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Abstract: Nighttime light data derived from the Defense Meteorological Satellite Program’s
Operational Linescan System (DMSP-OLS) in conjunction with the Soumi National Polar-Orbiting
Partnership Visible Infrared Imaging Radiometer Suite (NPP-VIIRS) possess great potential for
measuring the dynamics of Gross Domestic Product (GDP) at large scales. The temporal coverage
of the DMSP-OLS data spans between 1992 and 2013, while the NPP-VIIRS data are available
from 2012. Integrating the two datasets to produce a time series of continuous and consistently
monitored data since the 1990s is of great significance for the understanding of the dynamics of
long-term economic development. In addition, since economic developmental patterns vary with
physical environment and geographical location, the quantitative relationship between nighttime
lights and GDP should be designed for individual regions. Through a case study in China, this
study made an attempt to integrate the DMSP-OLS and NPP-VIIRS datasets, as well as to identify an
optimal model for long-term spatiotemporal GDP dynamics in different regions of China. Based on
constructed regression relationships between total nighttime lights (TNL) data from the DMSP-OLS
and NPP-VIIRS data in provincial units (R2 = 0.9648, P < 0.001), the temporal coverage of nighttime
light data was extended from 1992 to the present day. Furthermore, three models (the linear model,
quadratic polynomial model and power function model) were applied to model the spatiotemporal
dynamics of GDP in China from 1992 to 2015 at both the country level and provincial level using the
extended temporal coverage data. Our results show that the linear model is optimal at the country
level with a mean absolute relative error (MARE) of 11.96%. The power function model is optimal
in 22 of the 31 provinces and the quadratic polynomial model is optimal in 7 provinces, whereas
the linear model is optimal only in two provinces. Thus, our approach demonstrates the potential
to accurately and timely model long-term spatiotemporal GDP dynamics using an integration of
DMSP-OLS and NPP-VIIRS data.

Keywords: nighttime lights; DMSP-OLS; NPP-VIIRS; Gross Domestic Product (GDP); spatiotemporal
dynamics; optimal regression model

1. Introduction

Gross Domestic Product (GDP) is one of the most important parameters for the analysis of national
or regional economic development [1]. However, GDP is often inadequately measured in developing
countries due to the poor governmental statistical infrastructure [2,3]. Worse, economic statistical data
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may be manipulated by local governments to meet the targets [4]. Furthermore, the release of economic
statistic data is lagging behind [4,5]. For example, statistical data of current year in the China Statistical
Yearbook are usually published in the next year from September to October [6]. This increases the
difficulties to obtain accurate and up-to-date GDP data in developing countries. Therefore, more
appropriate measures are needed to supplement the statistical data for the estimating and mapping of
the GDP in a statistical area [7].

The nighttime light data obtained by the Operational Linescan System (OLS) flown by the U.S. Air
Force Defense Meteorological Satellite Program (DMSP) are an effective proxy for socioeconomic
activity. DMSP-OLS data provide a powerful remote sensing tool to model the spatiotemporal
dynamics of GDP at a large spatial scale [8]. For example, Elvidge et al. [9] first discovered a
strong correlation (R2 = 0.97) between nighttime light area and GDP in 21 countries in the Americas
during the mid-1990s, then the relationship was confirmed for a larger number of countries [10,11].
Ebener et al. [12] estimated the GDP per capita for 171 countries at the country level and 26 countries
from 5 continents at the sub-national level. Howerer, the results showed a significant over estimation
for 10 countries and an under estimation for most of the high income countries. Based on the work
of Ebener et al. [12], Sutton et al. improved the method by aggregating the urban population [13].
Then the method was applied to estimate the GDP for 4 countries (China, India, Turkey and the United
States) at the sub-national level, and the results indicated that the method was superior to which
proposed by Ebener et al. in many cases. There are also many studies focused on the global scale.
For example, Doll et al. [10] first created a global GDP map by considering the relationship between
nighttime light area and socioeconomic parameters at the country level. That study estimated the total
GDP of the world to be 22.1 trillion dollars, which was about 80% of the World Resource Institute’s
statistics for 1992. Combining nighttime lights, population density and land cover data, Ghosh et al. [2]
created a global GDP map with a 1 km spatial resolution. Then the map was validated by comparing
the estimated GDP with the official GDP, and the results showed that the estimated GDP was greater
than official GDP for almost all administrative units. This product has been released by the National
Oceanic and Atmospheric Administration’s National Geophysical Data Center (NOAA/NGDC) [14].
Elvidge et al. [15] analyzed the relationships among nighttime light data, population, GDP and
improvements in lighting efficiency on a global scale from 1992 to 2012 and defined national lighting
trends across seven categories. Wu et al. [4] analyzed numerous factors affecting the relationship
between nighttime lights and GDP on a global scale and concluded that agriculture is responsible for
approximately 25.4% of total light consumption. In recent years, studies have been further conducted
to model GDP using nighttime light data in China. Zhao et al. [16] first mapped the spatiotemporal
dynamics of the GDP between 1996 and 2000 in China using DMSP-OLS data. The results showed
that the error rates between the estimated and actual GDP were relatively small for the 12 provinces
with the largest GDP while the relatively large errors were generated in some small GDP provinces.
Thereafter, Ma et al. [17] discovered a quantitative relationship between long-term nighttime light
data and GDP for individual cities in China, and concluded that temporal changes in nighttime light
brightness could be statistically significantly associated with GDP dynamics in most individual cities.

