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Abstract: In this paper a non-parametric model based on Wasserstein CNN is proposed for color
correction. It is suitable for large-scale remote sensing image preprocessing from multiple sources
under various viewing conditions, including illumination variances, atmosphere disturbances,
and sensor and aspect angles. Color correction aims to alter the color palette of an input image
to a standard reference which does not suffer from the mentioned disturbances. Most of current
methods highly depend on the similarity between the inputs and the references, with respect to
both the contents and the conditions, such as illumination and atmosphere condition. Segmentation
is usually necessary to alleviate the color leakage effect on the edges. Different from the previous
studies, the proposed method matches the color distribution of the input dataset with the references
in a probabilistic optimal transportation framework. Multi-scale features are extracted from the
intermediate layers of the lightweight CNN model and are utilized to infer the undisturbed
distribution. The Wasserstein distance is utilized to calculate the cost function to measure the
discrepancy between two color distributions. The advantage of the method is that no registration
or segmentation processes are needed, benefiting from the local texture processing potential of the
CNN models. Experimental results demonstrate that the proposed method is effective when the
input and reference images are of different sources, resolutions, and under different illumination and
atmosphere conditions.
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1. Introduction

Large-scale remote sensing content providers aggregate remote sensing imagery from different
platforms, providing a vast geographical coverage with a range of spatial and temporal resolutions.
One of the challenges is that the color correction task becomes more complicated due to the
wide difference in viewing angles, platform characteristics, and light and atmosphere conditions
(see Figure 1). For further processing purposes, it is often desired to perform color correction to the
images. Histogram matching [1,2] is a cheap way to address this when a reference image with no color
errors is available that shares the same coverage of land and reflectance distribution.

To gain a deeper insight, first we would like to place histogram matching in a broader context
as the simplest form of color matching [3]. These methods try to match the color distribution of the
input images to a reference, also known as color transferring. They can either work by matching
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low order statistics [3–5] or by transferring the exact distribution [6–8]. Matching the low order
statistics is sensitive to the color space selected [9]. The performances of both methods are highly
related to the similarity between the contents of the input and the reference. Picking an appropriate
reference requires manual intervention and may become the bottle neck for processing. A drawback
of such methods is that the colors on the edges of the targets would be mixed up [10–12]. Methods
exploiting the spatial information were proposed to migrate the problem, but segmentation, spatial
matching, and alignment are required [13,14]. Matching the exact distribution is not sensitive to the
color space selection, but has to work in an iterative fashion [8]. Both the segmentation and the iteration
increase the computation burden and are not suitable for online viewing and querying. For video
and stereo cases, extra information from the correlation between frames can be exploited to achieve
better color harmony [15,16]. The holography method is introduced into color transfer to eliminate
the artifacts [17]. Manifold learning is an interesting framework to find the similarity between the
pixels, so that the output color can be more natural and it can suppress the color leakage as well [18].
Another perspective to comprehend the problem is image-to-image translation. Convolutional neural
networks have proven to be successful for such applications [19], for example, the auto colorization
of grayscale images [20,21]. Recently, deep learning shows its potential and power in hyper-spectral
image understanding applications [22].
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Figure 1. Color discrepancy in remote sensing images. (a,b) Digital Globe images on different dates 
from Google Earth; (c,d) Digital Globe (bottom, right) and NASA (National Aeronautics and Space 
Administration) Copernicus (top, left) images on the same date from Google Earth; (e) GF1 (Gaofen-
1) images from different sensors, same area and date. 

Unfortunately, for large-scale applications, it is too strict a requirement that the whole 
reflectance distribution should be the same between the reference image and the ones to be processed. 
As a result, such reference histograms are usually not available and have greatly restricted the 
applications of these sample-based color matching methods. In [23] the authors choose a color 
correction plan that minimizes the color discrepancy between it and both the input image and the 
reference image. This is a good solution in stitching applications. However, the purpose of this paper 
is to eliminate the errors raised by atmosphere, light, etc., so that the result can be further employed 
in ground reflectance retrieval or atmosphere parameters retrieval. We hope that the output is as 
close as possible to the reference images, rather than modifying the ground truth values as in [23]. 
Since it is usually infeasible to find such a reference, a natural question is, can we develop a universal 
function which can automatically determine the references directly according to the input images? 
Once this function is obtained, we can combine it with simple histogram matching or other color 

Figure 1. Color discrepancy in remote sensing images. (a,b) Digital Globe images on different dates
from Google Earth; (c,d) Digital Globe (bottom, right) and NASA (National Aeronautics and Space
Administration) Copernicus (top, left) images on the same date from Google Earth; (e) GF1 (Gaofen-1)
images from different sensors, same area and date.

