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Abstract: As a variant of Convolutional Neural Networks (CNNs) in Deep Learning, the Fully
Convolutional Network (FCN) model achieved state-of-the-art performance for natural image
semantic segmentation. In this paper, an accurate classification approach for high resolution remote
sensing imagery based on the improved FCN model is proposed. Firstly, we improve the density
of output class maps by introducing Atrous convolution, and secondly, we design a multi-scale
network architecture by adding a skip-layer structure to make it capable for multi-resolution image
classification. Finally, we further refine the output class map using Conditional Random Fields
(CRFs) post-processing. Our classification model is trained on 70 GF-2 true color images, and tested
on the other 4 GF-2 images and 3 IKONOS true color images. We also employ object-oriented
classification, patch-based CNN classification, and the FCN-8s approach on the same images for
comparison. The experiments show that compared with the existing approaches, our approach has
an obvious improvement in accuracy. The average precision, recall, and Kappa coefficient of our
approach are 0.81, 0.78, and 0.83, respectively. The experiments also prove that our approach has
strong applicability for multi-resolution image classification.

Keywords: deep learning; convolutional neural network (CNN); fully convolutional network (FCN);
classification; remote sensing; high resolution

1. Introduction

Classification is a fundamental task for remote sensing imagery analysis. Applying intelligent
methods, such as pattern recognition and statistical learning, is an effective way to obtain class
information of ground objects. It is always the main focus of research and commercial development.
Early classification was mainly for low spatial resolution (10–30 m) images and pixel-leveled images,
including unsupervised classification (also known as clustering, such as K-means [1]) and supervised
classification (such as Neural Networks [2,3] and Support Vector Machines [4,5]). These methods
often use only spectral information of the images, and have formed general modules in commercial
software, and have been successfully applied in land resources, environment, agriculture, and other
fields. In recent years, some new approaches have appeared that are much superior to the traditional
approaches. For example, Yuan Yuan et al. [6] and Qi Wang et al. [7] applied the latest achievements in
the machine learning field, such as Manifold Ranking and Sparse Representation, to hyperspectral
image classification.
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High resolution (2 m spatial resolution and higher) remote sensing images contain more
ground details. Many applications tend to obtain attributes of a ground object (such as a single
building) rather than pixels. However, the pixel-level classification methods are sensitive to noise,
and lack semantic meaning of the objects, and are difficult for obtaining object-level information.
Therefore, object-oriented classification [8] is proposed, and it has made great achievements in
high resolution image classification. At present, eCognition [9], ENVI [10], and other commercial
software have developed object-oriented classification modules. Most of the object-oriented approaches
perform a “segmentation-classification” mode. In the segmentation stage, Multi-Resolution (MR) [11],
Full-Lambda Schedule (FLS) [12], Mean-Shift [13], Quadtree-Seg [14], and other image segmentation
approaches are used to generate image segments, which we called image objects. In the classification
stage, object features (color, texture, and geometric features) are calculated, which are taken as inputs
of supervised or unsupervised classification, or a manually designed rule set for feature filtering,
to achieve the final class discrimination.

Land-cover has various types, and is affected by noise, illumination, season, and many other
factors, and brings great difficulties to classification using high resolution images. Even using the
object-oriented approaches, accurate classification is still very difficult. From the pattern recognition
perspective, selection/extraction of representative features is the bottleneck to improving accuracy.
That is, the use of a specific set of features cannot be achieved on the classification for all kinds of
ground objects. Therefore, learning features automatically from a remote sensing data set rather than
using manually designed features, and then performing classification on the learned features, is an
effective way to improve the accuracy of classification.

Deep learning theory was explicitly proposed by Hinton et al. [15] in 2006. It is a branch of
machine learning based on a set of algorithms that attempt to model high level abstractions in data [16].
The basic motivation of deep learning is to establish a deep neural network to simulate the leaning and
analysis mechanism of the human brain. Compared with the traditional machine learning theories,
the most significant difference of deep learning is emphasizing automatic feature learning from a
huge data set through the organization of multi-layer neurons. In recent years, various deep learning
architectures such as Deep Belief Networks (DBN) [17], Convolutional Neural Networks (CNN) [18],
and Recurrent Neural Networks (RNN) [19] have been applied to fields like computer vision [20,21],
speech recognition, natural language processing, audio recognition, and bioinformatics, and they have
been shown to produce state-of-the-art results in these domains.