With a temporal coverage ranging from 1992 to 2013, the DMSP-OLS dataset provides the longest
continuous time series of global urban remote sensing products [15]. However, the DMSP-OLS ceased
operation in 2013, following which there are no data. On October 28, 2011, the National Aeronautics and
Space Administration (NASA) and NOAA launched the Soumi National Polar-Orbiting Partnership
(NPP), which carries the Visible Infrared Imaging Radiometer Suite (VIIRS), to collect low light imaging
data [18]. In early 2013, nighttime light composite data were released by the NOAA/NGDC [19]. As a
new generation of nighttime light data, the NPP-VIIRS data demonstrate several improvements over
the DMSP-OLS data [20]. For example, the spatial resolution of the NPP-VIIRS data (15 arc-seconds)
is higher than that of the DMSP-OLS data (30 arc-seconds). In addition, the NPP-VIIRS data are not
characterized by the saturation of bright lights that exists within the DMSP-OLS data [20]. Moreover,
the NPP-VIIRS system employs on-board calibration, which was lacking with the DMSP-OLS [21].
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Compared with DMSP-OLS, therefore, NPP-VIIRS provides a more powerful approach to research the
nighttime light.

The People’s Republic of China has been experiencing rapid economic growth at an unprecedented
speed since the reform and opening up policy in the late 1970s, being the second largest economy in
the world in 2010 [22–24]. Several studies have been carried out to generate a comparison between
GDP modeling using DMSP-OLS data and modeling using NPP-VIIRS data [5,25,26]. However,
few methods have been proposed to integrate the DMSP-OLS and NPP-VIIRS data to construct a
consistent model, which is of great importance to understand the long-term economic development in
China. Furthermore, most of the previous studies have attempted to model GDP with nighttime light
data using a single function model at all spatial levels [5,13,15,16,25] or using different function models
at different spatial levels [17,26]. With an area of 9.6 million square kilometers, China has substantial
regional variation with regard to natural environments and socioeconomic development patterns [27],
so the quantitative relationship between nighttime lights and GDP also varies across different regions
of China [15,24]. Thus, different function models should be applied based on individual economic
development patterns in order to obtain more accurate modeling results [15,24].

To fill the research gap, the current study contains two major objectives. The first is to develop a
simple method for integrating DMSP-OLS and NPP-VIIRS data to extend the temporal coverage of
nighttime light data. The second objective is to identify the optimal models with which to model the
spatiotemporal dynamics of GDP in China’s different regions using nighttime light data.

2. Materials

The Version 4 DMSP-OLS nighttime light time series dataset from 1992 to 2013 was obtained from
the NOAA’s National Centers for Environmental Information (NCEI, formerly NGDC) website [28].
There are three types of annually averaged data in the dataset: cloud free coverage, average visible
and stable lights. Among the three types of data, stable light data contain lights derived from cities,
towns and other sites with persistent lighting, while fires, volcanoes, background noise and other
ephemeral events have been discarded [29]. The DMSP-OLS nighttime stable light (NSL) data have
a spatial resolution of 30 arc-seconds, a coverage spanning −180 to 180 degrees longitude and −65
to 75 degrees latitude. The digital number (DN) value for pixels ranges from 0 to 63. This means
that value 0 represents the unlit area and the greater the value, the higher the light level of the region
will be. In addition, the NOAA/NCEI website has released a global radiance calibrated nighttime
light (RCNL) dataset without sensor saturation, which can be used as the ideal reference data for the
intercalibration of the DMSP-OLS NSL dataset [30–34].

The NPP-VIIRS nighttime light data from 2012 to 2015 were also obtained from the NOAA/NCEI
website [35]. These data comprise monthly averaged radiance composite data that span from April
2012 to December 2015. Because the monthly averaged data possess a high quality with a reliable
temporal consistency [36], we selected NPP-VIIRS monthly averaged data from December 2012 to
December 2015 for this study. The NPP-VIIRS data have a spatial resolution of 15 arc-seconds and
lack saturation problems [20]. However, as it is a preliminary product, the NPP-VIIRS data have not
been filtered to remove light detections associated with gas flares, fires, volcanoes or aurorae, and the
dataset has not been processed to remove background noise.

The administrative boundary data of China, including all of the national and provincial
boundaries, were obtained from the National Geomatics Center of China. All of the nighttime light
data were extracted according to Chinese administrative boundaries and were then resampled to one
square kilometer grids within a Lambert Azimuthal Equal Area projection to facilitate calculation.

The GDP statistical data from 1992 to 2015 for both national and provincial level units were
derived from the China Statistical Yearbook. Taiwan, Hong Kong and Macao are excluded in this study
because of the lack of GDP statistical data. The Chinese currency unit used for the GDP is Renminbi
(RMB), also known as Yuan in Chinese.
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3. Methods

Four major steps are employed herein to model the spatiotemporal dynamics of GDP using the
extended temporal coverage nighttime light dataset: first, correcting the DMSP-OLS data from 1992
to 2013; second, correcting the NPP-VIIRS data from 2012 to 2015; third, extending the temporal
coverage of nighttime data with the DMSP-OLS data and NPP-VIIRS data; and fourth, modeling the
spatiotemporal dynamics of GDP in China from 1992 to 2015.

3.1. Correction of the DMSP-OLS Data

As mentioned above, there are several shortcomings with the DMSP-OLS data [20].
These shortcomings limit the potential reliability and accuracy for modeling the long-term dynamics
of GDP or other socioeconomic parameters [5,37]. Therefore, it is necessary to correct the DMSP-OLS
data to improve the data continuity and accuracy [38].

3.1.1. Intercalibration

To correct for the discontinuity and inaccuracy that may result from modeling the GDP using the
DMSP-OLS data, resulting from a lack of on-board calibration and a saturation of bright lights, we
intercalibrated the DMSP-OLS data from 1992 to 2013 following the invariant region method proposed
by previous studies [33,34,38–41]. Japan was selected as the invariant region [41], and the 2006 RCNL
data were selected as the reference data [33]. Then, the DMSP-OLS data from 1992 to 2013 were
intercalibrated using the following regression model [34]:

DNcalibrated = a× DNb (1)

where DN is the original DN value of the DMSP-OLS data, DNcalibrated is the DN value after
intercalibration, and a and b are coefficients. These coefficients are shown in Table 1 [34].

