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Abstract: As a primary basic gas in the atmosphere, atmospheric ammonia (NH3) plays an important
role in determining air quality, environmental degradation, and climate change. However, the
limited ground observation currently presents a barrier to estimating ground NH3 concentrations
on a regional scale, thus preventing a full understanding of the atmospheric processes in which this
trace gas is involved. This study estimated the ground NH3 concentrations over China, combining
the Infrared Atmospheric Sounding Interferometer (IASI) satellite NH3 columns and NH3 profiles
from an atmospheric chemistry transport model (CTM). The estimated ground NH3 concentrations
showed agreement with the variability in annual ground NH3 measurements from the Chinese
Nationwide Nitrogen Deposition Monitoring Network (NNDMN). Great spatial heterogeneity of
ground NH3 concentrations was found across China, and high ground NH3 concentrations were
found in Northern China, Southeastern China, and some areas in Xinjiang Province. The maximum
ground NH3 concentrations over China occurred in summer, followed by spring, autumn, and winter
seasons, which were in agreement with the seasonal patterns of NH3 emissions in China. This study
suggested that a combination of NH3 profiles from CTMs and NH3 columns from satellite obtained
reliable ground NH3 concentrations over China.
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1. Introduction

Ammonia (NH3) is the primary form of reactive nitrogen (Nr) in the environment and a
key component of the ecosystems, representing more than half of atmospheric Nr emissions [1,2].
NH3 emissions have been increasing in recent years due to the increasing agricultural livestock
numbers and the increasing application of Nr fertilization [2,3], resulting in the high NH3

concentrations in the atmosphere. NH3 increase has enhanced the acidification and eutrophication of
the ecosystems on local and international scales [2,4]. Previous studies have shown that the lifetime
of NH3 is very short from hours to several days [5,6] converting to particulate matter (PM) as well
as leading to dry and wet depositions. NH3 reacts with acid-forming compounds such as sulfur
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dioxide (SO2) and nitrogen oxides (NOx) to form particles containing ammonium sulfate ((NH4)2SO4)
and ammonium nitrate (NH4NO3) in the atmosphere [7]. These processes increase the amount of
atmospheric particulate matter, particularly for particles smaller than 2.5 micrometers in diameter
(PM2.5), thereby reducing visibility and negatively affecting environmental and human health [8,9].
Therefore, monitoring the ground NH3 concentrations on a regional scale is vitally important to assist
in enacting effective measures to protect the eco-environments and public health, with respect to air,
soil, and water quality.

Progress in the understanding of the NH3 cycling process, flux measurements, and
instrumentation have allowed advances in estimating NH3 concentrations in the atmosphere on a local
or regional scale, based on the simulation of the chemical transport models (CTM). For example, a
coupled MM5-CMAQ modeling system was used for computing the ground NH3 concentration based
on the NH3 emission developed with a spatial resolution of 27 km× 27 km in the Beijing–Tianjin–Hebei
(BTH) region of China [10]. The simulation error of ground NH3 concentration in different seasons in
BTH range from−24.4% to 7.8%, indicating the ground NH3 concentrations simulated by MM5-CMAQ
are comparable with the observations; A GEOS-Chem model was used to estimate the global and
seasonal NH3 with a resolution of 2◦ latitude × 2.5◦ longitude [11], showing that the simulated
ground NH3 concentrations are biased low compared to the Tropospheric Emission Spectrometer
(TES) with seasonal mean differences of −0.92 to 1.58 ppb. Similar reports on estimating ground NH3

concentrations from CMT could also be tracked in several studies [12–14]. Although these CTMs could
simulate the profiles of NH3 concentrations in the atmosphere, the ground NH3 concentrations over a
large scale, such as on a national scale over the entire area of China, are still poorly understood due to
the large pixel sizes and the relatively high uncertainties resulting from errors of the emission data and
the simplification of the chemistry schemes. Fortunately, numerous studies have shown that CTMs can
produce profiles for aerosol [15–18], NO2 [19–21], NH3 [2,22–24], and SO2 [19,25], denoting that the
vertical profiles of the NH3 concentrations from CTM were highly beneficial in calculating the ground
NH3 concentrations.