Unfortunately, for large-scale applications, it is too strict a requirement that the whole reflectance
distribution should be the same between the reference image and the ones to be processed. As a result,
such reference histograms are usually not available and have greatly restricted the applications of
these sample-based color matching methods. In [23] the authors choose a color correction plan that
minimizes the color discrepancy between it and both the input image and the reference image. This
is a good solution in stitching applications. However, the purpose of this paper is to eliminate the
errors raised by atmosphere, light, etc., so that the result can be further employed in ground reflectance
retrieval or atmosphere parameters retrieval. We hope that the output is as close as possible to
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the reference images, rather than modifying the ground truth values as in [23]. Since it is usually
infeasible to find such a reference, a natural question is, can we develop a universal function which
can automatically determine the references directly according to the input images? Once this function
is obtained, we can combine it with simple histogram matching or other color transfer methods into
a very powerful algorithm. In this paper, a Wasserstein CNN model is built to infer the reference
histograms for remote sensing image color correction applications. The model is completely data
driven, and no registration or segmentation is needed in both the training phase and the inferring
phase. Besides, as will be explained in Section 2, the input and the reference can be of different
scales and sources. In Section 2, the details of the proposed method are elaborated in an optimal
transporting framework [24,25]. In Section 3, the experiments are conducted to validate the feasibility
of the proposed method, in which images from the GF1 and GF2 satellites are used as the input and
the reference datasets accordingly. Section 4 comprises the discussions and comparisons with other
color matching (correcting) methods. And finally, Section 5 gives the conclusion and points out our
future works.

2. Materials and Methods

2.1. Analysis

Given an input image I and a reference image I′ with Nc channels, an automatic color matching
algorithm aims to alter the color palette of I to that of I′, the reference. Some of the algorithms
require that the reference image is known, which are called sample-based methods. Of course
an ideal algorithm should work without knowing I′. The matching can be operated either in the
Nc-dimensional color space at once, or in each dimension separately [8,26]. The influence of the light
and the atmosphere conditions and other factors can be included into a function h(I′, x, y) that acts on
the grayscale value of the pixel located at (x, y). Under such circumstances, the problem is converted
to learning an inverse transfer function f (I, x, y) that maps the grayscale values of the input image I
back to that of the reference image I′, where (x, y) denotes the location of the target pixel inside I.

When the input image is divided into patches that each possess a relatively small geographical
coverage, the spatial variance of the color discrepancy inside each patch is usually small enough to be
neglected. Thus h(I′, x, y) should be the same with h(I′, x′, y′) as long as (x, y) and (x′, y′) share the
same grayscale values. Let ux,y and vx,y be the grayscale values of the pixels located at (x, y) in I and I′

accordingly, and h(I′, x, y) can be rewritten as h(I′, vx,y), because the color discrepancy function is not
related to the location of the pixel but only to its value. The three assumptions of the transformation
from the input images to the reference images are made as follows, and some properties which f
should satisfy can be derived from them.

Assumption 1: vx,y = vx′ ,y′ ⇒ ux,y = ux′ ,y′

Assumption 1 suggests that when two pixels in I′ have the same grayscale value, so do the
corresponding pixels in I. This assumption is straight forward since in general cases the cameras
are well calibrated and the inhomogeneity of light and atmosphere is usually small within a small
geographical coverage. It is true that when severe sensor errors occur this assumption may not hold,
however that is not the focus of this paper.

Assumption 2: ux,y = ux′ ,y′ ⇒ vx,y = vx′ ,y′

Assumption 2 indicates that when two pixels in I have the same grayscale, so are their
corresponding pixels in I′. The assumption is based on the fact that the pixel value the sensor
recorded is not related to its context or location, but only to its raw physical intensity.