Table 1. Coefficients of the regression models for intercalibration.

Satellite Year a b Satellite Year a b

F10 1992 0.214 2.110 F15 2001 0.197 2.155
F10 1993 0.255 2.000 F15 2002 0.206 2.105
F10 1994 0.238 2.028 F15 2003 0.329 1.845
F12 1994 0.196 2.160 F15 2004 0.321 1.842
F12 1995 0.200 2.128 F15 2005 0.283 1.916
F12 1996 0.200 2.128 F15 2006 0.288 1.898
F12 1997 0.194 2.146 F15 2007 0.294 1.887
F12 1998 0.181 2.188 F16 2004 0.233 2.024
F12 1999 0.163 2.278 F16 2005 0.268 1.934
F14 1997 0.253 1.976 F16 2006 0.256 1.965
F14 1998 0.242 2.000 F16 2007 0.219 2.049
F14 1999 0.248 1.980 F16 2008 0.226 2.033
F14 2000 0.242 2.000 F16 2009 0.216 2.083
F14 2001 0.213 2.079 F18 2010 0.154 2.326
F14 2002 0.233 2.016 F18 2011 0.201 2.132
F14 2003 0.243 1.988 F18 2012 0.185 2.169
F15 2000 0.194 2.151 F18 2013 0.185 2.165

3.1.2. Intra-Annual Composition

In certain years, the DMSP-OLS data were collected from two satellites simultaneously. To make
full use of the information derived from multiple satellites, we obtained the intra-annual composite
DMSP-OLS data using Equation (2) [38]:
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DN(n,i) =

{
0
(DNa

(n,i) + DNb
(n,i))/2

DNa
(n,i) = 0|DNb

(n,i) = 0

otherwise
(2)

where DNa
(n,i) and DNb

(n,i) are the DN values of the ith lit pixel from two DMSP-OLS datasets in
the nth year after intercalibration, and DN(n,i) is the DN value of the ith lit pixel in the nth year after
intra-annual composition.

3.1.3. Inter-Annual Series Correction

Since most regions in China have been experiencing continuous GDP growth over the past nearly
four decades, we assumed that the DN value of each pixel detected in a given year should not be
smaller than the DN value detected for the same pixel in the previous year [38]. Accordingly, we
corrected the DMSP-OLS data from 1992 to 2013 using Equation (3) [38]:

DN(n,i) =


0
DN(n−1,i)
DN(n,i)

DN(n+1,i) = 0
DN(n+1,i) > 0 & DN(n−1,i) > DN(n,i)
otherwise

(3)

where DN(n−1,i), DN(n,i) and DN(n+1,i) are the DN values of the ith lit pixel of the DMSP-OLS data in
the (n − 1)th, nth and (n + 1)th years, respectively.

To avoid DN values within the DMSP-OLS data reduced largely in the first few years, we also
corrected the DMSP-OLS data from 1992 to 2013 using Equation (4) to ensure that the DN value of
each pixel detected in an earlier year is not larger than the DN value detected in a later year [39]:

DN(n,i) =


0
DN(n+1,i)
DN(n,i)

DN(n+1,i) = 0
DN(n+1,i) > 0 & DN(n+1,i) < DN(n,i)
otherwise

(4)

where DN(n−1,i), DN(n,i) and DN(n+1,i) represent the DN values of the ith lit pixel of the DMSP-OLS data
in the (n − 1)th, nth and (n + 1)th years, respectively. In this way, we obtained DMSP-OLS data from
1992 to 2013 with inter-annual series correction by averaging the corrected results using Equations (3)
and (4).

3.2. Correction of the NPP-VIIRS Data

As a preliminary dataset, NPP-VIIRS data have not been filtered to remove light detections
associated with gas flares, fires, volcanoes, aurorae and background noise. These noises may limit
the reliability and accuracy of the data for GDP modeling. Therefore, we employed the method
proposed by Shi et al. [5] to reduce these negative factors. This method contains three major steps:
(a) Considering that very few DN values of lit pixels should increase from zero to positive [25], we
assumed that the lit areas within the NPP-VIIRS data from 2012 to 2015 and those within the 2012
DMSP-OLS data were equivalent. Thus, a mask was created by extracting the 2012 DMSP-OLS data
whose DN values were positive, and the primary correction NPP-VIIRS data from 2012 to 2015 were
generated by extracting values utilizing the mask. (b) Since Beijing, Shanghai and Guangzhou are
the three most developed cities in China, the DN values of lit pixels in other areas should not exceed
those of the three megacities, in theory. Optimal threshold values for the NPP-VIIRS data from 2012 to
2015 were assigned based on this hypothesis, after which the DN value of each lit pixel that exceeded
the designated threshold was assigned the maximum DN value within the pixel’s immediate eight
neighbors. (c) Finally, the DN values of lit pixels less than zero were assigned a zero value.
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3.3. Temporal Coverage Extension of the Nighttime Light Data

The temporal coverage of the DMSP-OLS data spans the period of 1992–2013, and the acquisition
of VIIRS data is ongoing [42]. The different settings of the sensors used to acquire the DMSP-OLS and
NPP-VIIRS data may cause difficulties in integrating these two datasets for the continuous modeling
of the spatiotemporal dynamics of GDP in China since the 1990s. Consequently, a simple method was
developed in this study to extend the temporal coverage of nighttime light data.

