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Abstract: Successful change detection in multi-temporal images relies on high spatial co-registration
accuracy. However, co-registration accuracy alone cannot meet the needs of change detection
when using several ground control points to separately geo-reference multi-temporal images from
unmanned aerial vehicles (UAVs). This letter reports on a new approach to perform bundle
adjustment—named united bundle adjustment (UBA)—to solve this co-registration problem for
change detection in multi-temporal UAV images. In UBA, multi-temporal UAV images are matched
with each other to construct a unified tie point net. One single bundle adjustment process is
performed on the unified tie point net, placing every image into the same coordinate system and
thus automatically accomplishing spatial co-registration. We then perform change detection using
both orthophotos and three-dimensional height information derived from dense image matching
techniques. Experimental results show that UBA co-registration accuracy is higher than the accuracy
of commonly-used approaches for multi-temporal UAV images. Our proposed preprocessing method
extends the capacities of consumer-level UAVs so they can eventually meet the growing need for
automatic building change detection and dynamic monitoring using only RGB band images.
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1. Introduction

Detecting building change is of great importance for the dynamic monitoring of rapidly changing
urban fringe areas and urban development analysis in general. Unmanned aerial vehicles (UAVs)
could provide a flexible and cost-effective solution for dynamic time-series change monitoring if
change detection was less costly and time consuming. Successful change detection (CD) relies on
highly accurate measurement of the relative position of multi-temporal spatial data. Therefore, highly
accurate absolute position acquisition is not necessary. UAV images collected with consumer-level
digital cameras have ultra-high spatial resolution in only the RGB bands. Single UAV image coverage
is small, so more images must be collected to cover an area of interest. Conventional co-registration
methods applied to multi-temporal UAV images obtained from these systems are inadequate, as they
produce large numbers of images at varying photographical angles.

Conventional two-dimensional image-based CD methods require high co-registration accuracy
between images with similar photographic angles and similar spectral responses [1]. If they are
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applied to UAV images directly, CD accuracy is low. In recent years, the use of height information
for building change detection has received a great deal of attention [2—4]. Airborne light detection
and ranging (LiDAR) is a commonly-used method for obtaining height information that can be
used for three-dimensional CD, but the cost is usually high [5]. By using the semi-global matching
(SGM) [6] dense image matching (DIM) algorithm, height can be obtained as supportive information
for UAV image CD, resulting in more robust detection results. Volumetric change can also be detected.
However, directly subtracting the digital surface model generated by DIM for UAV images may not
get desired CD results because of the error in DIM results, and the co-registration accuracy is usually
not high enough.

In current UAV image change detection studies, image data co-registration preprocessing for
change detection can be roughly divided into two categories. One common way is using ground
control points (GCP) to geo-reference images from each flight for multi-temporal UAV images via
bundle adjustments (BA). This requires a large number of GCPs to meet the change detection need for
co-registration accuracy. However, using large numbers of GCPs for BA requires extensive manual
work, which is time-consuming and cost ineffective. In addition, the co-registration accuracy in a
local area is still insufficient and not suitable for dynamic monitoring. Another category for data
co-registration methods processes images from one flight as a reference flight either by free-net BA or
by using GCPs for BA. Images from a following flight are matched to the reference flight images to
acquire many correspondences that can act as virtual GCPs for the following flight BA [7]. We refer
to this as “separated bundle adjustment” (Sep BA) in the rest of this letter. Both categories need a
final co-registration process for orthophotos and point clouds prior to CD in order to produce more
accurate CD results.

We propose a novel BA strategy called united bundle adjustment (UBA) for multi-temporal UAV
image co-registration. The extra registration processing of orthophotos and point clouds before CD in
UBA can be omitted. GCPs are not a necessary condition for UBA, because the absolute positioning of
images is of less interest as far as CD is concerned. A local coordinate system is established after UBA.
If the CD results are to be integrated with a GIS system, then GCPs are needed in the BA processing in
UBA. The GPS coordinates of the UAV images can be used in BA to get rough real-world coordinates,
as high-accuracy absolute position is not needed for change detection. A similar BA strategy was
proposed by Qin [8]—the exterior and interior parameters of the images from the reference flight were
fixed in the combined BA process, indicating that prior weights for the observation approach infinity,
while in our method, all observations were assigned the same weight.