In deep learning techniques, CNN has achieved remarkable results in image classification,
recognition, and other vision tasks, and has the highest score on many visual databases such as
ImageNet, Pattern Analysis, Statistical Modeling and Computational Learning Visual Object Classes
(PASCAL VOC), and Microsoft Common Objects in Context (MS-COCO). For image classification,
the basic structure of the standard CNN is stacks of “convolutional-pooling” layers as multi-scale
feature extractors, and subsequent numbers of fully connected layers as classifiers. Many works on
CNN-based remote sensing image analysis emerged in recent years. Nguyen et al. [22] presented an
approach for satellite image classification using a five-layered network and achieved classification
accuracy higher than 75%. Wang et al. [23] used a CNN structure with three layers and Finite State
Machine (FSM) for road network extraction for long-term path planning. Marco Castelluccio et al. [24]
explored the use of CNNs for the semantic classification of remote sensing scenes. Similarly,
Hu et al. [25] also classified different scenes from high resolution remote sensing imagery using a
pre-trained CNN model. Weixun Zhou et al. [26] employed CNN architecture as a deep feature
extractor for high-resolution remote sensing image retrieval (HRRSIR). Volodymyr Mnih [27]
proposed a CNN-based architecture to learn large scale contextual features for aerial image labeling.
The model produces a dense classification patch, instead of outputting a single value image category.
Martin Lagkvist et al. [28] presented a novel remote sensing imagery classification method based on
CNNs for five classes (vegetation, ground, road, building, and water), outperforming the existing
classification approaches. Besides the CNN family approaches, Yuan Yuan et al. [6] used a Stacked
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AutoEncoder classifier for a classification experiment after using the Manifold Ranking based salient
band selection.

The standard CNN is in an “image-label” manner and its output is the probability distribution
over different classes. However, most of the remote sensing image classification expects a dense
class map as the output, which has the same dimensions as the original image. A class map is a 2-D
distribution of class labels with pixel correspondence, which is in a “pixel-label” mode. In the study
of Martin Lagkvist et al. [28], a “per-pixel” classification is considered using overlapped patches and
average post-processing. However, the use of the overlapped patches introduces too much redundant
computations, and the averaging processing may easily lose useful edge information. Based on the
standard CNN, Jonathan Long et al. [29] proposed the Fully Convolutional Network (FCN) model in
2015. By replacing fully connected (FC) layers in the standard CNN with convolutional layers, the FCN
model maintains the 2-D structure of images, and firstly carries out CNN-based image semantic
segmentation. In order to obtain a dense class map, Liang-Chieh Chen et al. [30] used the “atrous”
convolution instead of the ordinary convolution, increasing the density of the predicted class labels,
and then performed the Conditional Random Fields (CRFs) as post-processing to refine the region
boundaries. The CRFs-based boundary refinement is also used in the works of Sakrapee et al. [31].
In order to integrate the CRFs procedure into the training stage, Shuai Zheng et al. [32] applied
the idea of RNN to image segmentation, implementing an “end-to-end” training procedure. In the
remote sensing society, several studies employ FCN-based approaches for dense class map generation.
Jamie Sherrah [33] analyzed the down-sampling and up-sampling mechanism in CNNs, and adopted
an FCN architecture for aerial image semantic labelling. The down-sampling mechanism of standard
FCN is removed by involving deconvolution. D. Marmanis et al. [34] also used FCN and subsequent
deconvolution architecture to perform a semantic segmentation for aerial images. Emmanuel
Maggiori et al. [35–37] addressed the dense classification problem, and compared the patch-based
CNN dense classification using CNN with FCN. With the advantages of FCN, the author proposed an
end-to-end framework for large-scale remote sensing classification. A multi-scale mechanism was also
considered by designing a specific neuron module that processes its input at multiple scales.

In this paper, we perform a FCN-based classification on high spatial resolution remote sensing
imagery with 12 classes (bare land, grass, tree, water, building, cement ground, parking lot, playground,
city road, trail, shadow, and others). These classes are typical ground objectives in city areas, and some
of them (such as building, cement ground, road, and parking lot) are easily confused in traditional
classification tasks. The class configurations were arranged to test the effectiveness of our approach in
a complex environment. We fine-tuned the model parameters of the ImageNet-pretrained VGG-16 [37]
network using GF-2 satellite images, to adapt it to our remote sensing imagery classification task.
The VGG network has a more compact structure of convolutional and pooling layers, and achieved the
highest classification accuracy for ImageNet ILSVRC-2014. To overcome the noise caused by pixel-level
classification, we refine the region boundaries using fully connected CRFs, following the procedure of
Liang-Chieh Chen et al. [30] and Sakrapee et al. [31]. The refined output is more readily applied to an
object-oriented analysis.

We compare our approach with the object-oriented approach with MR segmentation [11] and SVM
classification, patch-based CNN classification proposed in [27], and the FCN-8s approach proposed
in [29], which achieved success for high resolution imagery classification or natural image segmentation.
The result shows that our approach achieves higher accuracy in the classification. For those objectives
which are difficult to be classified, our approach has lower confusion rates.