Total nighttime lights (TNL) is defined as the cumulative DN value of all lit pixels within a
corresponding administrative region [43]. Most of the previous studies that modeled the dynamics of
the GDP or other socioeconomic parameters using nighttime light data were based on the construction
of statistical relationships between TNL and a particular socioeconomic parameter [13,26,37,40,43–45].
By examining the scattergram composed of TNL from the DMSP-OLS and NPP-VIIRS data at the
provincial level of China from 2012 to 2013, which is the overlap period when the nighttime light data
were collected by both sensors, we were able to observe sharply defined diagonal clusters of points
(Figure 1a).
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For further analysis, we developed a linear regression model, a quadratic polynomial regression
model and a power function regression model relating TNL from the DMSP-OLS and NPP-VIIRS
data in provincial units from 2012 to 2013 (Figure 1b–d). The results suggest the existence of a
strong correlation between the TNL from the DMSP-OLS and NPP-VIIRS data at the provincial level.
Moreover, among the three regression models, the power function model has the highest coefficient of
determination (R2 = 0.9648, P < 0.001) (Figure 1d).

Based on the results of the regression analyses above, a method was proposed to generate the
TNL for the extended temporal coverage nighttime light data using Equation (5):

TNLn =

{
TNLa

n

7.9641× (TNLb
n)

1.0403
1992 ≤ n ≤ 2013

n > 2013
(5)

where TNLa
n and TNLb

n are the TNL for the DMSP-OLS data and NPP-VIIRS data in the corresponding
administrative region in the nth year, respectively, and TNLn is the TNL for the extended temporal
coverage nighttime light data in the nth year.
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3.4. Modeling the Spatiotemporal Dynamics of the GDP

A few models have been applied to model the GDP or other socioeconomic parameters using
nighttime light data [5,17,46,47]. Since economic development patterns vary with natural environment
and geographical location [27], we applied three simple regression models, namely, the linear model
(Equation (6)), quadratic polynomial model (Equation (7)) and power function model (Equation (8)), to
uncover the optimal GDP dynamics models using nighttime data among China’s different regions
over time:

GDPestimated = a× TNL + b (6)

GDPestimated = a× TNL2 + b× TNL + c (7)

GDPestimated = a× TNLb (8)

where GDPestimated is the estimated GDP of an administrative region in a particular year, TNL is the
TNL for the extended temporal coverage data in the corresponding administrative region in the same
year, and a, b and c are coefficients.

The coefficient of determination, which is usually denoted as R2, is the primary indicator to
evaluate the performance of a model relating observed and estimated values [48]. We also employed
the mean absolute relative error (MARE) to assess the overall accuracy of the models [49]:

MARE =
∑n

i=1|REi|
n

(9)

where n is the number of years or administrative regions, and REi is the ith relative error (RE) of the
corresponding year or administrative region, which can be calculated using Equation (10):

RE =
GDPestimated − GDPstatistical

GDPstatistical
× 100% (10)

where GDPestimated is the estimated GDP, and GDPstatistical is the statistically computed GDP.

4. Results

4.1. Extended Temporal Coverage Results for the Nighttime Light Data

Figure 2 illustrates the extended temporal coverage results for nighttime light data at the country
(Figure 2a) and provincial (Figure 2b–i) levels. For the provincial level analysis, eight provinces
(Liaoning, Beijing, Fujian, Jiangsu, Henan, Anhui, Yunnan and Qinghai) were selected as instances
according to the eight economic regions subdivided by the Coordinated Regional Development
Strategy and Policy Reports published by the Development Research Center of the State Council of
China [50]. The results indicate that the TNL derived from the extended temporal coverage data have a
high degree of continuity in the time series from 1992 to 2015 at both the country and provincial levels
(Figure 2). Additionally, the GDP of each of the regions from 1992 to 2015 were also compared with
the TNL, which confirms that the trends in the TNL and the trends in the GDP are highly consistent
(Figure 2), as indicated by previous studies [2,13,16].
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In 2012 and 2013, the nighttime light data were acquired by the OLS and VIIRS sensors
simultaneously. Although the TNL values from the extended temporal coverage data were generated
from 2014, we are capable of assessing the accuracy of the extended temporal coverage data through
a comparison between the TNL generated using NPP-VIIRS data and the TNL generated using
DMSP-OLS data for 2012 and 2013 (Table 2). As shown in Table 2, the MARE values of the TNL
generated from the extended temporal coverage data are 13.83% and 12.97% in 2012 and 2013,
respectively, while the RE values of the TNL vary in different provinces and years. For example,
in 2012, the maximum and minimum absolute RE values are 36.1% and 0.05% for Shanghai and Beijing,
respectively. Meanwhile, in 2013, the maximum and minimum absolute RE values are 59.16% and
0.69% for Guizhou and Gansu, respectively.

Table 2. Accuracy assessment of the TNL generated using NPP-VIIRS data and the TNL generated
using DMSP-OLS data in 2012 and 2013.