In comparison with CTM simulations, satellite remote sensing is considered as an observational
perspective and offers another way to obtain large-scale NH3 columns with high spatial resolutions,
based on advanced infrared spectroscopy (IR) sounders, such as the Infrared Atmospheric Sounding
Interferometer (IASI), the Tropospheric Emission Spectrometer (TES), and the Cross-track Infrared
Sounder (CrIS) [26,27]. Large-scale distributions of IASI NH3 columns could denote the status of NH3

levels in regions not covered by ground measurement networks, expanding insight into new NH3

sources including industry, agriculture, and biomass burning [2,22]. However, satellite NH3 can only
provide the columns and has no information of the vertical distributions of the columns (from the
ground to the top of the atmosphere), presenting a barrier in obtaining the ground NH3 concentrations.
Fortunately, as mentioned in the last paragraph, the detailed NH3 profiles could be obtained from
CTMs. Combining the advantages of CTMs (NH3 profiles) and satellite observations (large-scale
overages with high spatiotemporal resolutions), the ground NH3 concentrations can be derived.

We aimed to generate spatiotemporal ground NH3 concentrations with the aid of the remotely
sensed NH3 columns and vertical NH3 profiles from a CTM. The estimated ground NH3 concentrations
were further compared with the national ground monitoring network of the Chinese Nationwide
Nitrogen Deposition Monitoring Network (NNDMN). Our purpose is not to replace traditional
algorithms, but to combine the advantages of satellite with high spatial and temporal resolutions,
and CTMs with detailed NH3 vertical profiles in order to obtain high spatiotemporal ground
NH3 concentrations over China, hence providing basic information for the ground status of NH3

concentrations and guiding the monitoring plans in the future over China.
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2. Materials and Methods

2.1. Ground NH3 Concentrations in the Atmosphere

Monitoring ground-based NH3 concentrations on a regional scale is not straightforward due to
the technical limitations and great variability of the concentrations in time and space [28]. While the
availability of NH3 concentration data and the flux measurements on local scales is increasing, the
measurements on a regional scale are sparser [1].

We used the monthly ground NH3 concentrations from the Chinese Nationwide Nitrogen
Deposition Monitoring Network (NNDMN, made available on request by Prof. X.J. Liu, China
Agricultural University) to evaluate the accuracy of the satellite-derived ground NH3 concentrations.
Monthly NH3 concentrations (in units of µg N m−3) were measured at 44 sites from 2010 to 2013
(Figure 1). The network mainly covered farmland sites but also included some grassland (two) and
forest (four) sites across China [29,30]. The ground NH3 concentrations in NNDMN were monitored
using both DEnuder for Long-Term Atmospheric (DELTA) systems as well as Adapted Low-cost,
Passive High Absorption (ALPHA) samplers [30,31]. ALPHA is a passive sampling system, while
DELTA is an active sampling system. Monthly ground NH3 concentrations were mostly monitored
by DELTA, and few monitoring sites were measured by ALPHA. Xu et al. [30] showed that these
two methods on measuring ground NH3 concentrations were not significantly different and can be
considered consistent.
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Figure 1. Spatial distribution of ground monitoring NH3 sites in the Chinese Nationwide Nitrogen
Deposition Monitoring Network (NNDMN).

2.2. IASI NH3 Columns

The IASI instrument is on board the polar sun-synchronous MetOp platform, which crosses the
equator at a mean local solar time of 9.30 a.m. and p.m. [32]. In this study, we used the measurements
from the morning overpass as they are generally more sensitive to NH3 because of higher thermal
contrast at this time of day [1]. IASI has an elliptical footprint of 12 km by 12 km (at nadir) and up to
20 km by 39 km (off nadir), depending on the satellite viewing angle. The availability of measurements
is mainly dependent on the cloud coverage.
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The current method is based on the calculation of a spectral hyperspectral range index and
subsequent conversion to a NH3 total column using a neural network. Details on the retrieval
algorithms can be found in Whitburn et al. [32]. We requested the IASI NH3 data from Université
Libre De Bruxelles, and processed the daily observation data to monthly average data for deriving
the ground NH3. In the present work, the observations with a cloud coverage lower than 25%, and
relative error lower than 100% or absolute error less than 5 × 15 molec. cm−2 were processed [27].

