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Abstract: The Landsat 15-m Panchromatic-Assisted Downscaling (LPAD) method to downscale
Landsat-8 Operational Land Imager (OLI) 30-m data to Sentinel-2 multi-spectral instrument (MSI)
20-m resolution is presented. The method first downscales the Landsat-8 30-m OLI bands to 15-m
using the spatial detail provided by the Landsat-8 15-m panchromatic band and then reprojects
and resamples the downscaled 15-m data into registration with Sentinel-2A 20-m data. The LPAD
method is demonstrated using pairs of contemporaneous Landsat-8 OLI and Sentinel-2A MSI images
sensed less than 19 min apart over diverse geographic environments. The LPAD method is shown
to introduce less spectral and spatial distortion and to provide visually more coherent data than
conventional bilinear and cubic convolution resampled 20-m Landsat OLI data. In addition, results
for a pair of Landsat-8 and Sentinel-2A images sensed one day apart suggest that image fusion should
be undertaken with caution when the images are acquired under different atmospheric conditions.
The LPAD source code is available at GitHub for public use.
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1. Introduction

The Landsat-8 polar-orbiting satellite (launched 2013) carries the Operational Land Imager
(OLI) that has nine reflective wavelength (435 nm to 1384 nm) spectral bands; eight 30-m visible,
near-infrared, short wave infrared, and cirrus bands, and also one 15-m panchromatic band [1].
The multi-spectral instrument (MSI) onboard the Sentinel-2A (launched 2015) and Sentinel-2B
(launched 2017) polar-orbiting satellites acquires multi-spectral reflective wavelength medium
resolution data with a design heritage from the Landsat and Satellite Pour l’Observation de la Terre
(SPOT) sensors [2]. The MSI has 13 reflective wavelength (443 nm to 2190 nm) spectral bands;
four 10-m visible and near-infrared bands, six 20-m red edge, near-infrared and short wave infrared
bands, and three 60-m bands. Combination of near-contemporaneous Landsat-8 OLI and Sentinel-2
MSI data will provide increased opportunities for more frequent cloud-free surface observations [3,4].
For example, recent research suggests that the integration of the Landsat-8 and Sentinel-2 data would
be beneficial for applications including agricultural mapping and monitoring [5–7], phenological
studies [8], and glacier extent mapping [9]. There are a number of pre-processing issues that need to be
addressed before the well calibrated Landsat-8 [10,11] and Sentinel-2A [2,12] data can be used together
or treated as effectively being sensed from the same sensor. These include handling the different
sensor spectral response functions and correction for atmospheric effects [13,14], correction of surface
reflectance anisotropy [15,16], and handling image tiling and geolocation differences [17–19].
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This paper is concerned with the Landsat-8 and Sentinel-2 spatial resolution differences.
The different Landsat-8 and Sentinel-2 spatial resolutions can be overcome by reprojecting their
data into the same coordinate system and then upscaling or downscaling the data from one sensor
to the other. The Sentinel-2 10-m and 20-m data could be upscaled to match the Landsat-8 30-m
data. For example, by resampling the 10-m and 20-m Sentinel-2 bands to Landsat 30-m resolution for
sensor comparison of spectral indices [20] or to derive between-sensor registration information [21].
Conversely, the Landsat-8 30-m data could be downscaled to match the Sentinel-2 20-m or 10-m data.
For example, by resampling the Landsat-8 30-m data to Sentinel-2 resolution for applications including
agriculture monitoring [7], land cover classification [22], glacier extent mapping [9], or to derive
between-sensor registration information [18]. Downscaling of Landsat-8 30-m data to the Sentinel-2
20-m or 10-m resolution is attractive as the more spatially resolved Sentinel-2 information is not lost.

In this paper a new method to downscale the Landsat-8 30-m bands to Sentinel-2A 20-m
resolution is presented and compared to conventional resampling approaches. The Landsat 15-m
Panchromatic-Assisted Downscaling (LPAD) method has two principal steps: (i) downscaling the
Landsat-8 30-m reflective band data to 15-m resolution using the detailed spatial information provided
by the Landsat-8 15-m panchromatic band and then (ii) reprojecting and resampling the downscaled
15-m data into registration with the Sentinel-2A 20-m data. It is shown to introduce less spectral
and spatial distortion and to provide visually more coherent data than conventionally resampled
Landsat 20-m data for pairs of images selected on the same day over diverse environments. In addition,
results for Landsat-8 and Sentinel-2A images sensed one day apart are included and suggest that
fusion of these sensor data should be undertaken with caution when they are acquired under different
atmospheric conditions. The LPAD source code is made available at GitHub for public use.