Province
2012 2013

DMSP-OLS TNL Extended TNL RE (%) DMSP-OLS TNL Extended TNL RE (%)

Beijing 868,571.94 869,042.45 0.05 905,903.10 951,355.48 5.02
Tianjin 703,545.22 746,497.03 6.11 768,575.13 835,504.21 8.71
Hebei 2,032,137.66 1,556,920.89 −23.39 2,238,316.98 1,937,483.21 −13.44
Shanxi 1,342,767.96 1,089,614.71 −18.85 1,457,144.20 1,350,146.02 −7.34

Inner Mongolia 1,317,047.05 1,015,907.00 −22.86 1,409,399.81 1,232,594.12 −12.54
Liaoning 1,491,362.08 1,532,125.78 2.73 1,596,523.05 1,724,975.76 8.05

Jilin 749,307.58 832,034.67 11.04 855,678.48 963,947.10 12.65
Heilongjiang 1,314,178.27 1,411,571.96 7.41 1,523,745.99 1,741,625.34 14.30

Shanghai 816,233.48 1,110,917.84 36.10 887,388.60 1,239,955.79 39.73
Jiangsu 3,680,608.49 3,509,035.95 −4.66 4,308,393.36 4,096,784.55 −4.91

Zhejiang 2,161,638.14 2,059,749.70 −4.71 2,361,509.36 2,568,020.33 8.74
Anhui 1,079,116.60 1,085,624.14 0.60 1,346,950.22 1,450,477.27 7.69
Fujian 1,117,935.29 1,033,994.16 −7.51 1,306,931.81 1,423,318.60 8.91
Jiangxi 477,494.68 364,004.28 −23.77 635,416.26 517,184.56 −18.61

Shandong 3,062,092.93 2,193,081.00 −28.38 3,490,370.24 2,856,238.90 −18.17
Henan 1,709,321.21 1,502,155.22 −12.12 1,999,349.99 2,028,319.28 1.45
Hubei 723,142.54 644,961.65 −10.81 1,023,120.28 968,570.70 −5.33
Hunan 506,236.28 369,085.71 −27.09 763,774.88 804,439.05 5.32

Guangdong 3,579,626.22 3,479,545.87 −2.80 3,970,102.44 3,890,371.65 −2.01
Guangxi 586,690.31 401,061.07 −31.64 707,193.83 810,857.53 14.66
Hainan 259,255.69 232,785.55 −10.21 283,777.66 257,632.97 −9.21

Chongqing 342,311.97 319,365.17 −6.70 430,971.42 488,065.43 13.25
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Table 2. Cont.

Province
2012 2013

DMSP-OLS TNL Extended TNL RE (%) DMSP-OLS TNL Extended TNL RE (%)

Sichuan 804,809.15 1,059,718.49 31.67 1,098,418.44 1,452,896.88 32.27
Guizhou 261,801.09 324,743.63 24.04 411,543.14 654,998.85 59.16
Yunnan 890,418.66 854,610.21 −4.02 970,447.49 1,017,251.10 4.82

Tibet 54,268.23 64,777.11 19.36 59,741.55 74,223.86 24.24
Shaanxi 1,111,777.06 1,124,106.54 1.11 1,263,576.61 1,409,005.17 11.51
Gansu 498,009.42 448,341.41 −9.97 578,400.64 574,393.24 −0.69

Qinghai 158,669.97 135,821.67 −14.40 178,478.81 172,379.87 −3.42
Ningxia 310,587.95 272,089.48 −12.40 337,160.76 359,709.51 6.69
Xinjiang 1,101,950.18 1,235,927.81 12.16 1,235,204.49 1,471,523.52 19.13

MARE (%) − − 13.83 − − 12.97

To further assess the accuracy of the TNL derived from the extended temporal coverage data, we
classified the absolute RE values into three categories: 0–25% as highly accurate, 25–50% as moderately
accurate and >50% as inaccurate [5,25]. We subsequently calculated the percent of provinces within
each category for all of the 31 provinces for each year (Table 3). The TNL derived from the extended
temporal coverage data exhibit a high quality at the provincial level and are characterized by highly
accurate percentages of 83.87% and 90.32% in 2012 and 2013, respectively. Moreover, the corresponding
inaccurate percentages are 0% and 3.23% in 2012 and 2013, respectively. Therefore, these results indicate
that the method proposed above is reliable for the temporal coverage extension of nighttime light data
among the provincial regions in China.

Table 3. Different categories of extension accuracies for TNL at the provincial level.

Year
Percentage of Absolute RE (%)

High Accuracy (%) Moderate Accuracy (%) Inaccuracy (%)

2012 83.87 16.13 0.00
2013 90.32 6.45 3.23

4.2. Modeling Results for the Spatiotemporal Dynamics of the GDP

Using the extended temporal coverage nighttime light data, we modeled the spatiotemporal
dynamics of the GDP from 1992 to 2015 at both the country and provincial levels. Three regression
models were applied: a linear model, a quadratic polynomial model and a power function model.
Note that all of the models developed herein are significant (P < 0.001).

4.2.1. Modeling Results at the Country Level

Through the three regression models mentioned above, the long-term relationship between the
TNL and GDP in China from 1992 to 2015 was analyzed (Figure 3). The R2 values obtained from three
models are 0.96, 0.97 and 0.97, respectively, which all represent high correlations and have no marked
difference. However, the MARE values vary among the different regression models. For example, the
maximum MARE value is 21.02% in the quadratic polynomial model, whereas the minimum MARE
value is 11.96% in the linear model. This indicates that some details in the relationship between the
TNL and GDP may be ignored when the optimal model is selected solely based on the R2 values. Thus,
these results indicate that all of the three regression models can appropriately reflect the long-term
GDP dynamics in China using the extended temporal coverage data and that the linear model is
optimal at the country level, with the lowest MARE value.
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Figure 3. Regression models between the statistical GDP data and TNL from extended temporal
coverage data in time series at the country level from 1992 to 2015: (a) the linear model; (b) the
quadratic polynomial model; (c) the power function model.

