, and double bounce) are used in the input layer. Moreover, the pattern
layer is attached to the input layer and the neurons of the pattern layer indicate training patterns. The
nonlinear analysis of the input data is implemented in this layer and the distance between input and
sample data is measured as the output data of the pattern layer. Then, all neurons of the pattern layer
are connected to the summation layer, which has two types of summation neurons (one neuron and
multiple neurons). The summation neurons are used to sum the weighted and unweighted outputs of
the neurons in the pattern layer. Finally, the one neuron of the output layer computes the outputs of
the summation layer to give the estimated result.
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Assume that x and y become input and output variables, as seen in Equations (22) and (23), respectively:

x = [x1, x2...xm]
T (22)

y = [y1, y2...yn]
T . (23)

The target parameter y can be estimated from x variables by the GRNN regression model.
Therefore, the estimated y can be computed as shown in Equation (24) [31]:

∧
y(x) =

n
∑

i=1
yiexp

(
−Ci

ς

)
n
∑

i=1
exp

(
−Ci

ς

) , Ci =
p

∑
j=1

∣∣∣xj − xi
j

∣∣∣ (24)

Where n and ς indicate the number of training samples and the spread parameter, respectively.
The spread parameter is an important parameter to affect the accuracy of the GRNN model and is
used to arrange the kernel width of the Gaussian function [33].
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4. Results

This section explains the results obtained from the standard sigma backscattering coefficients and
polarimetric decomposition models. A nonlinear machine learning regression model was trained and
tested on the basis of scattering components to estimate soil moisture content. Three datasets were
generated in a new manner and the analysis of these datasets is shown below.

4.1. Experiments on Dataset 1

In this phase, Dataset 1 was constituted from Radarsat-2 data of 27 February 2015 in order to
evaluate the impact of low vegetation cover over the study areas and the following steps were
implemented to form Dataset 1. First of all, the standard sigma backscattering technique was
applied to the Radarsat-2 data and four sigma backscattering coefficients were computed for each
sampling cell. Then, Freeman–Durden and H/A/α decomposition models were employed and three
physical three statistical parameters were extracted from the sampling cells. To process the fully
polarimetric Radarsat-2 data, calibration, polarimetric matrix generation (generally T3 Coherency
matrix), polarimetric speckle filtering (typically Refined Lee Filter), and polarimetric decompositions
steps are mandatory. The images that resulted after data processing are shown in Figure 5.
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technique; (b) Freeman–Durden; and (c) H/A/αmodels.

The extracted parameters were then added in succession and the feature vector of 10 units in
length (σhh, σhv, σvh, σvv, entropy, anisotropy, alpha angle, volume scattering, surface scattering, and
double bounce) was generated from each sampling point. This process was repeated for 335 sampling
points in this period and Dataset 1 with 335 × 10 lengths was formed.

In order to correlate the ground measurement data with the generated feature vectors as well as
estimate the moisture value of sampling points not included in the calculation, GRNN was used as an
inversion model. For computing the accuracy of the system, training and test sets were established
from Dataset 1 and the moisture values of the agricultural areas included in the test set were estimated
by the trained GRNN. Moreover, the spread parameter (ς) was set in the range (0.5–1.5) and was
chosen as ς = 1 in this study since it provides the best performance at this value for all GRNN models.
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In order to determine the effect of the spread parameter, the result of one application example was
shown in Table 2.

Table 2. The effect of spread parameter on GRNN for testing Dataset 1.

Spread Parameter (ς) R RMSE (%) MAE (%)

0.5 0.73 3.47 2.66
0.6 0.78 3.04 2.50
0.7 0.79 2.93 2.41
0.8 0.80 2.86 2.35
0.9 0.80 2.85 2.32
1.0 0.80 2.84 2.31
1.1 0.80 2.88 2.35
1.2 0.79 2.93 2.39
1.3 0.78 2.99 2.43
1.4 0.77 3.05 2.48
1.5 0.76 3.12 2.52

In the testing process, the leave-one-out cross validation method was used to validate the overall
system accuracy and each of the patterns forming Dataset 1 was included in the test set alternately.
Thus, the quantitative evaluation between measured and estimated soil moistures was determined by
GRNN, as shown in Figure 6.
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For the performance analysis, Root Mean Square Error (RMSE), Correlation Coefficient (r), and
Mean Absolute Error (MAE) were chosen as the indicators. After a leave-one-out cross-validation
process, the overall system accuracy was observed with the estimation error of around 2.84 vol %
RMSE and 2.31 vol % MAE for Dataset 1.