2.3. NH3 Profiles from MOZART-4

MOZART-4 (Model for Ozone and Related chemical Tracers, version 4) is a three-dimensional (3-D)
global chemical transport model simulating the chemical and transport processes, which can be driven
by essentially any meteorological dataset and with any emissions inventory [24,33]. The MOZART-4
used in this study includes detailed chemistry, an improved scheme for the determination of albedo,
aerosols, online calculations of photolysis rates, dry deposition, H2O concentration, and biogenic
emissions. A comprehensive tropospheric chemistry with 85 gas-phase species, 12 bulk aerosol species,
39 photolyses, and 157 gas-phase reactions has been included in MOZART-4 [24]. The chemical initial and
boundary conditions, spatially and temporally varying (6 h), are constrained by global chemical transport
simulations from MOZART-4/GEOS-5 (Goddard Earth Observing System-5) with 1.9◦ latitude × 2.5◦

longitude horizontal resolution and 56 vertical levels from the surface. Details on the meteorological
data and emission inventory used for driving MOZART-4 as well as related configurations can be
tracked in Emmons et al. [24]. We requested the MOZART output data from NCAR (National Center for
Atmospheric Research, Boulder, CO, USA). The output data are varying 6 h (daily). We calculated the
monthly data by averaging the daily data, and then used the monthly data for analysis.

2.4. Satellite Derived Ground NH3 Measurements

The fundamental thoughts of the methodology in this work were demonstrated in previous studies
for aerosol [15–17], NO2 [19–21] and SO2 [19,25]. The recent progress in satellite NH3 measurements
also made this methodology applicable in estimating the ground NH3 concentrations by combining
the NH3 profiles from CTM and NH3 columns.

We had three major steps to estimate the satellite-derived ground NH3 concentrations (Figure 2).
First, we produced continuous monthly IASI NH3 columns according to the method in previous
studies [27,32]. Second, we simulated the vertical profiles from MOZART-4, and calculated the ratio of
ground NH3 to NH3 columns. Third, we derived the satellite-derived ground NH3 concentrations
combining the IASI NH3 columns and the ratio in the second step. Of these three steps, the second
step of simulating the vertical profiles was the most important and complex one. We demonstrate here
the key algorithms to simulate the vertical profiles from MOZART.
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We retrieved the NH3 profiles from MOZART to convert the IASI NH3 columns to ground NH3

concentrations. The NH3 vertical profile function was simulated by the following equation in the grid
cell using the output data from MOZART-4:

f (h) =
n

∑
i=1

aie
−(h−bi)

2

c2
i (1)

where n ranges from 2 to 6, representing the number of Gaussian items; ai, bi, and ci indicate the
constants for each Gaussian item; h indicates the vertical height from the ground and f (h) is the
NH3 concentration at height h. Theoretically, we can use n larger than 6 (with more Gaussian items).
However, it is highly dependent on the computational time cost and computer memory limitations.

We simulated the NH3 vertical profile using Equation (1) by each grid cell, based on the 56 vertical
layers of NH3 concentrations from MOZART. For each grid cell, we had five models (n = 2, 3, 4, 5, 6)
and used R2 and root-mean-square error (RMSE) to assess each model performance. We selected the
best one with highest R2 and lowest RMSE (i.e., determined the value of n).

The MOZART NH3 columns can be gained by integration based on the simulated profile function:

F
(
htrop

)
=
∫ htrop

0
f (h)dh (2)

where F
(
htrop

)
denotes NH3 columns and htrop indicates the tropospheric height.

The satellite-derived ground NH3 concentration is calculated as:

[SN H3]G = [SN H3]Trop ×
f (hG)

F
(
htrop

) (3)

where
[

SN H3
]

Trop indicates the IASI NH3 columns, f (hG) denotes the ground NH3 concentration

from MOZART, and F
(
htrop

)
represents the MOZART NH3 columns.

We used the national ground-based NH3 concentrations in NNDMN between 2010–2013 to
validate the satellite-derived ground NH3 concentrations. We applied the correlation coefficient (r) and
relative error ((observation-estimation)/observation) at each monitoring site to assess the accuracy of
the satellite-derived ground NH3 concentrations.