Referring to the approach proposed by He et al. [37], the accuracy of GDP modeling in time series
using the extended temporal data was assessed further through a comparison with the GDP modeling
using DMSP-OLS data (1992–2013) and NPP-VIIRS data (2014–2015) in provincial units for each year
(Figure 4). The results for this process are exhibited in Table 4. All of the regression analyses were
performed using a linear model. As shown in Table 4, the MARE of the model utilizing the extended
temporal data is 11.96%, whereas that of the model using DMSP-OLS data and NPP-VIIRS data is
18.94%. Moreover, all of the absolute RE values of the models employing the extended temporal data
are less than or equal to 35.61%. Therefore, modeling the long-term dynamics of GDP in China from
1992 to 2015 using the extended temporal data is reliable compared to the previous results [15,17,33,38].
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Figure 4. Linear models between the statistical GDP data and TNL in provincial units at the country
level: (a) the model for 1995 using DMSP-OLS data; (b) the model for 2005 using DMSP-OLS data;
(c) the model for 2015 using NPP-VIIRS data.

Table 4. Accuracy assessment of the GDP estimated using a linear model in time series and linear
models in provincial units at the country level from 1992 to 2015.

Year
Statistical GDP
(Billion RMB)

Modeling in Time Series Modeling in Provincial Units

Estimated GDP
(Billion RMB) RE (%) Estimated GDP

(Billion RMB) RE (%) R2

1992 2719.45 2436.05 −10.42 1916.55 −29.52 0.56
1993 3567.32 3952.71 10.80 2233.19 −37.40 0.65
1994 4863.75 5637.04 15.90 2851.05 −41.38 0.64
1995 6133.99 6646.20 8.35 3898.66 −36.44 0.67
1996 7181.36 6896.10 −3.97 4531.75 −36.90 0.66
1997 7971.50 7371.36 −7.53 5116.33 −35.82 0.68
1998 8519.55 8392.86 −1.49 5777.19 −32.19 0.71
1999 9056.44 8936.78 −1.32 6276.96 −30.69 0.73
2000 10,028.01 10,413.99 3.85 7113.27 −29.07 0.75
2001 11,086.31 11,724.99 5.76 8109.49 −26.85 0.77
2002 12,171.74 15,158.81 24.54 9997.43 −17.86 0.85
2003 13,742.20 18,636.02 35.61 11,487.16 −16.41 0.88
2004 16,184.02 21,122.73 30.52 14,319.63 −11.52 0.88
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Table 4. Cont.

Year
Statistical GDP
(Billion RMB)

Modeling in Time Series Modeling in Provincial Units

Estimated GDP
(Billion RMB) RE (%) Estimated GDP

(Billion RMB) RE (%) R2

2005 18,731.89 22,111.01 18.04 17,517.64 −6.48 0.90
2006 21,943.85 25,153.04 14.62 20,978.78 −4.40 0.91
2007 27,023.23 27,015.07 −0.03 25,342.82 −6.22 0.91
2008 31,951.55 28,151.61 −11.89 29,321.33 −8.23 0.89
2009 34,908.14 30,168.28 −13.58 32,669.75 −6.41 0.86
2010 41,303.03 37,571.10 −9.04 39,417.30 −4.57 0.88
2011 48,930.06 42,197.08 −13.76 45,750.55 −6.50 0.88
2012 54,036.74 45,448.23 −15.89 50,701.78 −6.17 0.86
2013 59,524.44 53,284.03 −10.48 57,181.25 −3.94 0.88
2014 64,397.40 68,086.46 5.73 70,282.66 9.14 0.82
2015 68,550.58 78,015.00 13.81 75,757.34 10.51 0.81

MARE (%) − − 11.96 − 18.94 −

4.2.2. Modeling Results at the Provincial Level

The long-term relationship between the TNL and GDP at the provincial level from 1992 to 2015
was analyzed using the three regression models, and the R2 and MARE values for each of the three
models for each province were calculated accordingly (Table 5). As shown in Table 5, the mean R2

values of the linear models, quadratic polynomial models and power function models are 0.95, 0.97 and
0.96, respectively, while the mean MARE values vary more markedly. Furthermore, the R2 values
of the three models are very similar among most of the provinces, whereas the MARE values vary
substantially with the different models for each province. It can be concluded that at the provincial
level, all of the three models are reliable for modeling the long-term GDP dynamics using the extended
temporal coverage data. In general, the power function model is the best-fitting model, with the
minimum mean MARE value of 14.91%, which is supported by previous studies [17,26].

Table 5. Model fitting precision values at the provincial level.

Province
Linear Quadratic Power

R2 MARE (%) R2 MARE (%) R2 MARE (%)

Beijing 0.93 51.00 0.99 11.55 0.99 10.94
Tianjin 0.96 53.69 0.99 12.15 0.99 7.91
Hebei 0.99 16.06 0.99 8.43 0.99 9.52
Shanxi 0.96 36.28 0.96 31.85 0.96 16.90

Inner Mongolia 0.99 15.97 0.99 18.94 0.98 15.28
Liaoning 0.98 12.84 0.98 12.59 0.97 11.28

Jilin 0.95 16.41 0.98 20.85 0.95 17.93
Heilongjiang 0.92 22.12 0.97 13.64 0.92 19.63

Shanghai 0.89 20.19 0.91 27.32 0.94 20.05
Jiangsu 0.98 19.89 0.99 12.68 0.97 13.34

Zhejiang 0.97 18.46 0.97 15.31 0.97 13.28
Anhui 0.97 20.33 0.99 11.35 0.96 15.34
Fujian 0.98 13.39 0.98 23.85 0.98 10.87
Jiangxi 0.95 24.98 0.96 23.46 0.93 23.95

Shandong 0.94 34.92 0.97 12.74 0.98 12.65
Henan 0.98 15.87 0.98 16.45 0.98 12.25
Hubei 0.95 16.89 0.96 25.38 0.95 17.00
Hunan 0.93 23.29 0.94 28.08 0.93 22.91

Guangdong 0.94 45.17 0.97 17.53 0.98 11.98
Guangxi 0.97 16.67 0.97 21.14 0.97 13.00
Hainan 0.98 13.60 0.98 12.34 0.99 7.76
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Table 5. Cont.