On the other hand, four test areas (22 sampling points for each test area) were randomly selected
on the basis of the Monte Carlo cross-validation method to validate the precision of the system over
the local regions. Finally, the results (see Figure 7) showed estimation errors of 2.80 vol %, 2.79 vol %,
2.70 vol %, and 2.55 vol % MAE over testing areas 1–4, respectively.



Remote Sens. 2017, 9, 395 12 of 21Remote Sens. 2017, 9, 395  12 of 22 

 

(a) (b) 

(c) (d) 

Figure 7. The relationship between the measured and estimated soil moistures (SM) over testing 
areas 1–4 for Dataset 1 (a–d), respectively. 

4.2. Experiments on Dataset 2 

For this stage, Dataset 2 was created from Radarsat-2 data of 8 April 2015 to analyze the effect 
of dense vegetation cover over the study areas. The same topology used in Section 4.1 was repeated 
in this stage to estimate soil moisture and then Dataset 2 with 285 × 10 lengths was generated. After 
the Radarsat-2 processing step, the resulting images are presented in Figure 8. In order to validate 
the applicability of the overall system, the leave-one-out cross-validation method was implemented 
in the testing stage, resulting in estimation errors of 2.65 vol % RMSE and 2.11 vol % MAE over the 
two experimental areas, as described in Figure 9. Moreover, the four test areas (25 sampling points 
for each test area) were randomly chosen for validation of local regions and their accuracy results 
are given in Figure 10. The experimental results indicated that the MAE was 2.78 vol %, 1.79 vol %, 
2.61 vol %, and 1.98 vol % over test areas 1–4, respectively. 

Figure 7. The relationship between the measured and estimated soil moistures (SM) over testing areas
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4.2. Experiments on Dataset 2

For this stage, Dataset 2 was created from Radarsat-2 data of 8 April 2015 to analyze the effect
of dense vegetation cover over the study areas. The same topology used in Section 4.1 was repeated
in this stage to estimate soil moisture and then Dataset 2 with 285 × 10 lengths was generated. After
the Radarsat-2 processing step, the resulting images are presented in Figure 8 In order to validate the
applicability of the overall system, the leave-one-out cross-validation method was implemented in
the testing stage, resulting in estimation errors of 2.65 vol % RMSE and 2.11 vol % MAE over the two
experimental areas, as described in Figure 9. Moreover, the four test areas (25 sampling points for each
test area) were randomly chosen for validation of local regions and their accuracy results are given in
Figure 10. The experimental results indicated that the MAE was 2.78 vol %, 1.79 vol %, 2.61 vol %, and
1.98 vol % over test areas 1–4, respectively.
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was employed for this phase and Dataset 3 with 272 × 10 lengths was constructed. After the 
decomposition process, we obtained the results shown in Figure 11. The overall system accuracy for 
this period was calculated with estimation error of 2.77 vol % RMSE and 2.10 vol % MAE, as 
displayed in Figure 12. Furthermore, four test regions (25 sampling points for each test area) were 
picked out randomly and the precision values of these sites are represented in Figure 13. 
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4.3. Experiments on Dataset 3

In this period, Dataset 3 was generated from the Radarsat-2 data of 10 June 2015 for estimating
the soil moisture over bare agricultural areas. A similar approach to that in the Sections 4.1 and 4.2 was
employed for this phase and Dataset 3 with 272× 10 lengths was constructed. After the decomposition
process, we obtained the results shown in Figure 11. The overall system accuracy for this period was
calculated with estimation error of 2.77 vol % RMSE and 2.10 vol % MAE, as displayed in Figure 12.
Furthermore, four test regions (25 sampling points for each test area) were picked out randomly
and the precision values of these sites are represented in Figure 13. Eventually, MAE of 2.10 vol %
and 2.55 vol % was computed for test areas 1–2, respectively, with 2.11 vol % and 3.05 vol % for test
areas 3–4, respectively.
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4.4. Experiments on Combined Datasets

In order to prove the applicability and usefulness of the proposed algorithm for soil moisture
estimation on different dates, the obtained datasets were merged in the following approaches. In the
first instance, Datasets 1&2 were combined to determine the effect of low and dense vegetation
cover at different dates and a new dataset with 620 × 10 lengths was formed. Then, the GRNN
algorithm was used for soil moisture estimation on the basis of combined datasets. In the testing
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stage, the leave-one-out cross-validation method was employed to test the overall system performance.
Consequently, estimation errors of 3.23 vol % RMSE and 2.46 vol % MAE were computed, as displayed
in Figure 14.
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In the second approach, Datasets 1&3 were combined to analyze the influence of low vegetation
and bare soil surface on different dates and a dataset with 607 × 10 lengths was generated. After
the training and testing process, the quantitative comparison between measured and estimated soil
moistures (as indicated in Figure 15) was 9.76 vol % RMSE and 7.09 vol % MAE.
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Figure 15. The relationship between measured and estimated SM for combined Datasets 1&3.