3. Results and Discussion

3.1. Accuracy Assessment of the Estimated Ground NH3 Concentrations

To convert the IASI NH3 columns to ground NH3 concentrations, it is essential to obtain the
vertical NH3 profiles. We retrieved the vertical NH3 profiles from MOZART in this study (as an
example, the vertical NH3 concentrations at five locations in January 2013 from MOZART are shown in
Figure A1). The NH3 profiles were simulated by each grid cell in China (Figure A9) with determination
of coefficients (R2) larger than 0.95 accounting for 99.81% of all grid cells (Table A1 and Figure A9).
Then, we estimated the ground NH3 concentrations based on IASI NH3 columns and the modeling
MOZART NH3 profiles.

We used 44 ground-based sites from NNDMN between 2010–2013 to assess the performance
of the estimated monthly ground NH3 concentrations. The correlation between the estimated and
measured at each site is given in Table A2 in Appendix A, and the relative bias of each site as well
as the yearly comparisons between the estimated and measured ground NH3 concentration are
given in Figures 3 and 4. We found 90.91% of minoring sites has a relative error within −30%–50%,
showing an agreement between the estimated and measured. The seasonal absolute error by
inverse-distance-weighted (IDW) interpolation is also shown in Figure A2. We found the absolute error
in winter (December, January, and February) was higher than in other seasons, which can be explained
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by the highest relative error in IASI NH3 columns in the winter season (Figure A3). In addition, Figure 4
demonstrates a comparison between the estimated and measured ground NH3 concentrations before
and after applying the IASI NH3 data. We found a relatively higher correlation (R, 0.81 vs. 0.57) and a
better consistency (slope, 0.96 vs. 0.50) between the satellite-derived ground NH3 concentrations and
the measured ground NH3 concentrations than those from MOZART not applying the IASI NH3 data.
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3.2. Spatial Pattern of the Ground NH3 Concentrations

Spatial distribution of ground NH3 concentrations in 2012 over China is shown in Figure 5a.
High ground NH3 concentrations greater than 10 µg N m−3 were concentrated in North China and
South China including Beijing–Tianjin–Hebei (BTH), Shandong, Henan, Hubei, Anhui, Sichuan and
Jiangsu provinces, forming the major regions of intensive agriculture over China. Low ground NH3

concentrations are predominantly located in TP (Tibetan Plateau), where both the synthetic fertilizers
and livestock waste were the least among 32 provinces [34,35]. The spatial ground NH3 concentrations
revealed considerable spatial heterogeneity across China and were in agreement with the percent
farmland area (Figure 5a,b), reflecting its unique agricultural structure and farming practice.
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concentration to NH3 columns from MOZART.

High ground NH3 concentrations were also observed in some areas in Xinjiang province
(Figure 5a), where our estimation were about −30% to −10% underestimation compared with
measurements in NNDMN (Figure 3). Moreover, relatively high NH3 columns could be observed by
satellite IASI instrument (Figure 5c). Synthetic N fertilizers and livestock waste both dominated the
spatial distribution of the total emissions [34,35], hence determining the spatial patterns of the ground
NH3 concentrations. Previous studies reported that the NH3 emissions from livestock exceeded those
from the farmland in China, and NH3 emissions from livestock accounted for about 54% of the total
NH3 emissions over China [35]. The contribution of livestock to the total NH3 emissions in Xinjiang
(where sheep are widely raised) accounted for higher than 60% [10,35]. Thus, due to the combining
influence of both synthetic N fertilizers and livestock waste, the spatial distributions of ground NH3
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concentrations and percent farmland differed, especially in regions where the livestock dominated
the NH3 emissions. In addition, most of the ground NH3 emissions were more concentrated on the
ground and relatively hard to transport vertically compared with other regions in China, which can be
clearly seen by the ratio of ground NH3 concentrations to NH3 columns from MOZART (Figure 5d).