2. Data and Study Areas

The Landsat-8 satellite was launched February 2013 and carries the OLI and Thermal Infrared
Sensor (TIRS) that sense the Earth’s land surface with a 16 day repeat cycle over a 185-km-wide
swath acquired from a sun-synchronous polar orbit [1,23]. The TIRS has two 100-m thermal bands
but unfortunately a stray-light issue means that they are sub-optimal and land surface temperature
retrieval using split-window techniques is not recommended [24]. The Sentinel-2A MSI was launched
June 2015 and the follow on Sentinel-2B MSI was launched March 2017 and each has a 10-day repeat
cycle and together a five-day repeat cycle and provide 290-km-wide swaths from sun-synchronous
orbits [2]. Both the OLI and MSI sensors have 12-bit radiometric resolution.

Table 1 shows the OLI and spectrally equivalent MSI reflective wavelength bands used in this
study. The shortest wavelength sensor blue bands were not used because they are particularly sensitive
to atmospheric effects [13,25]. The 30-m OLI cirrus (1363–1384 nm) band and the three 60-m MSI bands
(433–453 nm, 935–955 nm, and 1360–1390 nm) were not used because they are primarily designed for
atmospheric remote sensing [1,2].

Table 1. Landsat-8 OLI and Sentinel-2 MSI equivalent spectral bands [2,23] considered in this study.

Landsat-8 Sentinel-2

Band Resolution (m) Wavelength Range (nm) Band Resolution (m) Wavelength Range (nm)

B2 (Blue) 30 452–512 B2 10 458–523
B3 (Green) 30 533–590 B3 10 543–578
B4 (Red) 30 636–673 B4 10 650–680
B5 (NIR) 30 851–879 B8A 20 855–875

B6 (SWIR-1) 30 1566–1651 B11 20 1565–1655
B7 (SWIR-2) 30 2107–2294 B12 20 2100–2280

B8 (Pan) 15 503–676 - - -
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Five pairs of contemporaneous Landsat-8 and Sentinel-2A images over sites with different land
cover and containing anthropogenic and natural features with straight and irregular boundaries were
selected (Table 2, images illustrated in Section 4). The five sites include urban areas, crop fields,
burned areas, landslides, and tropical forest, and were sensed under cloud-free conditions. Four of
the image pairs were selected so that the Landsat-8 and Sentinel-2A images were sensed on the
same day (from only about 5 min to 19 min apart) in order to minimize the impact of land surface
and atmospheric changes. Consequently, none of the image data were atmospherically corrected.
The Congo image pair was selected because the sensor data were acquired one day apart and the
Sentinel-2A image contained evident smoke aerosols due to biomass burning. The impact of land
surface and atmospheric changes on the Congo image pair is discussed in Section 6.

Table 2. Landsat-8 (L8) and Sentinel-2A (S2A) study data.

Land Cover
Type Geographic Location L8 Path/Row S2A Tile Acquisition Date Acquisition Time

(HH:MM:SS)

Urban area New York, USA 14/32 18TWL 15 October 2016 L8: 15:40:12.12
S2A: 15:45:19.85

Crop field California, USA 43/34 10SFG 23 August 2016 L8: 18:40:01.87
S2A: 18:57:15.69

Burned forest California, USA 41/35 11SLV 26 September 2016 L8: 18:28:10.06
S2A: 18:38:51.43