Province
Linear Quadratic Power

R2 MARE (%) R2 MARE (%) R2 MARE (%)

Chongqing 0.94 21.25 0.96 27.61 0.94 19.86
Sichuan 0.90 32.38 0.96 27.32 0.95 19.15
Guizhou 0.92 35.19 0.97 25.73 0.95 19.81
Yunnan 0.98 21.45 0.99 10.35 0.98 10.46

Tibet 0.97 16.67 0.97 25.67 0.98 12.58
Shaanxi 0.98 11.92 0.98 21.00 0.98 10.93
Gansu 0.96 22.42 0.99 13.83 0.94 19.75

Qinghai 0.98 13.29 0.99 17.91 0.98 12.25
Ningxia 0.96 16.30 0.98 23.97 0.97 16.12
Xinjiang 0.88 31.73 0.96 36.76 0.94 17.58

Mean 0.95 23.57 0.97 19.61 0.96 14.91

To further ascertain the most effective provincial-level models, the optimal models for each
province were chosen through a comparison of the R2 and MARE values of each model (Figure 5).
The power function model is found to be optimal for modeling the dynamics of the GDP from 1992 to
2015 using the extended temporal coverage data for most of the provinces (22 of the 31 provinces),
while the quadratic polynomial model is optimal in seven provinces (Heilongjiang, Hebei, Gansu,
Jiangsu, Anhui, Jiangxi and Yunnan). The linear model is only the best-fitting model for two provinces,
Jilin and Hubei. Consequently, although the power function model is generally the best-fitting model
for long-term modeling of GDP dynamics using the extended temporal coverage data at the provincial
level, the optimal model varies for different regions of China.
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each model (Figure 6). The results obtained from employing the quadratic polynomial model for the
long-term modeling of GDP dynamics using the extended temporal data imply that TNL growth was
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relatively faster than economic growth in the corresponding province from 1992 to 2015, while the
power function model implies that the economy grew more quickly than the TNL. Subsequently, the
gaps in the growth rates between the TNL and GDP were further analyzed at the provincial level using
the power function model, which was previously determined to be the general optimal model at the
provincial level. The results of this analysis using the value of coefficient b (Equation (8)) as a scaling
exponent with which to measure the gaps in the growth rates between TNL and GDP are exhibited in
Figure 7.
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The results illustrate that the gaps in the growth rates between the TNL and GDP exhibit an
evident regional differentiation throughout China. The gaps are relatively smaller in most of the
undeveloped southwestern provinces, including Tibet, Yunnan and Guizhou. In the majority of the
northwestern provinces, such as Xinjiang, Qinghai and Gansu, the gaps are also relatively small.
In contrast, the gaps in the growth rates between TNL and GDP are relatively larger in the central and
eastern provinces of China. For example, substantially higher gaps are observed in Beijing, Tianjin,
Shanghai and Guangdong, wherein the core urban areas demonstrate more intensive commerce and
industry relative to other regions of China [51]. Therefore, since the quantitative relationship between
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nighttime lights and GDP varies across different regions of China, it is concluded that regression
models for the modeling of long-term GDP dynamics using the extended temporal data should be
applied specifically based on the individual socioeconomic developmental pattern in the corresponding
region in order to establish more accurate modeling [17].

5. Discussion

The DMSP-OLS data, representing the most widely used nighttime light data over the previous
two decades [52], possess a temporal coverage spanning 1992–2013, while NPP-VIIRS data have
been available since 2012 and represent the new generation of nighttime light data. In spite of
great significance to study long-term socioeconomic developmental patterns, few studies have been
conducted for integrating the two datasets in order to continuously monitor the economic development,
for example in China since the 1990s. This challenge primarily originates from the following reasons:
first, the OLS and VIIRS sensors have different configurations; and second, specific and notable
shortcomings exist within the two datasets [20].

A simple method has been proposed in this study to integrate the DMSP-OLS and NPP-VIIRS
data in order to extend the temporal coverage of nighttime light data. The results demonstrate that
the TNL derived from the extended temporal data exhibits good quality and a generally reliable
temporal consistency. Considering that most of the previous studies employed to deduce the
behavior of socioeconomic development using nighttime data were conducted by constructing
statistical relationships between the TNL and socioeconomic parameters [13,26,37,40,43–45], the
method proposed in the current study is suitable for the estimation of long-term socioeconomic
parameters as well as the modeling of spatiotemporal dynamics using nighttime light data.

Using the extended temporal coverage nighttime light data, the long-term spatiotemporal
dynamics of GDP in China were modeled at both the country and provincial levels. The results
indicate that nighttime lights can be a useful indicator for measuring economic development, which
has been proven by a number of previous studies [5,13,17,26,37,53]. The regression model employed
to estimate regional socioeconomic parameters should be constructed using nighttime light data and
statistical data from the same country or region [25]. Therefore, previous studies aiming to model
the socioeconomic development using nighttime light data were primarily focused on constructing
statistical relationships between nighttime lights and socioeconomic parameters derived from samples
obtained at the same administrative level for each year [16,37,54]. Since we have obtained nighttime
light data with an extended temporal coverage through the method proposed in this study, time
series regression models were developed for each region at the provincial level. Compared with the
models developed in previous studies [16,37,54], errors induced by the regional differences have been
eliminated in the current study. Therefore, this study has provided a feasible approach for the accurate
long-term modeling of dynamic socioeconomic parameters using nighttime light data.