2. Methods

Similar to other supervised classification, our approach generally has two stages: the training
stage and the classification stage, which is illustrated in Figure 1. In the training stage (the upper part
of Figure 1), image-label pairs, with pixel-class correspondence, are input into the FCN network as
training samples. The error between predicted class labels and ground truth (GT) labels is calculated
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and back-propagated through the network using the chain rule, and then the parameters of the FCN
network are updated using the gradient descent method. The above iteration will be stopped when the
error is less than a given threshold. In the classification stage (the lower part of Figure 1), the trained
FCN network is performed on an input image to generate a rough class prediction. The rough class
prediction, with the input image, is then input into the CRFs post-processing module to generate the
final refined classification. The details of the training stage and classification stage are presented in
Sections 2.2 and 2.3, respectively.
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2.1. Network Architecture

CNN currently is the state-of-the-art in visual recognition such as classification and detection.
Simonyan et al. [38] developed the very deep CNN networks (VGG) by increasing the depth to
16–19 weight layers. To reduce the number of parameters in the networks, small 3× 3 filters are
used in all the convolutional layers. VGG models won the runner-up in ImageNet ILSVRC-2014.
Although the subsequently emerged deeper models, such as ResNet [39] and Inception-V4 [40],
achieved a higher score in many vision tasks, VGG networks have clear structures and compact
memory requirements, which can be easily extended and applied, so we chose the 16-layered VGG
network as our basic network architecture. Based on the VGG network, we constructed the FCN model
by replacing the last three fully connected layers (two layers with 4096 neurons and one with 1000
neurons) with convolutional layers. Then following the idea of Liang-Chieh Chen et al. [30], we use
“atrous” convolution (also known as “dilation” convolution in other studies) instead of the ordinary
convolution to increase the feature density, and build the multi-scale classification model by adding
the skip-layer network architecture.

2.1.1. Fully Convolutional Network

In classification tasks, the last structures in standard CNN are always several Fully Connected
(FC) layers (see Figure 2a for illustration). These layers play the role of classifier like standard BP
neural networks (For example, in Figure 2a, the 3 FC layers are similar to a 3-layered BP network with
one hidden layer). From the first FC layer, the 2-D structure of the input image maintained by the
convolutional-pooling layers is lost. The output of standard CNN is a 1-D distribution over classes
(for a Softmax regression). It works in an “image-label” manner. In other words, given an image,
it predicts one class label (a scalar) for it. The “image-label” mode has great advantages in single scene
classification. The effectiveness has been presented in studies of Marco Castelluccio et al. [24] and
Hu et al. [25].
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However, in most remote sensing applications, a 2-D dense class map is required as an output.
To maintain the 2-D structure, some approaches were presented based on the common CNN structures.
The most typical one is the patch-based CNN approach [27,28]. The basic idea of patch-based CNN
is: separate the large image into small patches, and apply the common CNN model on each patch
to predict the class label(s) centered at the corresponding patch. Finally, the class labels will be
arranged in a 2-D layout as the output. Jonathan Long et al. [29] proposed the FCN model, which is a
convolutionalized version of CNN. FCN replaces all the FC layers with convolutional layers. Thus,
the important 2-D structure of the image is maintained. Figure 2b is the illustration of the FCN model.
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Figure 2. Network architectures for standard Convolutional Neural Network (CNN) and Fully
Convolutional Network (FCN). (a) Architecture of standard CNN: stacks of convolutional-pooling
layers and fully connected (FC) layers. Given an image, the distribution over classes is predicted.
The class with the largest distribution value is considered as the class of a given image; (b) Architecture
of FCN: FC layers are replaced by convolutional layers. FCN maintains the 2-D structure of the image.

Compared with patch-based CNN, the advantages of the FCN model are obvious for

• Easy implementation: The FCN architecture is designed brilliantly by replacing the FC layers by
convolutional layers, which enables us to take arbitrary sized images as inputs. Additionally,
by training entire images at a time instead of patch cropping, FCN does not have to
rearrange the output labels together to obtain the label predictions and thus reduces the
implementation complexity.

• Higher accuracy: Under the patch-based CNN learning framework, only the “intra-patch” context
information is taken into account. Nevertheless, correlations among patches are ignored,
which might lead to obvious gaps between patches. Unlike the patch-based CNN, FCN performs
the classification in a single-loop manner, and considers the context information overall and
seamlessly. Please refer to Section 4.2 for more details.

• Less expensive computation: In patch-based CNN, when using overlapped patches for dense class
label generation, such as the study of Martin Lagkvist et al. [28], it introduces too much redundant
computations (especially convolutions) on the overlapped regions. By performing a single loop
operation, the FCN model makes remarkable progress and allows the large image classification to
be implemented in a more effective way.