Mountain
landslides

Kaikoura, New
Zealand 73/89 59GQP 15 December 2016 L8: 22:07:29.99

S2A: 22:25:39.46

Tropical
forest

Makanra, Democratic
Republic of the Congo 180/58 34NBH L8: 3 March 2017

S2A: 4 March 2017
L8: 08:55:59.42

S2A: 09:10:10.15

The recently available Landsat-8 Collection 1 Tier-1 OLI data, that are geolocated with a radial
root mean square error <12 m and have a band-to-band registration accuracy less than 4.5 m [1,26],
were used. The data are available in approximately 185 km × 180 km scenes defined in the Universal
Transverse Mercator (UTM) projection and in the heritage Worldwide Reference System (WRS-2) of
path (ground track parallel) and row (latitude parallel) coordinates [27]. The stored Landsat-8 digital
numbers were converted to top of atmosphere (TOA) spectral reflectance (ρλ, unitless) using metadata
conversion coefficients and then dividing by the sine of the scene center solar elevation angle (θs).
Sentinel-2A L1C data that are available in 109 km × 109 km tiles with the UTM projection and US
Military Grid Reference System (MGRS) [17,28] were used. The Sentinel-2A L1C data have geo-location
accuracy specifications of less than 12.5 m and band-to-band registration accuracies of less than 3 m,
6 m, and 18 m for the 10-m, 20-m, and 60-m bands, respectively [29].

3. Landsat 15-m Panchromatic-Assisted Downscaling (LPAD)

The LPAD method consists of two principal steps: (i) downscaling the Landsat-8 30-m reflective
band data to 15-m resolution using the detailed spatial information provided by the Landsat-8
15-m panchromatic band and then (ii) reprojecting and resampling the downscaled 15-m data into
registration with the Sentinel-2A 20-m data. These steps are described below.

3.1. Downscaling Landsat-8 30-m Data to 15 m Using the Panchromatic Band

Downscaling is a process to enhance the spatial resolution of sensor data usually by using
information provided by other higher resolution ancillary data [30–34]. It is sometimes termed
data fusion, or more specifically, pansharpening, when the higher resolution ancillary data is the
panchromatic band [35–39]. Hereafter, for consistency, the term downscaling is used throughout this
paper. Downscaling using panchromatic bands has been studied for several decades and the detailed
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critical surveys can be found in [40–42]. Such methods are often grouped into component substitution
(CS) and multiresolution analysis (MRA) methods [36,41,43,44].

In this study an implementation of the CS Brovey method [45] that was designed for Landsat-8
data and is computationally efficient and so appropriate for global application is implemented [46].
The method includes three steps: (1) resampling all the 30-m Landsat-8 bands to 15-m resolution;
(2) derivation of a 15-m Landsat-8 intensity image; (3) downscaling of all the resampled 15-m band
values in (1) by modulating and adding the difference (the spatial details) between the derived intensity
image in (2) and the 15-m panchromatic image. These steps are described below.

Step 1: All the 30-m Landsat-8 bands used in this study (Table 1) are resampled to 15 m
resolution to align precisely with the Landsat-8 15-m panchromatic band. Unlike many commercial
sensors, the 15-m band is not perfectly nested within the lower resolution 30-m bands [46], rather, the
panchromatic pixel grid is shifted by 7.5 m in the row and column directions relative to the 30-m pixel
grid (Figure 1).

Remote Sens. 2017, 9, 755 4 of 18 

 

values in (1) by modulating and adding the difference (the spatial details) between the derived 
intensity image in (2) and the 15-m panchromatic image. These steps are described below. 

Step 1: All the 30-m Landsat-8 bands used in this study (Table 1) are resampled to 15 m 
resolution to align precisely with the Landsat-8 15-m panchromatic band. Unlike many commercial 
sensors, the 15-m band is not perfectly nested within the lower resolution 30-m bands [46], rather, the 
panchromatic pixel grid is shifted by 7.5 m in the row and column directions relative to the 30-m 
pixel grid (Figure 1). 

 
Figure 1. Illustration of the 7.5 m row and column shifts that occur between the 15-m panchromatic 
(gray) and the 30-m reflective band (red) Landsat-8 pixels. 

The 30-m bands are resampled to the 15-m panchromatic grid using a method to compensate for 
this kind of pixel shift [47]. First, the number of columns and rows in the Landsat-8 30-m image are 
doubled by inserting a zero-value pixel every second row and column. Then a 7 × 7 low-pass filter 
(Table 2 in [47]), equivalent to cubic convolution resampling, is applied. 