In the next approach, Datasets 2&3 were combined to determine the effect of dense vegetation and
bare soil surface on different dates and a dataset with 557× 10 lengths was formed. The same topology
as in the first approach was used in this stage for the validation and testing of the proposed model; the
relationship between measured and estimated soil moistures is displayed in Figure 16. Consequently,
estimation errors of 4.04 vol % RMSE and 2.69 vol % MAE were computed for this scenario.
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different scattering components at different vegetation growth stages. The Freeman–Durden 
decomposition model was used in this study since it does not need any ground measurements like 
surface parameters. Moreover, the H/A/α method was employed as a second decomposition model 
because it covers all possible scenarios of scattering models, especially surface scattering. The 
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Finally, Datasets 1&2&3 were merged to examine the influence of low vegetation, dense vegetation,
and bare soil surface on different dates and a dataset with 892 × 10 lengths was constituted. After the
validation and testing process, the quantitative comparison between the measured and generated data
(Figure 17) was shown to be 8.25 vol % RMSE and 5.69 vol % MAE.
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5. Discussion

There are a small number of research studies estimating the soil moisture by polarimetric
decomposition models and nonlinear machine learning techniques. In this study, two typical
polarimetric decomposition models (Freeman–Durden, H/A/α) were picked out to obtain the different
scattering components at different vegetation growth stages. The Freeman–Durden decomposition
model was used in this study since it does not need any ground measurements like surface parameters.
Moreover, the H/A/αmethod was employed as a second decomposition model because it covers all
possible scenarios of scattering models, especially surface scattering. The regression analysis of the
datasets was then implemented using the GRNN algorithm. In order to evaluate the results of three
datasets, the statistical relationship between the measured and estimated soil moistures is given in
Table 3 with a new parameter: coefficient of variation (CV).
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Table 3. The statistical relationship between measured and estimated soil moistures (SM).

Experimental Dataset Average SM (%) RMSE (%) MAE (%) R CV of SM

Dataset 1 29. 72 2.84 2.31 0.80 0.16
Dataset 2 30. 36 2.65 2.11 0.74 0.13
Dataset 3 7.46 2.77 2.10 0.92 0.94

Datasets 1 & 2 30.01 3.23 2.46 0.68 0.14
Datasets 2 & 3 19.18 4.05 2.70 0.95 0.66
Datasets 1 & 3 19.75 9.76 7.09 0.63 0.63

Datasets 1 & 2 & 3 23.14 8.26 5.70 0.71 0.50

From the results (see Table 3), we observed that the different test areas in this study area indicated
different soil moisture content. This is because of the condition of the soil which might be plowed,
unplowed, or irrigated. When we analyze Dataset 1 results; the average soil moisture of Dataset 1
was high at 29.72% and the Cv value of the ground soil moistures (SM) was around 0.16. Moreover,
the soil surface was sparsely vegetated in this growth stage. This means that the data forming
Dataset 1 were not uniformly distributed over the study area due to low vegetation. Therefore, the
scattering parameters in Dataset 1 displayed a good R value, with slightly high error rates compared
to other datasets.

Similarly, the average soil moisture value for Dataset 2 was near that of Dataset 1. Among the
datasets, the lowest correlation coefficient R = 0.706 with the smallest estimation error was observed in
this stage. The reason for the low R might be that the study area was densely vegetated on this date.
Thus, the vegetation scattering decreased the correlation between the estimated and measured soil
moisture. Furthermore, uniform data distribution was observed for Dataset 2 because of the dense
vegetation impact, which caused low error rates at this stage.

In contrast to other datasets, the average soil moisture for Dataset 3 was low around 7%, which
means that the surface was dry. However, a strong relationship between the measured and estimated
soil moisture was established with the highest correlation coefficient: R = 0.919. This might be because
the study area was bare in this growth stage, with high CV of SM, and Dataset 3 was not distributed
uniformly over the study area. Here, partial irrigation might impact the distribution of the soil moisture
and increase the CV of SM and R values.