We adopt the FCN model for remote sensing imagery classification. The output number (channels)
of the last convolutional layer (also called feature maps) is equal to the class number of our task (so in
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this paper, it is 12 for 12-class classifications). The feature maps can be seen as a stack of heat maps
for all classes. A 2-D slice along the channel axis represents the heap map (score distribution) of
the corresponding class (For example in Figure 2b and in Figure 3c, we extract the heap map for
the building).Remote Sens. 2017, 9, 498  6 of 21 
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2.1.2. Atrous Convolution for Dense Feature Extraction

The repeated combination of pooling and striding at consecutive layers significantly reduces the
spatial resolution of the resulting feature map. Typically in our VGG-16 model, 5 max-pooling layers
with 1/2 down-sampling cause 1/32 total factor reduction in spatial resolution. For high resolution
remote sensing image classification tasks, such operations lead to a serious loss of spatial information.
Liang-Chieh Chen et al. [30], inspired by the Wavelet Transform, proposed the “atrous” convolution
for generating dense feature maps. In the 1-D case, given the input signal x[i], and the convolutional
kernel w, the output of “atrous” convolution y[i] is calculated as:

y[i] =
K

∑
k=1

x[i + r·k]w[k] (1)

where r denotes the rate parameter corresponding to the stride. In the 2-D cases, “atrous” convolutions
(use 3× 3 kernel) with rate r = 1, 2, and 3 are demonstrated in Figure 3.

In order to further illustrate the effect of “atrous” convolution, we compare it with standard
convolution using a simple example in Figure 4. Firstly, represented by the red route, we take an image
patch (300× 300) as an input, and perform 1/2 down-sampling and 10× 10 standard convolution
(horizontal Gaussian derivative kernel) on it, which is used to simulate a pooling-convolution
combination in standard CNNs. The receptive field corresponding to the original image is 20× 20,
and only 1/4 of the image positions are involved in calculating the feature map. The obtained low
resolution feature map is then enlarged by an up-sampling operation with a factor of 2. Secondly, as a
comparison, we perform “atrous” convolution with rate r = 2 on the original image. The size of the
receptive field is unchanged, but the density of the feature map is increased by two times, which means
half of the image positions are considered for generating the feature map. Compared with the standard
convolution, the “atrous” convolution generates a high resolution feature map, while keeping the size
of receptive field. Besides, there is no extra parameter involved. The “atrous” convolution for dense
feature map generation is illustrated by the blue route in Figure 4.

The “atrous” convolution is generally applicable and allows us to efficiently compute dense
CNN feature maps at any target subsampling rate without introducing any approximations and extra
parameters. Theoretically, the “atrous” convolution can be applied to each convolutional layer of the
network to maintain the resolution, but this ends up being too costly, and the advantage for translation
invariant brought by the down-sampling operation could also be weakened. So we modify the basic
VGG-16 network to adapt it to our classification task. We take this modified network as our primary
architecture (we add multi-scale functionality, which is described in Section 2.1.3).
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using atrous convolution with rate r = 2 on a high resolution input feature map.

2.1.3. Network Architecture for Multi-Scale Classification

The variant of resolution will affect the classification accuracy. Single-scale classification has great
limitation in its applicability. Therefore, many works considered multi-scale classification in their
approaches [29–32]. A simple method for a multi-scale classification is training the model on datasets
that contain objects of varying sizes. However, this approach needs the times of sample storage and
training time (more iteration to traverse all the samples). A good idea for CNN-based multi-scale
segmentation and detection is using the skip-layer network architecture [29,41]. In this architecture,
links are added to incorporate the feature responses from different levels of the primary network
stream, and these responses are then combined in a shared output layer [42]. Our multi-scale network
architecture is illustrated in Figure 5.
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As presented in Figure 5, feature maps are generated along five streams. The stream A is our
primary network, generating a feature map with dimension W/8× H/8× 12, which is described
in Section 2.1.2. Branch streams B to E are the added skip-layer architecture for the multi-scale
classification. These streams begin from the feature map generated by layers pool4 to pool1,
respectively. For each branch stream, the subsequent architecture is the layer group with two
convolutional layers, generating a feature map with 1024 channels, and then a convolutional layer
(kernel 1× 1× 12) outputs a 12-channeled feature map. Each stream, including the primary stream and
the branch streams, introduce down-sampling effects caused by the max-pooling operation (the factor
is 1/8 for stream A to C, 1/4 for stream D, and 1/2 for stream E). However, in the applications
of remote sensing classification, we need the class map to have the same size with the input
image. So we perform the up-sampling operation after the feature maps are generated by these
streams to recover the feature maps at the original image resolution. In this paper, we adopt
Liang-Chieh Chen et al.’s [30] approach, and use simple bilinear interpolation to increase the resolution
by a factor of 8, 4, and 2 at negligible computational cost. The up-sampled feature maps are then
combined using summation in an element-wise manner. The output of this network architecture is a
feature map with dimension W × H × 12. Our multi-scale network architecture captures three levels
of resolution, represented by stream A to C, stream B, and stream E.

2.2. Network Training

Our training dataset is collected from two GF-2 high resolution remote sensing images (true color
fusion images with 0.8 meter resolution) of northeastern Beijing, China.