Step 2: A 15-m intensity image is derived as: ܫ∗ሺ݅, ݆ሻ = ∗௥௘ௗߩ0.4030 ሺ݅, ݆ሻ + ∗௚௥௘௘௡ߩ0.5177 ሺ݅, ݆ሻ + ∗௕௟௨௘ߩ0.0802 ሺ݅, ݆ሻ, (1) 

where ܫ∗ሺ݅, ݆ሻ is the intensity image reflectance at 15-m pixel location ሺ݅, ݆ሻ; ߩ௥௘ௗ∗ ሺ݅, ݆ሻ, ߩ௚௥௘௘௡∗ ሺ݅, ݆ሻ, 
and ߩ௕௟௨௘∗ ሺ݅, ݆ሻ are the Landsat-8 15-m red (band 4), green (band 3) and blue (band 2) reflectance 
values resampled from the 30-m data (Step 1). The spectral weights in Equation (1) were derived 
considering a large number of laboratory spectra and the Landsat-8 OLI spectral response functions 
[46]. The intensity image is derived using the red, green, and blue bands as they overlap spectrally 
with the panchromatic band (Table 1). The * symbol denotes that the 15-m data that were resampled 
from the 30-m data. 

Step 3: The downscaling is then undertaken as: ߩො௕௔௡ௗሺ݅, ݆ሻ = ∗௕௔௡ௗߩ ሺ݅, ݆ሻ + ఘ್ೌ೙೏∗ ሺ௜,௝ሻூ∗ሺ௜,௝ሻ ,௣௔௡ሺ݅ߩ] ݆ሻ − ,ሺ݅∗ܫ ݆ሻ] = ఘ್ೌ೙೏∗ ሺ௜,௝ሻூ∗ሺ௜,௝ሻ ,௣௔௡ሺ݅ߩ ݆ሻ, (2) 

where ߩො௕௔௡ௗሺ݅, ݆ሻ is the downscaled 15-m reflectance value for a given band (i.e., in this study for any 
of Landsat-8 bands 2-7 in Table 1) for 15-m pixel location (݅, ∗௕௔௡ௗߩ ,(݆ ሺ݅, ݆ሻ is the 15-m reflectance 
resampled from the 30-m data (Step 1), ߩ௣௔௡ሺ݅, ݆ሻ is the 15-m panchromatic reflectance value, and ܫ∗ሺ݅, ݆ሻ is the 15-m intensity image value (Step 2). 

Figure 2 illustrates the LPAD downscaling correctly handling the 7.5 m grid shift between the 
15-m panchromatic and 30-m reflective bands (middle) and incorrectly handling the grid shift by 
simply assuming that the 15-m and 30-m bands nest perfectly (right). Qualitatively the LPAD 15-m 
data (middle and right) provide clearer field boundaries and more apparent spatial detail than the 
30-m data (left). Also evident is that the correct handling of the 7.5 m grid shift between the 15-m 
panchromatic and 30-m Landsat-8 bands is needed with less apparent distortion around the circular 
field edges. 

Figure 1. Illustration of the 7.5 m row and column shifts that occur between the 15-m panchromatic
(gray) and the 30-m reflective band (red) Landsat-8 pixels.

The 30-m bands are resampled to the 15-m panchromatic grid using a method to compensate for
this kind of pixel shift [47]. First, the number of columns and rows in the Landsat-8 30-m image are
doubled by inserting a zero-value pixel every second row and column. Then a 7 × 7 low-pass filter
(Table 2 in [47]), equivalent to cubic convolution resampling, is applied.

Step 2: A 15-m intensity image is derived as:

I∗(i, j) = 0.4030ρ∗red(i, j) + 0.5177ρ∗green(i, j) + 0.0802ρ∗blue(i, j), (1)

where I∗(i, j) is the intensity image reflectance at 15-m pixel location (i, j); ρ∗red(i, j), ρ∗green(i, j),
and ρ∗blue(i, j) are the Landsat-8 15-m red (band 4), green (band 3) and blue (band 2) reflectance
values resampled from the 30-m data (Step 1). The spectral weights in Equation (1) were derived
considering a large number of laboratory spectra and the Landsat-8 OLI spectral response functions [46].
The intensity image is derived using the red, green, and blue bands as they overlap spectrally with the
panchromatic band (Table 1). The * symbol denotes that the 15-m data that were resampled from the
30-m data.