3.3. Seasonal Variations of the Ground NH3 Concentrations in China

To demonstrate the seasonal variations of the ground NH3 concentrations in China, we calculated
the monthly average values throughout China (Figure 6a). We found the maximum ground NH3

concentrations over China occurred in summer (June, July, and August), followed by spring (March,
April, and May), autumn (September, October, and November) and winter (December, January, and
February) seasons. It is interesting that the seasonal ground NH3 concentrations were in agreement
with the seasonal patterns of NH3 emissions in China conducted by Kang et al. [36], Huang et al. [35],
and Xu et al. [37] (Figure 6b–d), indicating that the NH3 emissions are the key factor influencing
seasonal pattern of the ground NH3 concentrations. The maximum NH3 emissions in summer is
reasonable due to more than 40% of the fertilization and more than 25% of livestock emissions occurring
in summer [36,37]. In addition, high temperature in summer in China may also accelerate the NH3

volatilization (NH4
+→NH3 + H+) from fertilizer, animal waste, city garbage or vehicles [6,38–40], and

hence cause high ground NH3 concentrations. In contrast, in winter, temperature frequently below
freezing leads to reduced NH3 volatilization and lower NH3 concentrations than in other seasons.
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Figure 6. Seasonal patterns of ground NH3 concentrations in China. (a) indicates the monthly variations
of ground NH3 concentrations (µg N m−3) in China; (b) represents the monthly variations of the total
NH3 emissions (Tg, 1012 g) in China conducted by Kang et al. [36]; (c) shows the the monthly variations
of the sum of fertilizer and livestock NH3 emissions (Tg) in China conducted by Huang et al. [35]
and (d) denotes the monthly variations of the fertilizer NH3 emissions (Tg) in China conducted by
Xu et al. [37].

To more accurately quantify the effects of meteorological parameters on the seasonal trends
of the ground NH3 concentrations, we selected the five best-simulated ground sites with n >30



Remote Sens. 2017, 9, 467 9 of 19

(Table A2) for demonstrating meteorological parameters, such as temperature, wind speed, humidity,
and precipitation on the seasonal variations of the ground NH3 concentrations (Figures 7 and A4–A8).
The monthly wind speed, temperature, relative humidity, and precipitation for each site were taken
from the China Meteorological Administration. A positive correlation (R = 0.6, p = 0.00) was found
between the ground NH3 concentrations and temperature. An inverse relationship between the ground
NH3 concentrations and humidity (Figure 7), indicated that higher relative humidity may contribute to
more NH3 loss rates (NH3→ NH4

+). In addition, we also conducted a partial correlation analysis [41]
regarding ground NH3 concentrations, temperature, and humidity by considering their interactions
using the function “partialcorr” in Matlab. We found the partial correlation between ground NH3

concentrations and humidity was −0.10 (p = 0.03), showing a significant inverse relationship between
the ground NH3 concentrations and humidity. Significant effects of air humidity on NH3 loss were
also demonstrated previously [42,43]. However, precipitation and wind speed were not significantly
correlated with ground NH3 concentrations (p = 0.632, precipitation vs. NH3; p = 0.156, wind speed vs.
NH3) as shown in Figures A4–A8.
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Figure 7. The seasonal variations of ground NH3 concentrations (µg N m−3), temperature (◦C),
precipitation (mm), humidity (%), and wind speed (m/s) at five sites with best-simulated ground NH3

concentrations from January 2010 to December 2013 (0–12, 2010; 13–24, 2011; 25–36, 2012; 37–48, 2013).
The relationship between the ground NH3 concentrations and precipitation (mm), humidity (%), and
wind speed (m/s) at each site is provided in Figures A4–A8.