Assumption 3: ux,y > ux′ ,y′ ⇔ vx,y > vx′ ,y′

Assumption 3 implies that the transformation is order preserving, or a brighter pixel in I should
also be brighter in I′, and vice versa.
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According to the above assumptions, we expect the transfer function f to possess the
following properties.

Property 1: ux,y = ux′ ,y′ ⇒ f (I, ux,y) = f (I, ux′ ,y′)

Property 2: ux,y > ux′ ,y′ ⇔ f (I, ux,y) > f (I, ux′ ,y′) , or f is order-preserving

Property 3: I1 6= I2 ⇒ f (I1, •) 6= f (I2, •)

Consider that even when two pixels inside I1 and I2 share the same grayscale values, the corrected
values can still be different according to their ground truth values in the references. Property 3 is to say
that f should be content related. In other words, for different input images, the transfer function values
should be different to maintain the content consistency. To better explain the point, consider that two
input images having different contents, the grassland and the lake so to speak, happen to be of similar
color distributions. The pixel in the lake should be darker and the other pixel in the grassland should
be brighter in the corresponding reference images. If f is only related to the grayscale values while
discarding the input images (the contexts of the pixels), this cannot be done because similar pixels in
different input images have to be mapped to similar output levels.

An issue to take into account is whether the raw image or its histogram of the input and reference
images should be made use of for the matching. Table 1 lists all possible cases, each of which will
be discussed.

Table 1. Different color matching schemes according to the input form and the reference form.

Input Reference Scheme

Histogram Histogram A
Image Image B
Image Histogram C

Histogram Image D

Scheme A is the case when both the input and reference are histograms, and this is essentially
histogram matching. Many previous studies employ this scheme for simplicity, for example, histogram
matching and low order statistics matching in various color spaces. Since histograms do not contain
the content information, the corresponding histogram matching is not content related. Concretely
speaking, two pixels that belong to two regions with different contents but with the same grayscale fall
into the same bin of the histogram, and have to be assigned to the same grayscale value in the output
image, which does not meet Property 3. In order for one distribution with different contexts to be
correctly matched to different corresponding distributions, we cannot enclose different transformations
in one unified mapping (see Figure 2). This should not be appropriate for large scale datasets that
demand a high degree of automation.

Scheme B corresponds to the case where both the input and output are images, which is usually
referred to as image to image translation. The image certainly contains much more information than
its histogram, thus providing a possibility that the mapping is content related. Although Property 3
can be satisfied, this scheme emphasizes the content of the image, and the consequence is that the
pixels with same grayscales may be mapped to different grayscales as their contexts could be different,
and in this case Property 1 is violated (see Figure 3).
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Figure 3. Matching algorithms of “scheme B” take both input and reference in the form of images.
Similar distributions could be mapped to different corresponding references, as the scheme is content
based. However, the same grayscales could be mapped to different grayscales when they are in
different contexts, violating Property 1.

Scheme C is the case where the input is an image and the output is a histogram. As mentioned
above, scheme A does not satisfy Property 3 because the context of the image is not used, while
scheme B violates Property 1. Mapping one image to another, with constraints that the pixels with the
same grayscales also have the same grayscale values in the output, is essentially a grayscale to grayscale
transforming process. Under such circumstances, the output of scheme B is always equivalent to
that of scheme C. Since scheme C automatically possesses Properties 1 and 3, the task has been now
converted to devise the algorithm so that it possesses Property 2 as well (see Figure 4). The task is
addressed under an optimal transporting framework, which will be elaborated in Section 2.2.
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the form of images. Similar distributions could be mapped to different corresponding references, as the
scheme is content related.

The scheme of type D corresponds to the case where the input is the histogram and the output is
the image. Since it is nearly impossible to determine a transformation mapping of a histogram to an
image, we do not take this case into consideration.