Step 3: The downscaling is then undertaken as:

ρ̂band(i, j) = ρ∗band(i, j) +
ρ∗band(i, j)

I∗(i, j)
[
ρpan(i, j)− I∗(i, j)

]
=

ρ∗band(i, j)
I∗(i, j)

ρpan(i, j), (2)
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where ρ̂band(i, j) is the downscaled 15-m reflectance value for a given band (i.e., in this study for any of
Landsat-8 bands 2-7 in Table 1) for 15-m pixel location (i, j), ρ∗band(i, j) is the 15-m reflectance resampled
from the 30-m data (Step 1), ρpan(i, j) is the 15-m panchromatic reflectance value, and I∗(i, j) is the
15-m intensity image value (Step 2).

Figure 2 illustrates the LPAD downscaling correctly handling the 7.5 m grid shift between the
15-m panchromatic and 30-m reflective bands (middle) and incorrectly handling the grid shift by
simply assuming that the 15-m and 30-m bands nest perfectly (right). Qualitatively the LPAD 15-m
data (middle and right) provide clearer field boundaries and more apparent spatial detail than the
30-m data (left). Also evident is that the correct handling of the 7.5 m grid shift between the 15-m
panchromatic and 30-m Landsat-8 bands is needed with less apparent distortion around the circular
field edges.Remote Sens. 2017, 9, 755 5 of 18 
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Figure 2. 40 × 33 Landsat-8 30-m image (a) LPAD downscaled to 15-m data (80 × 66) with (b) and
without (c) considering the 15-m to 30-m Landsat-8 pixel grid shifts. The Landsat-8 image was acquired
6 November 2016 over a commercial crop field in California (centered on 34.8973◦N 117.1505◦W) with
scene center solar zenith and azimuth of 36.5972◦ and 159.4612◦, respectively.

3.2. Reprojection and Resampling of the Downscaled 15-m Data into Registration with the Sentinel-2A
20-m Data

Landsat-8 and Sentinel-2A data are misaligned because their tiling schemes are different and
because the Landsat-8 geolocation framework contains residual errors that vary among Landsat
path/rows [19]. The pairs of Sentinel-2A and Landsat-8 images (Table 2) were aligned using an
automated feature and area-based least squares matching approach that provides sub-pixel precision
matching [18]. First the Landsat-8 30-m near infrared (NIR) band was resampled to 20-m resolution
and then matched with the Sentinel-2A NIR 20-m band. Then following the recommendations of
Yan et al. [18] an affine transformation was used to characterize the spatial relation between the
matched sensor data, defined as: {

xL = a0 + a1xS + a2yS
yL = b0 + b1xS + b2yS

, (3)

where xL, yL are the UTM coordinates in the Landsat-8 image, xS, yS are the UTM coordinates in the
Sentinel-2A 20-m data, and ai, bi are the affine transformation coefficients.

Each band of the Landsat-8 15-m data, derived as Equation (2), was reprojected into registration
with the Sentinel-2A 20-m grid using the affine transformation coefficients. In this way the Landsat-8
15-m band data were only resampled once. The indirect approach [48] was used whereby the location
of each Sentinel-2A 20-m image pixel was reprojected as Equation (3) into the Landsat-8 image and then
the Landsat-8 15-m band values were resampled to 20-m resolution. Bilinear and cubic convolution
resamplers were considered and for brevity the results are termed as bilinear-based LPAD and cubic
convolution-based LPAD results respectively.
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4. Evaluation Methodology

To provide a control data set, Landsat-8 downscaling from 30 m to 20 m was undertaken using
conventional resampling, i.e., without the LPAD approach. Nearest neighbor, bilinear and cubic
convolution resamplers were considered. The nearest neighbor resampling method selects the closest pixel
and so preserves the input data values but is known to create pixel “blockiness” and locational shifts up
to
√

2/2 pixels [49]. Bilinear and cubic convolution resamplers smooth the data by interpolating from
the 4 and 16 surrounding pixels, respectively [50,51]. Under certain assumptions cubic convolution is
theoretically optimal but usually these assumptions are not met and consequently cubic convolution
resampled data may have edge-over and under-shoot issues along high contrast edges [52].