The images were taken in 5 December 2014 and 2 September 2015, respectively. The reason why
we chose images with different imaging times is to increase the anti-interference abilities of our model,
such as the change of seasons, to enhance its applicability. In our training dataset, there are a total of
74 images (size 1024× 1024). We manually labeled all images at the pixel level as ground truth (GT)
label data. In other words, for each image, there exists a 1024× 1024 label map, having a pixel-class
(row-col indexed) correspondence with it. We used 70 images for training, and the remaining 4 images
for testing. Three image-GT label pair examples are illustrated in Figure 6.

The general procedure of our training stage is: Image-GT label pairs are input into the multi-scale
classification network as training samples. The Softmax function is performed on the output feature map
generated by the network to predict the class distribution. Then the cross entropy loss is calculated and
back-propagated, and finally the network parameters are updated using Stochastic Gradient Descent
(SGD) with momentum. The general procedure is shown in Figure 7.

The softmax function is used to probabilize the output feature map of our multi-scale network.
However, the mode of softmax here is different from that in the standard CNNs: it is performed on
each location with row-column coordinate (i, j), 0 ≤ i < H and 0 ≤ j < W, and it outputs a dense
distribution over the classes. Figure 8 illustrates this function.

Figure 8 shows that the output of our multi-scale network is a H×W × 12 feature map, which has
the same width and height as the original image. A “drill hole” along the channel axis at location (i, j)
is the feature vector with 12 elements corresponding to the pixel at the same location. The softmax
function is adopted on this feature vector to generate a 12-D probabilized vector, which is the discrete
distribution over 12 classes at location (i, j). The softmax function will traverse each location to obtain
the dense class distribution.

The SGD method with momentum is used for parameter updates in our training, which is
described by the following:

W(n+1) = W(n) − ∆W(n+1) (2)

where W(n) and W(n+1) denote the old parameters and new parameters, respectively, and ∆W(n+1)

is the increment for the current iteration, which is a combination of old parameters, gradient,
and historical increment:
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∆W(n+1) = η·
(

dw·W(n) +
∂J(W)

∂W(n)

)
+ m·∆W(n) (3)

where J(W) is the loss function, η is the learning rate for step length control, and dw and m denote the
weight decay and momentum, respectively.

We employ the VGG-16 network which has been pre-trained on ImageNet for fast convergence.
We use a “step” policy for learning rate adjustment (gamma = 0.1, step_size = 15, 000) so that closer
to the error minimum, the smaller the step length is. The base learning rate is 0.0001. The basic
parameters for calculating increments are: m = 0.9, and dw = 0.0005. The max iteration in our training
is 60,000. In the training procedure, we first randomly shuffle the samples, and then feed them into the
network in batches. Each batch contains 10 images. We also crop and rotate samples randomly in each
batch to increase the diversity and variability of the samples.
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2.3. Classification Using the Trained Network

The trained network is adopted on an image for classification. However, our multi-scale
network involves up-sampling operations, leading to the blurring of classification boundaries.
Several works [29–32] use CRFs as post-processing to refine the image segmentation results.
So following their idea, we adopt the fully connected CRFs for our rough class prediction. The model
employs the energy function:

E(x) = ∑i θi(xi) + ∑ij θij
(

xi, xj
)

(4)

where x is the label assignment for pixels. θi(xi) = − log P(xi) is the unary potential, where P(xi) is
the label assignment probability at pixel i as the output of our multi-scale network after the softmax
function. θij

(
xi, xj

)
is the pairwise potential represented by a fully connected graph, connecting all pairs

of image pixels i and j. We use the following definition of the pairwise potential [43]

θij
(

xi, xj
)
= µ

(
xi, xj

)
∑K

m=1 wm·km
(

fi, fj

)
(5)

where µ
(

xi, xj
)

is the sign function, and µ
(
xi, xj

)
= 1 if xi 6= xj, and is zero otherwise. µ

(
xi, xj

)
removes the self-connected links from the graph. km is a Gaussian kernel function that takes feature as
input (denoted by fi and fj extracted for pixel i and j). Each Gaussian kernel is weighted by wm. In our
study, the bilateral position and color terms is adopted as the kernel function

w1· exp

(
−
‖pi − pj‖2

2σ2
α

−
‖Ii − Ij‖2

2σ2
β

)
+ w2· exp

(
−
‖pi − pj‖2

2σ2
γ

)
(6)
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where pi, pj denote the locations, and pi, pj denote the color of pixel i, j. So the first kernel depends on
both pixel positions and color, and the second kernel only depends on pixel positions. σα, σβ, and σγ

are the hyper parameters that control the scale of the Gaussian kernels. The classification pipeline is
illustrated in Figure 9.
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In CRFs post-processing, the rough class distribution predicted by the multi-scale network is
input as the unary potential, and the original image provides the pairwise potential with position
and color information. The CRFs is solved using mean field approximation [43]. The class labels are
adjusted and refined under the position-color constraints. The weight parameters we adopt in this
paper are w1 = 4, w2 = 3, which are the default configuration of [30]. Following the idea of [43],
we use σα = 54, σβ = 5, and σγ = 4 through a cross-validation on the training set. We employ 10 mean
field iterations for solving CRFs.