2. Materials and Methods

2.1. Experimental Data

Two UAV flight images of Laohekou city, Hubei province, China were acquired in March and
September 2016 using a cruising flying mode. The on-board camera was a SONY NEX-7 with a focal
length of 16 mm and a pixel size of 6000 by 4000 pixels. Two flights yielded 149 images. Each flight
included six strips with an overlap of about 80% in the forward direction and about 40% in the side
direction. The ground sample distance of the images was approximately 0.05 m and the above ground
altitude was approximately 250 m. The GPS coordinates of each image overlaying the test site are
shown in Figure 1. The red labels are GPS coordinates of each image in Figure 1.
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Figure 1. GPS coordinates of images overlay. The red labels are GPS coordinates of each image.

2.2. Methods

2.2.1. Implementation of United Bundle Adjustment

Successful CD demands high co-registration accuracy between images. Time consuming GCP BA
for every flight can achieve global co-registration by geo-referencing the multi-temporal UAV images.
In some local areas where there are no GCPs, the GCP BA results may suffer from huge misalignment.
The Sep BA also cannot guarantee the co-registration accuracy of local areas for the same reason.
An extra co-registration process before CD for the orthophoto and the point cloud generated after both
GCP BA and Sep BA is needed.

To increase accuracy and bypass this extra co-registration process, we treat multi-temporal UAV
images from both flights in one single processing step. We use the traditional photogrammetric
aerial triangulation processing method for multi-temporal UAV images since the data is acquired in
a traditional strip-by-strip way. Pair-wise image matchings are first calculated using supplementary
GPS information gathered during image acquisition. Matching between images is based on
the scale-invariant features transform (SIFT) [9] performed by the SiftGPU [10] to speed up the
whole process.

We use random sample consensus (RANSAC) and relative orientation for gross matching error
detection. RANSAC was first used to detect obvious outliers. The matched points were iterated using
relative orientation to remove y-parallax points greater than three times the standard error. We turned
the pair-wise matched points into multi-image tie points, thus forming a tie point net. One single BA
process is performed for the tie point net from a set of multi-temporal UAV images, and a unified
coordinate system automatically accomplishes high co-registration accuracy. We term this proposed
method united bundle adjustment (UBA). In UBA, GCPs can be omitted in the BA process.

The BA process can be defined as follows: Assume there are n aerial triangulation points in a
total number of m images, and x; ; is the observation of point i on image j. Let v;; equal 1 if point i
is visible on image j, and 0 otherwise. The exterior and interior camera parameters of image j are
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defined as a vector O;, and each aerial triangulation points 3D coordinates as p;, BA minimizes the
total reprojection error defined as Equation (1):

mmz Z v;,;d(R(O}, p;) xi,]-)2 @

]/Pll 1]

where R(O;, p;) is the predicted reprojection of point p; on image j, and d(x,y) denotes the distance
between the image points x and y. Non-linear optimization BA is performed by pba software [11].
BA processes are essentially no different for UBA, Sep BA, and GCP BA. The greater connectivity of tie
points in UBA, however, ensures that the final BA results from UBA are more robust.

2.2.2. Change Detection Using Height and Image

We acquire three-dimensional height information for buildings to facilitate CD using any DIM
method such as SGM for UAV images. Because multi-temporal UAV images have the same coordinate
system after UBA, there is no need to further co-register orthophotos or point clouds. We adopt the CD
method proposed by Tian et al. [4] based on fusion change indicators (CI) for robust height changes
and Kullback-Leibler divergence changes between images. The value for robust height change is
calculated using the point-cloud-derived digital surface models with a window size of 7 x 7.

In urban areas, the height difference may be caused by the seasonal changes in trees that affect
building CD results, especially when trees are near buildings. Since UAV images usually contain only
visual RGB bands, we use the color vegetation indices ExG — ExR [12] to acquire a vegetation mask
image by applying zero as threshold on the indices according to the reference. We then use this mask
image to mask out vegetation coverage. The indices are defined as follows:

ExG=2¢g—r—b ExR=14r-b (2)
where r = ﬁiﬂg*, g = ﬁi“}* and b = W. , G*, and B* are defined as: R* = 21§—5,

G* = 2(5;5, B* = %, where R, G, and B are the original pixel value from images.

Finally, we use data fusion to fuse these Cls. The details of the CD method are found in
the references.