By the time we considered all dataset combinations, the best estimation model was observed in
Datasets 1 & 2 approach, with the smallest error rate. The reason for this might be that the CV of SM
for both Datasets 1 and 2 is low and the data distribution of the Dataset 2 was uniform. Moreover,
the variation of ground soil moisture for Datasets 1 and 2 is restricted, with high soil moisture values
around saturation. For this reason, error could be limited due to the saturation of the radar signal for
these levels [34].

However, the worst estimation models were examined in Datasets 1 & 3 and Datasets 1 & 2 & 3
approaches. This might be because of that the distribution of Datasets 1 & 3 was not uniform and
the soil moisture vertical profile for Dataset 3 was heterogeneous. Thus, Datasets 1 and 3 induced
high error rates when combined with other datasets [35]. Furthermore, the roughness effect, which
is an important parameter on bare soil conditions (Dataset 3), could generate significant error in soil
moisture estimation [34].

The main contribution of the proposed system is that the datasets were constituted in a novel
approach by combining the decomposed model parameters with the standard sigma backscattering
coefficients. Then, the GRNN neural network was fed into by these parameters and estimated the soil
moisture with a low error rate. Considering the literature studies, some of the main approaches for
soil moisture estimation via SAR-based data are listed in Table 4. The overall accuracy of the proposed
system indicated good results compared to the other approaches in the literature.
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Table 4. The comparison of different approaches for estimating soil moisture by SAR-based data.

Reference Province Dataset Accuracy Methods

Proposed method Bare & Vegetated
fields (Turkey)

Radarsat-2 data &
Ground measurements

R = [0.74–0.92] for
each dataset

R = [0.63–0.95] for
combined datasets

Polarimetric
Decomposition & GRNN

[2] Vegetated
fields (Germany)

POLSAR data &
Ground measurements R2 = [0.4–0.7]

Polarimetric
Decomposition

[4] Bare fields: (China)
Radarsat-2,TerraSAR-X

data & Ground
measurements

R2 = [0.82–0.86] SVR & Modified Dubois

[6] Bare & Vegetated
fields (China)

Radarsat-2, Optical
data & Ground
measurements

R2 = 0.71 IEM & WCM

[9] Vegetated
fields (Canada)

Radarsat-2 data &
Ground measurements RMSE = 7.12% Adaptive Two Component

Decomposition

[10] Vegetated
fields (China)

Radarsat-2 data &
Ground measurements R = 0.84 Advanced IEM

[21]
Bare and Lightly

Vegetated
fields (Italy)

ENVISAT/ASAR
data & Ground
measurements

R2 = 0.82 all dataset
R2 = [0.45–0. 65] for
single day data set.

IEM, ANN, Bayesian &
Nelder–Mead

[36] Vegetated
fields (Canada)

UAVSAR data &
Ground measurements R = [non–0.66] Simplified Polarimetric

Decomposition

[37] Farmland (China) Radarsat-2 data &
Ground measurements R2 = 0.41 Improved WCM

[38] Vegetated
fields (China)

Radarsat-2 data &
Ground measurements R2 = [0.83–0.88]

Polarimetric
Decomposition, Bragg,

X-Bragg & ISSM

[39] Vegetated
fields (USA)

Radarsat-1, Landsat
data & Ground
measurements

R2 = [0.72–0.76]
ANN, Fuzzy &

Multivariate Statistics

[40] Bare fields: (France) Radarsat-2 data &
Ground measurements

RMSE = [0.06–0.09]
cm3/cm3 MLP & IEM

6. Conclusions

In this paper, polarimetric decomposition models with the aid of standard sigma backscattering
coefficients were implemented to form feature vectors. The GRNN algorithm was then used to estimate
the regional soil moisture content on the basis of multi-band Radarsat-2 data. Eventually, the proposed
system gave good results for single C-band SAR data over the study area and these results showed
that radar is an appropriate remote sensing tool for the retrieval of surface soil moisture with very low
mean absolute error over the study area. However, the validation of all results was restricted due to a
lack of ground measurements for vegetation and roughness parameters.

In the future, we are planning to acquire different SAR-based data and ground measurements to
improve the accuracy of the proposed system with an increasing number of datasets. Moreover, the
adaptability of different feature extraction methods will be examined for the soil moisture estimation
model. Since this study is a joint project of TARBIL (Agricultural Monitoring and Information System)
and TUBİTAK (The Scientific and Technological Research Council of Turkey), it is thought that
improving the estimation model will allow for classifying agricultural land into two groups: dry and
wet soil. Thus, natural water resources can be used more efficiently and the optimum water amount
can be automatically determined for irrigation purposes in this region.
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