3. Experiment and Comparison

In the following section, the experiment and comparison will be presented to evaluate our
classification approach. Our algorithm is implemented using Microsoft Visual C++ 11, and is performed
on the Windows 7 operating system installed NVIDIA GeForce GTX980M graphic device with 8G byte
graphic memory.

3.1. Comparison Setup

We conduct two groups of experiment (denoted as Experiment A and B) on GF-2 and IKONOS
true color images, respectively. We compare our approach with object-oriented classification using MR
segmentation [11], SVM classification (MR-SVM), patch-based CNN classification proposed in [27],
and the FCN-8s approach proposed in [29].

3.1.1. MR-SVM

For Multi-Resolution and Support Vector Machine (MR-SVM) object-oriented classification,
the first step is MR segmentation [11] to generate image objects. The quality of image objects directly
affects the classification results. We believe that the high quality image objects are neither over-covered
nor over-segmented. Ideally, each image object contains only a single-class ground object. The MR
segmentation is controlled by the scale, shape, and compactness parameters. In order to obtain
high-quality image objects, we determine the parameters through the times of experiments by different
settings, to achieve the ideal segmentation as much as possible. The parameters we used in MR
segmentation are listed in Table 1.

Once the image objects are obtained, we construct the initial feature space using 60 common
features involving spectral, geometric, and texture aspects:

• Spectral features: mean, standard deviation, brightness, and max difference for each band.
• Geometric features: area, length, width, length-width ratio, border length, compactness, elliptic fit,

rectangular fit, density, shape index, main direction, and symmetry.
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• Texture features: Features calculated from the Gray Level Co-occurrence Matrix (GLCM) and the
Gray Level Difference Vector (GLDV) with all directions, etc.

Table 1. Scale, shape, and compactness parameters used in the Multi-Resolution (MR) segmentation.

Experiment Scale Shape Compact

Exp.A-(1) 115 0.5 0.5
Exp.A-(2) 140 0.3 0.8
Exp.A-(3) 105 0.4 0.5
Exp.A-(4) 100 0.4 0.7
Exp.B-(1) 120 0.3 0.5
Exp.B-(2) 80 0.5 0.4
Exp.B-(3) 85 0.5 0.7

To select the most representative features for the following classification, we seek significant
features for optimal class separation using the Separability and Thresholds (SEaTH) method [44].
According to the SEaTH method, we optimize the 60-D initial feature space, and obtain a 10-D
sub feature space including: mean value and brightness for each band; density and length-width
ratio of the image object; GLCM-mean value for each band; GLDV-mean for the first band. In the
classification stage, we select almost 25% of the image objects from each image as training samples,
and input their features to the SVM classifier implemented using the LibSVM library [45]. The kernel
function we used in SVM is the Radial Basis Function (RBF), and the objective function type is
the C-Support Vector Classification (C-SVC). To determine the optimal penalty factor C and kernel
function parameter γ, we employ a simple grid search for all training samples on the C−γ domain that
minimize the classification error. The search range of C and γ are [0.4, 1.6] and [0.02, 0.14] according
to the experience [45]. The step lengths are 0.2 and 0.01, respectively. According to the grid search,
the optimal parameters we used for the SVM classifier are C = 1.2 and γ = 0.08.

3.1.2. Patch-Based CNN

In the patch-based classification experiment, the general procedure is illustrated in Figure 10.
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Different from the architecture used in [27], we employ the VGG-16 network as the main structure
for its high performance in the previous vision tasks. In order to prevent excessive reduction of the
resolution, we modified the stride and padding values of the last two pooling layers (the stride and
padding values we used are all 1) so that the architecture has a 1/8 down-sampling effect. Following
the idea of Volodymyr Mnih [27], the last 3 FC layers are modified to a single FC layer with output
number 256 representing a 16× 16 prediction area. So for 64× 64 input patches, the overall architecture
causes a 1/4 down-sampling. Finally, we perform an up-sampling post-processing with a factor of 2 to
increase the resolution.
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3.1.3. FCN-8s

For the FCN model, we directly employ the FCN-8s model proposed by Jonathan Long et al. [29].
The architecture of the model is also the VGG-16 network with skip-layer structure. The final prediction
is fused from the output of three branches (from the primary network, the pool4 layer, and the pool3
layer, respectively) after the up-sampling operation. In the training phase, by modifying the number
of outputs from 21 to 12, we fine-tuned the network based on the ImageNet pre-trained model.
The training parameters for FCN-8s in the experiment are the same as ours. In the testing stage,
except for the CRF-based post-processing, we use the same classification parameters as our approach.
Please refer to [29] for detailed information.