A workflow chart for UBA-based CD is shown in Figure 2.

Time 1 Time 1 Dense
Images Image Match &
& Ortho Rectify

United Bundle Image & DSM
Adjustment Change Detection

» Auto-match — —» DataFusion —» PostProcess
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;

Figure 2. A workflow chart of united bundle adjustment-based change detection.

Taking a typical CD process for multi-temporal UAV images with only two temporal flights as a
scenario, UBA-based CD can be summarized as follows: (1) Images from both flights are pair-wise
matched using GPS coordinates constraints to reduce matching time; (2) UBA is performed on one
single net of image tie points; (3) DIM and ortho-rectification for each image from both flights is
performed separately; (4) Perform change detection using both orthophoto and a digital surface model
(DSM) as derived from DIM results; (5) Data fusion and post-processing are performed to refine
CD results.
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3. Results

Final UBA aerial triangulation results are shown in Figure 3. The green dots are images from
the reference flight and the blue dots are images from the following flight. The underlying points are
aerial triangulation points. The GSD of the final orthophotos is set to be one in pixel unit, which is
approximately 0.05 m.

Figure 3. United bundle adjustment aerial triangulation results of images from two unmanned aerial
vehicle (UAV) flights. The green dots are those images from the reference flight and the blue dots are
images from the following flight.

The proposed UBA, Sep BA, and GCP BA used the same matched tie points in order to reduce
the effect of different tie points on bundle adjustment calculation. Every tie point has its unique
identity. We used all tie points to perform BA in UBA. Since the two flights shared a single set of aerial
triangulation points coordinates in UBA, in order to demonstrate the co-registration accuracy, we first
rectified the images, and then measured the planar coordinates of the check points on the orthophotos.
There were 12,705 aerial triangulation points in total. We selected 220 tie points distributed evenly
in whole flight coverage as check points, and calculated the difference between planar coordinates
to estimate co-registration accuracy. Height coordinates were acquired using forward intersection.
Each check point was verified manually to ensure it was in fact a true corresponding point on the
ground. For Sep BA and GCP BA, we first separated the whole tie point net by different flights and
removed the unconnected points remaining in the single flight tie points net, then performed BA for
each single flight. In Sep BA, we first performed free net BA on the reference flight to generate aerial
triangulation points. We then used aerial triangulation points from the reference flight—which were in
correspondence with the following flight—as the virtual GCPs for the following flight BA process.

In our experiment, half of all the tie points appearing in both flights were randomly chosen as
virtual GCPs. The other half were selected as check points to compare coordinates for co-registration
accuracy. We used no GCPs in UBA and Sep BA, and five GCPs in GCP BA. The unit of measurement
for the GCP BA results was meters. For ease of comparison, we converted units from meters to pixels
using the average photo scale. CD was performed directly on the orthophotos and point clouds
generated after each BA process, without further co-registration.

Figure 4 shows orthophoto alignment results after applying the three BA strategies. The left sides
of each of the three subsets in Figure 4 are orthophotos from the reference flight, and the right sides are
orthophotos from the following flight. From Figure 4a, we can see that the line on the ground is well
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aligned, indicating high co-registration accuracy. In Figure 4b, there is a small misalignment on the
ground in the Sep BA results, but this misalignment is not significant. The co-registration accuracy
from GCP BA as shown in Figure 4c was the lowest, as the circle shape is completely separated in
the figure.

(a) UBA (b) Sep BA (c) GCP BA

Figure 4. Orthophoto co-registration results for: (a) united bundle adjustment (UBA); (b) separated
bundle adjustment (Sep BA); and (c) ground control points bundle adjustment (GCP BA). The left sides
of each three subsets are orthophotos from reference flight, and the right sides are orthophotos from
the following flight.

Table 1 shows the difference in the three-dimensional coordinates of check points as calculated
using UBA, Sep BA, and GCP BA. The difference is expressed as maximum, mean, and standard
deviation values. The unit of measurement for each difference is the pixel, since the BA process in
UBA and Sep BA were performed on a free-network. The original unit of measurement for GCP BA
check point coordinate difference was the meter, and was converted to pixels for comparison.

Table 1. Check points coordinates difference (pixels).