2.2. Optimal Transporting Perspective of View

Denote u and v as the input and the reference color distributions, then T : RNc → RNc is a
mapping that transforms u to v. The total cost of T(u, v) can be defined as C(u, v) [25–27]:

C(u, v) = inf
π∈Π(u,v)

∫
c(x, y) dπ(x, y) (1)

where c(x, y) is the cost of transporting one unit of mass from x to y, and π(u, v) is the joint probability
measure of RNc

+ ×RNc
+ , having u and v as its marginal distributions. Again, Nc indicates the number of

color channels and Π(u, v) is the collection of every feasible π(u, v).
When c(x, y) is defined as a distance d(x, y), the p-order Wasserstein distance can be defined

as [25,27]:

Wp(u, v) =
(

inf
π∈Π(u,v)

∫
d(x, y)pdπ(x, y)

)1/p
(2)

Finding the transformation T(u, v) that minimizes the total cost C(u, v) is known as the Monge’s
optimal transportation problem, or the MK problem. The solution to the problem is the gradient of
some convex function [25,27,28]:

T = ∇φ, where φ : RNc → R is convex (3)

Specifically in one dimensional cases, this statement is equivalent to monotonicity, as consequence
meets Property 2.

For high dimensional problems, the solution of the MK problem is intractable. In this paper,
the distributions of the Nc channels are matched separately. The Wasserstein distance between the
inferred values and the ideal values can be calculated in the following way: first sort the pixels on
a 1-D axis, and then calculate the distance between each pair of inferred pixels and the ideal pixels
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accordingly. This is equivalent to using a stacked histogram (see Figure 5). The Wasserstein distance
when p equals 2 can be formulated as:

W2 =

(∫ (
hpred( f )− hre f ( f )

)2
d f
)1/2

, where f is the cumulative frequency (4)
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2.3. The Model Structure

The transformation can be fitted by a CNN model, where the Wasserstein distance plays the role
of the loss function. To reduce the memory and computation burden, we used a modified version of
Squeeze-net v1.1 [29] (see Figures 6 and 7). In this section we will first introduce the basic modules
and then go on to state the major modifications.
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2.3.1. Basic Modules

The Squeeze-net is a light-weight convolutional neural network. The basic modules of
the squeeze-net are called the “fire” modules [29], and each consists of two convolution layers,
the “squeeze” layer and the “expand” layer. The kernels in the “squeeze” layers are all of 1 × 1 sizes
to maximally lessen the parameters inside the model and reduce the computational burden. Two types
of kernels, 1 × 1 and 3 × 3 filters, comprise the “expand” layer. The “fire” modules prove to be
computationally efficient, and also make the network less likely to be over fitted, as it “squeezes” the
amount of parameters to a much smaller scale. In our experiment, the final global average pooling
layer and the softmax layer of the squeeze-net was removed, and the rest of the parts were used to
extract the features from the raw input images.

2.3.2. The Multi-Scale Concatenation and the Histogram Predictors

As stated in Section 2.3.1, we used a modified version of Squeeze-net to extract features from
the input images. The layers at different levels in the CNN model extract features at different scales,
and each level has its own characteristics. In general, the former layers in the CNN model are more
associated with the raw pixels, while the latter ones are more meaningful in semantic senses [30,31].
Besides, the scales of the former feature maps are also different from the latter ones.

To utilize the information from different scales and semantic levels, we used a concatenating
structure. In order for the feature maps to be concatenated, average pooling and deconvolution
operations were applied to resize them to a unified shape (27 × 27). All the padding modes in the
pooling layers were “valid”, so that the residual parts which could not fill up the pooling kernel were
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discarded. The strides and kernel sizes within each pooling layer were the same. All the resized
shapes were 27 × 27, except for the input, whose output was 28 × 28. Its last row and column were
trimmed in order to be consistent with the other tensors to be concatenated. The concatenated feature
maps were then flattened into a 2-dimensional tensor of 725,355 length, and then was fed into three
fully-connected layers separately, one for each channel (blue, green, and red). The fully-connected
layer was then attached by a softmax head each to infer the corrected color distribution.

2.4. Data Augmentation

Data augmentation was performed on the original inputs to avoid over fitting as well as to enclose
more patterns of color discrepancy into the model. The augmentation operations include:

1. Random cropping: A patch of 227 × 227 is cropped at a random position from each 256 × 256
sample. It is worth noting that this implies that no registration is needed in the training process.