3.4. Comparison with Previous Studies

The first relatively complete work on the national ground measurements of NH3 concentrations
in China is NNDMN, and the results of ground measurements were published by Xu et al. [30], which
we considered as a truly comprehensive and valuable work on the national status of the ground
NH3 concentrations, and which shed some light on the actual status of ground NH3 concentrations.
The national measurements in NNDMN provide the best accurate datasets for validating the modeling
ground NH3 concentrations. In the previous studies, due to very limited ground measurements (not
to mention the national monitoring measurements), it was difficult to validate the accuracy of the
modeling ground NH3 concentrations in China. The lack of measurements makes it necessary to
assess the modeling ground NH3 concentrations in China [44]. Recently, Zhao et al. [45] presented
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a comprehensive work on the national-scale model validation of ground NH3 concentrations with
1/2◦ longitude by 1/3◦ latitude horizontal resolution using the GEOS-Chem model, showing the
correlation coefficient with NNDMN between 2011–2012 which was about 0.65 on the annual scale [45].
Compared with Zhao et al. [45], we used the same datasets from NNDMN while having a longer time
period (2010–2013) to validate our estimated ground NH3 concentrations, and found the correlation
coefficient was about 0.81 (slope = 0.96 and intercept = 1.31) on the annual scale as shown in
Figure 4, demonstrating better agreement with the ground measurements. The relatively higher
accuracy in estimating ground NH3 concentrations may result from different datasets used for
estimation, where we used the satellite observation and Zhao et al. [45] used the NH3 emission
data used for modeling. Uncertainties existed in the estimation of NH3 emission resulting from
the methodology of calculation, which simplified the complexity of the real status of emission
process [36]. For example, N-fertilizer NH3 emission in BTH between different studies varied
greatly as 256.5 Gg [35], 502.5 Gg [46], 432.7 Gg [10]; livestock NH3 emission in BTH between different
studies varied as 556.6 Gg [35], 675.2 Gg [46], and 891.6 Gg [10]. The estimation of NH3 emissions by
Zhou et al. [10] even nearly doubled that by Huang et al. [35] and Dong et al. [46]. The actual local
emission factors in different regions differed from each other greatly, due to the difference of the local
meteorological conditions, fertilizing time, and fertilizer kinds [37]. The NH3 emissions are mainly
based on statistical NH3 emissions at a city or county level, and the accuracy is strongly dependent on
both the limited spatial and temporal resolutions of the coarse statistical data [35–37,44,47].

The present study derived ground NH3 concentrations from IASI NH3 columns and the
profiles from MOZART-4, implying that a combination of CTM modeling and satellite monitoring
obtained a reliable ground NH3 estimation over China. More generally, this attempt to generate the
ground NH3 measurements with a relative high resolution from IASI and MOZART has highlighted
known limitations in the ground NH3 monitoring measurements, which may in some cases not be
representative of the estimated NH3 concentrations horizontally and vertically. Here we highlight
the need to acquire more comprehensive datasets of ground NH3 concentrations, and dedicated
measurement campaigns focusing on the ground NH3 measurement will no doubt allow improvements
in the validation of estimated NH3 in the future. In addition, we focused on the spatial pattern of
ground NH3 concentrations derived from satellite and a CTM, which is based on the monthly average
and may be limited for the specific analysis such as secondary aerosol formation, photochemistry, and
consideration of regulation. It is also beneficial and even essential to gain higher temporal resolution
of ground NH3 concentrations in the future.

4. Conclusions

We critically estimated the ground NH3 concentrations over China, combining IASI NH3 columns
and NH3 profiles from MOZART. We aimed to generate ground NH3 concentrations over China,
and hence provide potential to understand both the spatial and temporal variations of ground NH3

concentrations in order to guide future ground NH3 monitoring plans. The intention was not to replace
traditional algorithms but to provide new insight on the current status of ground NH3 over China,
and to generate more reliable ground NH3 concentrations. The IASI NH3 columns and NH3 profiles
from the atmospheric chemistry transport model are encouraged to be combined to generate ground
NH3 concentrations at local or regional scales, and the estimated results should be further improved.

This study introduced methods to estimate ground NH3 concentrations over China using IASI
NH3 columns and NH3 profiles. The estimated ground NH3 concentrations were validated by
44 sites from NNDMN, showing promising results between the estimated and measured, and then
the spatial and temporal variations of ground NH3 concentrations were demonstrated. High ground
NH3 concentrations greater than 10 µg N m−3 were mainly located in Beijing, Hebei, Shandong,
Henan, Jiangsu, eastern Sichuan, and some regions in Xinjiang provinces, while low ground NH3

concentrations were concentrated in the Tibet-Plateau area. The maximum ground NH3 concentrations



Remote Sens. 2017, 9, 467 11 of 19

over China occurred in summer, followed by spring, autumn, and winter seasons, which are in
agreement with the seasonal patterns of NH3 emissions in China.
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Table A1. Descriptive statistics for results of Gaussian simulation.