3.2. Experiments and Comparison

In Experiment A, we adopt our trained model on four GF-2 true color images (0.8 m resolution)
for the classification (In the following section, they will be abbreviated as Exp.A-(1) to Exp.A-(4)).
All the image sizes are 1024× 1024. These images are the testing images that are not involved in
training. Figure 11 is the illustration of the results and the comparison. In Experiment B, we adopt
the same trained model on three IKONOS true color images (1.0 m resolution) for the classification
(Abbreviated as Exp.B-(1) and Exp.B-(3) in the following section) to test the applicability. All the image
sizes are also 1024× 1024. Figure 12 illustrates the classification results and comparison.

We employ precision, recall, and Kappa coefficient as the indicators to evaluate our approach.
These indexes are calculated from the confusion matrix C, where the precision is calculated as
1

12 ∑i Cii/ ∑j Cij that denotes the average proportion of pixels being classified to one class that are
correct, and the recall is computed as 1

12 ∑i Cii/ ∑i Cij that represents the average proportion of pixels
that are correctly classified, and the Kappa coefficient measures the consistency of the predicted classes
with the GT classes. The comparisons are listed in Table 2.

Table 2. Comparison between approaches using MR-SVM, patch-based CNN, FCN-8s, and
our approach.

Approach Index Exp.A-(1) Exp.A-(2) Exp.A-(3) Exp.A-(4) Exp.B-(1) Exp.B-(2) Exp.B-(3) Mean

MR-SVM
Precision 0.67 0.72 0.67 0.66 0.65 0.73 0.64 0.68

Recall 0.52 0.59 0.52 0.63 0.39 0.51 0.74 0.56
Kappa 0.55 0.66 0.62 0.65 0.54 0.64 0.64 0.61

Patch-based
CNN

Precision 0.68 0.64 0.71 0.55 0.73 0.76 0.70 0.68
Recall 0.61 0.61 0.70 0.73 0.47 0.58 0.74 0.63
Kappa 0.64 0.69 0.62 0.70 0.63 0.71 0.75 0.68

FCN-8s
Precision 0.83 0.84 0.68 0.66 0.81 0.78 0.83 0.78

Recall 0.71 0.79 0.80 0.80 0.66 0.66 0.79 0.74
Kappa 0.73 0.80 0.81 0.80 0.76 0.81 0.82 0.79

Ours
Precision 0.86 0.87 0.74 0.68 0.84 0.78 0.92 0.81

Recall 0.83 0.78 0.81 0.82 0.70 0.68 0.84 0.78
Kappa 0.79 0.85 0.84 0.83 0.78 0.84 0.89 0.83

The above statistics show our approach obtains the best performance compared with the others.
Approaches using carefully-designed MR-SVM and patch-based CNN achieve similar accuracy levels,
and the FCN-8s approach performs much better than those two. Some ground objects such as building,
city road, and cement ground, have similar spectral and geometrical features, which are hard to
distinguish. For example, in Exp.A-(2), when using MR-SVM, the recall for “cement ground” is 0.41.
That means that more than half of the pixels are wrongly classified. The proportions that are incorrectly
classified as “building” and “road” are 0.26 and 0.19. It means that in that case, the object-oriented
classification has almost no effect on distinguishing these classes.



Remote Sens. 2017, 9, 498 14 of 21

Remote Sens. 2017, 9, 498  14 of 21 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 11. Classification results on GF-2 images (Experiment A). (a) Original images; (b) GT labels 
corresponding to the images in (a); (c–e) Results of the MR-SVM object-oriented classification, 
patch-based CNN classification, and FCN-8s classification corresponding to the images in (a), 
respectively; (f) Our classification results corresponding to the images in (a). 

Figure 11. Classification results on GF-2 images (Experiment A). (a) Original images; (b) GT labels
corresponding to the images in (a); (c–e) Results of the MR-SVM object-oriented classification,
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respectively; (f) Our classification results corresponding to the images in (a).
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Figure 12. Classification result on IKONOS images (Experiment B). (a) Original images; (b) GT
labels corresponding to the images in (a); (c–e) Results of the MR-SVM object-oriented classification,
patch-based CNN classification, and FCN-8s classification corresponding to the images in (a),
respectively; (f) Our classification results corresponding to the images in (a).
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Table 3 lists the partial confusion matrix (only involves the above three classes) of our classification
results. From the table, we can see that our approach achieves higher classification performance. In the
above example, our recall for “cement ground” is 0.79. The proportions that are wrongly classified as
“building” and “city road” are 0.05 and 0.06, respectively.

Table 3. Partial confusion matrix of our approach for “building”, “cement ground”, and “city road”.