BA Method Delta X DeltaY Delta Z
Max Mean Stdv. Max Mean Stdv. Max Mean Stdv.
UBA 5.8365 —0.0296 1.1347 42104 0.0801 1.3126 26.805 1.4956 5.8744
Sep BA 15.888 0.1504 3.1913 10.134 0.1714 3.181 49.681 3.6951 10.905
GCP BA 39.763 4.6438 21.154 40.516 —0.1879 15.596 91.445 21.731 23.605

From Table 1, we can see that the difference in coordinates calculated for GCP BA is the largest,
because there were only five GCPs used for geo-referencing, which was insufficient for controlling the
tie point net. The difference in coordinates from Sep BA was not significantly greater than UBA, because
half of the tie points in both flights were used as the virtual control points for BA. The difference in
coordinates from UBA was the smallest of the three methods, which is in accordance with theoretical
analysis. In all three directions, UBA outperformed the Sep BA and GCP BA.

Table 2 shows statistical CD results generated for the three tested BA strategies. Because there is
post-processing in CD, including morphological process, area, and shape filtering, the kappa coefficient
for UBA was not significantly greater than the kappa coefficient for Sep BA. Both values were much
larger than GCP BA. More details regarding the CD method can be found in reference [4].
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Table 2. Change detection accuracy comparison of three bundle adjustment strategies.

BA Method True Positive True Negative  False Positive = False Negative = Kappa Coefficient

UBA 0.9426 0.9989 0.0011 0.0574 0.9292
Sep BA 0.9171 0.9986 0.0014 0.0829 0.9036
GCP BA 0.9298 0.9968 0.0032 0.0702 0.8499

4. Discussion

UBA combines multi-temporal UAV images into a single match processing flow. The time interval
of images acquisition should not be too long, otherwise the area of change in the image could be too
large and might lead to matching failure. If such matching failure occurs in images, then a larger
coverage of the imaging area is needed to ensure tie points connectivity between multi-temporal
images. Since pair-wise matching is only performed on the adjacent images, the matching process time
will grow linearly when the number of image sets becomes larger than two.

The co-registration accuracy for UBA is theoretically inconsistent with the BA process.
More images can yield more tie points for the single bundle adjustment process in UBA. Hence,
more images can theoretically generate higher co-registration accuracy. Since GCPs can be omitted in
the BA process in UBA, there may be deformation in the BA system. Fortunately, CD relies on high
relative co-registration accuracy; thus, the effect of deformation on CD is limited. In order to yield
more robust results, it is advised to use the same well-calibrated camera to acquire UAV images and
the same flight parameters for multiple flights.

Compared to traditional GCP BA and Sep BA, the aerial triangulation process for UBA is simpler
and the co-registration accuracy for multi-temporal images is higher. Although bundle adjustment
theory for all three BA strategies is essentially the same, co-registration preprocessing for UBA before
CD is both time- and labor cost-effective, thus making UBA more applicable for UAV image-based CD
for regular inspection and emergency handling in local areas.

5. Conclusions

In this letter, we propose a novel method named UBA for multi-temporal UAV image
co-registration for CD. Experimental results show that UBA can achieve higher co-registration accuracy
than tradition GCP BA and Sep BA methods. The difference in the coordinates of check points from
UBA are within two pixels because of the stronger tie point connectivity. For short time interval
dynamic monitoring in local areas, the main focus is to detect changes as quickly as possible. Since the
majority of the area remains unchanged during such a short time interval, for each temporal image,
if the time and labor cost is high in the preprocessing co-registration stage, then the whole dynamic
monitoring would not be practical for application. Our proposed UBA method provides an easy way
to complete preprocessing for change detection.

UBA combines multi-temporal UAV images into one aerial triangulation process and performs
single bundle adjustment. UBA avoids separated processes and requires no extra co-registration
process for orthophotos and point clouds before CD as in Sep BA and GCP BA. UBA is an application
model innovation method for a particular application and can reduce the cost in labor and time for
the preprocessing before CD. Therefore, UBA is suitable for dynamic monitoring. UBA preprocessing
before CD promotes effective use of orthophoto, point cloud, and stereo image pairs. Post-processing
is applied after initial CD in Sep BA and UBA, and the CD accuracy of UBA is not significantly better
when compared to Sep BA. Yet, UBA is theoretically better for co-registration. We will carry on
accuracy and reliability analysis of CD under different BA strategies in our future studies.
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