One of the main objectives of this study is to identify the optimal models for the long-term
modeling of GDP dynamics using nighttime light data at both the country and provincial levels.
The results show that the linear regression model is the best-fitting model at the country level, exhibiting
the lowest MARE value compared with the quadratic polynomial model and power function model.
At the provincial level, the optimal model is generally the power function model, similar to the
conclusions reached by previous investigations [17,26]. The implication of power function regression
for the modeling of long-term GDP dynamics using nighttime light data is a temporal lag in the growth
of nighttime lights compared with the relatively faster growth in the economy [17]. Considering
that the official data of economic development indicated a rapid growth throughout most regions of
China, the results of this study are credible [55]. Furthermore, we have chosen the optimal models
for the modeling of long-term GDP dynamics using nighttime light data for each of the provinces
of China. The power function model is the best-fitting model in most of the provinces (22 out
of 31 provinces), while the quadratic polynomial model is the optimal model for seven provinces.
Meanwhile, the linear model is optimal only in two provinces. Most previous examinations of dynamic
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socioeconomic parameter modeling using nighttime light data applied a single regression model for
all of the administrative units at the same level or even at different levels [5,8,13,26,37]. Alternatively,
our results indicate that different regression models should be designed based on the particular
socioeconomic developmental patterns among different regions or at different administrative levels.

Using the power function regression model, the gaps in the growth rates between the TNL and
GDP were further analyzed at the provincial level. Although the connection between the TNL and GDP
is an empirical relationship that cannot be viewed as an absolute law [5], the results exhibit a regular
pattern in the spatial distribution. For example, the relatively smaller gaps in the undeveloped western
provinces were encouraged by the more recent development of industrialization and urbanization.
The economic growth in these provinces primarily rely on the expansion of construction and a
substantial increase in the input of production materials, which can also contribute to large increases
in the TNL [56,57]. The larger gaps in the central and eastern provinces can be explained by the
more advanced and efficient industrial structures in these regions [58–60]. However, the reasons for
these large gaps vary among different regions of China [61]. For instance, the gap in the growth rates
between the TNL and GDP is very large in Shanxi, which is one of the major coal production centers of
China, wherein the energy industry contributes largely to GDP growth while the TNL value for stable
lights increases relatively slowly.

As a preliminary attempt to integrate DMSP-OLS and NPP-VIIRS data for the continuous
monitoring of long-term economic dynamics using nighttime light data, some limitations are inherent
in this study. First, although the precision of the modeling of long-term GDP dynamics using nighttime
light data has been improved by the data processing, the flaws that exist within the DMSP-OLS and
NPP-VIIRS data could not be removed completely. These flaws therefore reduce the accuracy of the
extended temporal coverage dataset, as well as of the modeling of long-term GDP dynamics using
nighttime light data. Second, while the NPP-VIIRS data have a higher spatial and temporal resolution
than the DMSP-OLS data, these advantages have not been integrated into the extended dataset during
the synthesis of the DMSP-OLS and NPP-VIIRS data. Third, considering that three simple regression
models (the linear model, quadratic polynomial model and power function model) have been applied
in this study to identify the optimal model for the modeling of long-term GDP dynamics using
nighttime light data, additionally complex models need to be developed in order to achieve more
accurate models of regional socioeconomic activity. Therefore, with upcoming version updates for the
NPP-VIIRS data and with more easy-access sources of nighttime light data, new approaches can be
developed for the modeling of socioeconomic dynamics using multi-sensor nighttime light data in
future studies.

6. Conclusions

Nighttime light data provide substantial potential for the modeling of the spatiotemporal
dynamics of Gross Domestic Product (GDP) and other socioeconomic parameters over large areas.
Traditionally, two types of nighttime light data have been employed in previous studies to address
this issue. The first is nighttime light data collected by the Operational Linescan System (OLS) flown
by the U.S. Air Force Defense Meteorological Satellite Program (DMSP), and the second is the data
acquired by the Visible Infrared Imaging Radiometer Suite (VIIRS) carried by the Soumi National
Polar-Orbiting Partnership (NPP). The DMSP-OLS data have a broad temporal coverage spanning the
period of 1992–2013, while the NPP-VIIRS data are available since 2012. Unfortunately, because of an
inconsistent configuration between the two sensors, few studies have been carried out to integrate the
DMSP-OLS and NPP-VIIRS data to consistently monitor socioeconomic dynamics since the 1990s.

In this study, we made an attempt to integrate the DMSP-OLS data and NPP-VIIRS data to
construct an extended temporal coverage dataset from 1992 to the present day. Furthermore, using the
extended temporal coverage nighttime light data, three simple regression models (the linear model,
quadratic polynomial model and power function model) were applied to model the spatiotemporal
dynamics of GDP during the research period in China at the country and provincial levels. Our results
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demonstrate that at the country level, the linear model is optimal with a minimum mean absolute
relative error (MARE) of 11.96%, while those of the quadratic polynomial model and power function
model are 21.02% and 14.18%, respectively. At the provincial level, the best-fitting model is generally
the power function model, which exhibits a mean MARE value of 14.91%. Through an additional
analysis at the provincial level, it is revealed that the power function model is optimal in 22 out of
the 31 provinces, while the quadratic polynomial model is the best-fitting model in 7 provinces, and
the linear model is optimal only in two provinces. In conclusion, the results indicate that the current
research provided a new approach with which to accurately model the long-term spatiotemporal
dynamics of GDP using a combination of DMSP-OLS data and NPP-VIIRS data, which is of great
importance in the analysis of regional socioeconomic development patterns since the 1990s.

Finally, since the National Centers for Environmental Information of the National Oceanic and
Atmospheric Administration (NOAA/NCEI) is working to provide NPP-VIIRS nighttime light data of
higher quality, future studies can be conducted in order to obtain a more comprehensive integration of
the DMSP-OLS and NPP-VIIRS data.
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