Season (%) N = 2 N = 3 N = 4 N = 5 N = 6 R2 > 0.95 R2 > 0.99

Spring 0.70 12.02 33.33 34.61 19.31 99.86 96.94
Summer 0.79 10.47 28.24 37.09 23.38 99.86 97.52
Autumn 0.48 7.60 24.58 37.93 29.39 99.86 98.89
Winter 0.92 10.25 31.03 35.80 21.97 99.64 96.46

All 0.72 10.09 29.29 36.36 23.51 99.81 97.45

Note: Spring includes March, April, and May; Summer includes June, July, and August; Autumn includes September,
October, and November; Winter includes December, January, and February. N indicates the numbers of the Gaussian
items. For details, please refer to the methods part.
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Table A2. Comparison between monthly IASI satellite-derived ground NH3 concentrations and the
NNDMN monitoring sites from 2010 to 2013.

Site Landuse Long (◦E) Lat (◦N) n
R (±std)

This Study

BYBLK Alpine grassland 83.71 42.88 22 0.68 (0.05)
FK Desert-oasis ecotone 87.93 44.29 32 0.49 (0.04)
TLF Desert in an oasis 89.19 42.85 28 0.84 (0.07)
SDS Urban 87.56 43.85 38 0.69 (0.06)
TFS Suburban 87.47 43.94 35 0.56 (0.05)
CL Desert-oasis ecotone 80.73 37.02 12 0.94 (0.08)
TZ Desert 83.66 38.97 12 0.89 (0.07)

YPH Farmland 77.27 39 12 0.83 (0.05)
HT Farmland 79.89 37.15 5 0.99 (0.08)

AKS Farmland 80.83 40.62 17 0.72 (0.06)
KRL Farmland 85.86 41.68 6 0.94 (0.08)
NLT Forest 84.03 43.31 4 0.33 (0.03)

NSXC Forest 87.04 43.35 7 0.98 (0.09)
CAU Urban 116.28 40.02 45 0.57 (0.05)
ZZ Urban 113.63 34.75 44 0.55 (0.04)
SZ Farmland 116.2 40.11 45 0.86 (0.07)
BD Farmland 115.48 38.85 12 0.44 (0.04)
QZ Farmland 114.94 36.78 45 0.50 (0.04)
YQ Farmland 112.89 38.05 45 0.57 (0.05)

ZMD Farmland 114.05 33.02 45 0.27 (0.02)
YL Farmland 108.01 34.31 45 0.27 (0.02)
YC Farmland 116.63 36.94 35 0.77 (0.06)

GZL Farmland 124.83 43.53 42 0.82 (0.06)
LS Farmland 124.17 43.36 42 0.62 (0.05)
DL Coastal 121.58 38.92 40 0.73 (0.05)
WY Forest 129.25 48.11 12 0.31 (0.02)
GH Forest 121.52 50.78 12 0.38 (0.03)
WW Farmland 102.6 38.07 39 0.32 (0.02)
DL Grassland 116.49 42.2 6 0.52 (0.04)
WX Farmland 115.79 30.01 29 0.56 (0.05)
BY Farmland 113.27 23.16 44 0.47 (0.04)
TJ Farmland 111.97 28.61 39 0.42 (0.03)

FYU Farmland 113.34 28.56 40 0.76 (0.06)
HN Farmland 113.41 28.52 40 0.36 (0.03)
NJ Farmland 118.85 31.84 18 0.82 (0.06)
FY Farmland 117.56 32.88 11 0.79 (0.06)
ZJ Coastal 110.33 21.26 41 0.63 (0.05)
FZ Coastal 119.36 26.17 45 0.49 (0.03)
FH Coastal 121.53 29.61 41 0.57 (0.04)
XS Forest 113.31 28.61 40 0.67 (0.06)
WJ Farmland 103.84 30.55 39 0.28 (0.02)
ZY Farmland 104.63 30.13 42 0.74 (0.06)
YT Farmland 105.47 31.28 30 0.78 (0.06)
JJ Farmland 106.18 29.06 12 0.94 (0.08)
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