2. Random flipping: Each sample in the input batch is randomly horizontally and vertically flipped
by a chance of 50%.

3. Random color augmentation: The brightness, saturation, and gamma values of the input color
are randomly shifted. Small perturbations are added to each color channel. Figure 8 shows an
example of such transformation of the color distribution.
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2.5. Algorithm Flow Chart

The entire model can be trained in an end-to-end fashion with the gradient descent algorithm,
as displayed in Algorithm 1 ( Algorithm flow of the training process).

Algorithm 1. Training Process of the Automatic Color Matching WCNN, Our Proposed Algorithm.

Notations: θ, the parameters in the WCNN model; gθ , the gradients w.r.t. θ; h(•), the predicted color
distribution; r, the reference color distribution; Lw(•, •), the Wasserstein loss.
Required constants: α, the learning rate; m, the batch size.
Required initial values: θ0, the initial parameters.
1: while θ has not converged do

2: Sample
{

x(i)
}m

i=1
∼ Pin a batch from the input data

3: Sample
{

y(i)
}m

i=1
∼ Pre f a batch from the reference data

4: Apply random augmentation to
{

x(i)
}m

i=1

5: gθ←∇θ [
1
m

m
∑

i=1
Lw(h(xi), yi)]

6: θ←θ − α · SGD(θ, gθ)

7: end while
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3. Results

We had our algorithm evaluated with satellite images from GF1 and GF2 that cover the same
areas. The GF2 images were chosen as the reference. The parameters of the data are listed in Table 2.

Table 2. Parameters of the GF1 and GF2 data in the experiment.

Resolution
GF1 GF2

8 m 4 m

Band1 0.45–0.52 µm 0.45–0.52 µm
Band2 0.52–0.59 µm 0.52–0.59 µm
Band3 0.63–0.69 µm 0.63–0.69 µm

The direct outputs of WCNN are the inferred distributions (or histograms, see Figure 9) based
on the contents of the input images. The corrected images are obtained by histogram matching
(see Figure 10). The reference images are only used in the training process and are unnecessary in
practical applications, as the purpose of the WCNN model is to generate the reference histogram when
there are no available ones. It is worth noting that the patches were only roughly sliced according to
the longitude and the latitude information within the GeoTIFF files, so registration was not necessary,
and neither was pre-segmentation.
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Figure 9. Results of matching the color palette of GF1 to GF2. Bars: histograms of input patches; solid
lines with color: predicted histograms of our model; dashed lines in black: histograms of reference
images; from top to bottom: histograms of images of the same area, but under different illumination
and atmospheric conditions.
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Figure 10. Color matching results of GF1 and GF2. From top to bottom: satellite images of the same
area, but under different illumination and atmospheric conditions; left: input images; middle: output
images with the predicted color palette; right: reference images, only needed in the training process to
calculate the loss function. The model is able to infer the corrected color palette based on the content of
the input images in the absence of a reference, when the model is fully trained.

4. Discussion

4.1. Comparison between KL Divergence and Wasserstein Distance

As has been mentioned in Section 2.2, the Wasserstein distance is a natural choice to represent
the difference between two color distributions. The Kullback–Leibler divergence (also known as KL
divergence) is another commonly used measure (but not a metric) in such circumstances. The definition
of KL divergence [27] is:

DKL(u ‖ v) =
∫

u(x) log
(

u(x)
v(x)

)
dx (5)
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and the definition of 2-Wasserstein distance is:

Wp(u, v) =
(

inf
π∈Π(u,v)

∫
‖x− y‖2dπ(x, y)

)1/2
(6)

Consider two simple distributions, u1 ∼ U(−0.5, 0.5) and u2 ∼ U(−0.5 + a, 0.5 + a), as shown in
Figure 11. The Kullback–Leibler divergence should be:

DKL(u1 ‖ u2) =

{
a i f |a| ≤ 1

+∞ i f |a| > 1
(7)

And the Wasserstein distance is:

W2(u1 ‖ u2) = a, where a ∈ [−∞,+∞] (8)

Because both the Wasserstein metric and the KL divergence are fully differentiable, there is
no difference in the back-propagation pipeline between the two losses. From the above discussion,
however, we could see that the Wasserstein distance is more numerically stable compared to the
KL divergence.
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4.2. Connection and Comparison with Other Color Matching Methods

Histogram matching can be regarded as the simplest case of color matching. It is widely used in
seamless mosaic workflows. The method requires that a reference image is selected for each input,
which certainly puts restriction on the applications with large scale datasets. Wasserstein CNN is able
to directly predict the corrected color distribution, and the histogram matching is the final step in
the workflow of our proposed method (but not the only choice, other sample-based color matching
methods would also do).