Experiment GT/Predicted Class Building Cement Ground City Road

Exp.A-(1)
Building 0.91 0.05 0.02

Cement ground 0.13 0.76 0.02
City road 0.02 0.01 0.95

Exp.A-(2)
Building 0.92 0.03 0.03

Cement ground 0.05 0.79 0.06
City Road 0.01 0.04 0.89

Exp.A-(3)
Building 0.91 0.02 0.05

Cement ground 0.10 0.82 0.03
City road 0.05 0.04 0.82

Exp.A-(4)
Building 0.95 0.03 0.00

Cement ground 0.07 0.81 0.05
City road 0.01 0.01 0.93

Exp.B-(1)
Building 0.90 0.02 0.01

Cement ground 0.26 0.65 0.01
City road 0.11 0.03 0.84

Exp.B-(2)
Building 0.83 0.01 0.00

Cement ground 0.08 0.75 0.15
City road 0.01 0.01 0.96

Exp.B-(3)
Building 0.87 0.06 0.01

Cement ground 0.03 0.70 0.04
City road 0.10 0.01 0.87

4. Discussion

This paper presents a classification approach for high resolution images using the improved FCN
model. Compared with the object-oriented method and two typical deep learning-based approaches,
the classification accuracy is obviously improved. In the following sections, we will discuss the reasons.

4.1. MR-SVM vs. Our Approach

Most of the traditional object-oriented classification approaches employ their classification in
a “segmentation-classification” manner. In an ideal segmentation, each segment represents a single
ground object. In other words, an ideal image object is neither over-covered nor over-segmented.
However, most of the segmentation was conducted in an unsupervised way, which relies only on image
information, but no prior class information. When the spectral and geometric features are similar,
it is difficult to obtain high-quality image objects. Once the image objects are incorrect, subsequent
object-oriented classification cannot lead to an accurate result. For an image, it is difficult to find
universal segmentation parameters so that all image objects can be correctly generated. Figure 13
shows one image object (with a yellow boundary) generated by MR segmentation that incorrectly
covers both building and cement ground.

In the classification stage, it is very difficult to choose expressive features for an image object as
the input of the classifier. The feature selection usually needs many attempts and largely depends
on experience. Therefore, the uncertainty introduced by the two stages, together affects the final
classification accuracy.

In our FCN-based approach, the class information, which is the ultimate objective for classification,
is taken as the supervisory signal that controls the whole process including both feature extraction
and classification. Our approach combines the segmentation and classification stages, and achieves
high quality classification in an end-to-end way. This is also the most obvious advantage of the deep
learning theory.
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4.2. Patch-Based CNN vs. Our Approach

In the patch-based CNN approach, each image patch is input to the model independently,
which means that only the “intra-patch” context information is considered. However, correlations
between patches are not taken into account, which might lead to obvious gaps between patches.
Especially for objects with strong continuity, such as road and building edges, the problem is more
serious. Figure 14 shows the differences between patch-based CNN and our approach for building
heat map generation.
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Compared with the patch-based approaches, our model takes the whole image as the input,
and performs the classification in a single-loop manner, which considers the context information
overall and seamlessly. Our model eliminates the discontinuities at the patch boundaries. This is also
the most remarkable advantage of FCN.

4.3. FCN-8s vs. Our Approach

FCN model is a convolutionalized version of standard CNN through a simple modification.
The most significant feature of the FCN model is: on the one hand, FCN inherits the high accuracy
feature for image-label classification from standard CNN. On the other hand, it maintains the
2-D spatial information of the input image, thus achieving dense class prediction. However,
pooling operations cause serious reduction of the resolution. The output is not fine enough,
which will result in the loss of valuable detail information. As can be seen from Figure 15,
our approach outperforms FCN-8s in terms of detail preserving. Therefore, the classification accuracy
is greatly improved.
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As the most accurate model in the FCN family, FCN-8s combines the feature maps with different
resolutions from different pooling stages, to obtain a more intensive class prediction. In FCN models,
the lost resolution is compensated by the deconvolution operation. However, deconvolution is difficult
for efficiently restoring the resolution by way of learning. Benefiting from the “atrous” convolution,
the resolution of the feature map is maintained naturally in our approach. Besides, FCN models do
not consider the relationship between pixels, ignoring the spatial regularization that is commonly
employed in remote sensing image analysis. In our approach, the relationship between pixels is taken
into account by CRF-based post-processing. The class map predicted by FCN is further refined, and the
accuracy is therefore improved.

5. Conclusions

This paper presents a classification approach for high resolution images using an improved FCN
model. Compared with the object-oriented method and two typical deep learning-based approaches,
the classification accuracy is obviously improved.

Our FCN-based classification combines the segmentation and classification stages, taking the
class accuracy as the only constraint, and achieves high quality classification in an end-to-end way.
The GT classes of ground objects are taken as the supervised information that guides both the feature
extraction and the region generation. The classification results of using “atrous” convolution and
CRF-based post-processing allows us to obtain a high resolution class prediction. In addition, due to
the use of a multi-scale model, the model trained from the GF-2 images also has high classification
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accuracy on the IKONOS images. It is proven that our approach has a strong applicability for images
with different resolutions.

The main limitation of our approach is that it needs a large number of high quality GT-labels
for the model training, which relies on professional interpretation experiences and lots of manual
work. Therefore, the main aspect of our future work is training the model in a weak supervision way,
to further enhance its applicability.
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