Matching low order statistics faces similar problems. Its performance is closely related to
the similarity between the input images and the reference images. To handle low similarity cases,
the images may have to be segmented and the color needs to be transferred part to part. Besides,
for images with complex contents, color leakage on the edges could be a problem, and the image quality
will degrade. Considering these restrictions, such methods may not be appropriate for automatic
color matching in remote sensing applications. Matching the exact distribution is more precise than
just matching the low order statistics, but is also more complex and computationally expensive.
To match two non-Gaussian distributions, iterative approaches have to be exploited, as there are no
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closed-form solutions [8]. The Wasserstein CNN method is non-iterative, and is more suitable for large
scale processing.

Poisson image editing (PIE) is another well-known color matching method. Rather than directly
matching the color distributions, the PIE method tries to preserve the gradients of the input image and
matches the pixel values on the border to those in the reference image. The problem is equivalent to
solving a Poisson equation. However, in our case, this idea might not be very appropriate, because the
gradients between the input image and the reference image can be very different, especially when the
atmosphere visibility is low (see the PIE result in Figure 12).

Comparisons between the color matching methods are displayed in Figure 12. The ground truth
was not included in the training set, as it was supposed as an unknown in the color matching problem.
Because the PIE, statistics transferring, and the histogram matching methods are all sample-based,
an image must be selected from the training set to act as the reference. However, all that the WCNN
model needs is the input image, thus it can operate without selecting such a reference. As the reference
is not likely to be exactly the same as the ground truth, we can see the color discrepancy between the
output and the ground truth in the results of PIE, statistics transferring, and histogram matching in
Figure 12. Also, several features and descriptors were computed for all input images, output images,
and the ground truth images in the test set, including the Oriented FAST and Rotated BRIEF (ORB)
descriptor, the Scale-Invariant Feature Transform (SIFT) descriptor, and the Binary Robust Invariant
Scalable Keypoints (BRISK) descriptor. To be a representation of similarity, the distances between
the features of the output and the ground truth are computed, and are displayed in the boxplots
in Figure 13.
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From Figure 13 we can see that generally the processed images are closer to the ground truth,
in regards to the distances of the feature descriptors, except for the PIE method. One of the reasons
why PIE fails to generate high quality results is that the low atmosphere visibility may deteriorate
the gradients, resulting in a significant difference between the gradients of the input image and the
ground truth. The WCNN model results achieve the maximum similarity to the ground truth, and the
model is also the most stable one.
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five horizontal line segments in each patch, indicating five percentiles of the distances within the
processed images by the corresponding method; from top to bottom: the maximum (worst) distance,
the worst-25% distance, the median distance, the best-25% distance, and the minimum (best) distance.

4.3. Processing Time and Memory Comsumption

The processing time of 512 patches with a size of 227 × 227 × 3 on a single NVIDIA® GeForce®

GTX 1080 graphics processing unit is 0.408 s, or 0.8× 10−3 s for a single patch, which means that
the method could handle images as large as 2000 × 2000 in real time. A total of 6990 MB memory is
consumed for 512 patches, or 13.7 MB for each.

5. Conclusions

This paper presents a nonparametric color correcting scheme in a probabilistic optimal transport
framework, based on the Wasserstein CNN model. The multi-scale features are first to be extracted from
the intermediate layers, and then are used to infer the corrected color distribution which minimizes
the errors with respect to the ground truth. The experimental results demonstrate that the method is
able to handle images of different sources, resolutions, and illumination and atmosphere conditions.
With high efficiency in computing speed and memory consumption, the proposed method shows its
prospects for utilization in real time processing of large-scale remote sensing datasets.

We are currently extending the global color matching algorithm to take the local inhomogeneity
of illumination into consideration, in order to enhance the precision. Local histogram matching of
each band could serve for reflectance retrieval and atmospheric parameter retrieval purposes, and the
preliminary results are encouraging.
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