The Landsat-8 data downscaled to 20-m resolution using the LPAD method and the control,
i.e., conventionally resampled to 20-m Landsat-8 data, were compared with the corresponding
Sentinel-2A 20-m data for each site (Table 2). As the Sentinel-2A red, green, and blue bands are
defined at 10 m (Table 1) these bands were degraded to 20 m by simple averaging without considering
the Sentinel-2A point spread function as it is currently unknown. Note that, unlike for Landsat-8,
four adjacent Sentinel-2A 10-m pixels nest within each 20-m pixel, and so averaging is straightforward.

The LPAD and control Landsat-8 20-m data were compared visually and quantitatively with
the Sentinel-2A 20-m data. This was undertaken considering the three true color (red, green, and
blue) bands and considering all six spectrally similar bands (Table 1). Our expectation is that because
the Landsat-8 15-m panchromatic band has a bandwidth that includes only the Landsat-8 red, green,
and blue bands the LPAD approach will work better for the true color than for the other bands.

Quantitative comparison of the data was undertaken using the Q2n metric that quantifies the
average spatial and spectral distortion between any number of bands between two images [53].
The Q2n metric is a single value bounded between 0 and 1 (where higher values indicate greater
quality and less distortion) and is an extension of the single band universal image quality index
(UQI) [54]. The UQI is widely used as, similar to human visual perception, it is sensitive to the
structural information differences, which is not the case for conventional image difference statistics.
In this study the Q2n values were calculated with respect to non-overlapping adjacent n × n pixel
windows and then averaged to yield a single image value. The same n = 32 pixel window dimensions
used to assess downscaling Landsat-8 30 m to 15 m [46] was implemented.

5. Results

5.1. Conventional Resampling (Nearest Neighbor, Bilinear, and Cubic Convolution) Based Downscaling

Figure 3 illustrates the results of Landsat-8 downscaling from 30 m to 20 m using three
conventional resampling approaches. The New York true color image subset is illustrated because it
contains high spatial frequency features associated with closely packed city blocks, roads, rivers and
parks. Compared to the Sentinel-2A 20-m data (a) the conventionally resampled Landsat-8 data (b), (c),
and (d), do not contain the same level of spatial detail. In particular, the nearest-neighbor resampled
data (b) are inferior with the aforementioned “blockiness” and locational shifts apparent with much of
the detail in the areas of road and buildings quite obviously lost. The bilinear (c) and cubic convolution
(d) resampled Landsat-8 data appear very similar and both smooth the spatial detail.

The Q2n values derived by comparing the illustrated 20-m Sentinel-2A image with the nearest
neighbor, bilinear, and cubic convolution resampled Landsat-8 20-m images are 0.7142, 0.7520,
and 0.7760, respectively. Thus, quantitatively the nearest neighbor and cubic convolution resampled
data were the most and least distorted (spectrally and spatially) respectively compared to the
Sentinel-2A data. Given the better performance of the bilinear and cubic convolution resamplers, for
the remainder of this study they are both considered in the LPAD downscaling, i.e., bilinear-based
LPAD and cubic convolution-based LPAD results are presented.
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results are illustrated. 
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New York city blocks and even other fine objects can be unambiguously identified (Figure 4d,f). In 
contrast, the object boundaries are blurry in the 20-m urban areas resampled from the original 30-m 
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have sharper boundaries than the Landsat-8 20-m conventionally resampled band data (Figure 5c,e). 
Similarly, the LPAD generated Landsat-8 20-m burned areas (Figure 6d,f) boundaries appear more 
distinct than the bilinear and cubic convolution resampling generated 20-m results (Figure 6c,e). The 
LPAD generated Landsat-8 20-m landslides (Figure 7d,f) appear identical to the Sentinel-2A 20-m 
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boundaries are more blurred in the bilinear and cubic convolution resampled data (Figure 8c,e).  

Figure 3. New York 256× 256 20-m pixel true color subsets: (a) Sentinel-2A 20-m red, green, blue bands
aggregated from the original Sentinel-2A 10-m bands; (b) Landsat-8 20-m red, green, blue bands nearest
neighbor resampled from 30 m; (c) Landsat-8 20-m red, green, blue bands bilinear resampled from
30 m; and (d) Landsat-8 20-m red, green, blue bands cubic convolution resampled from 30 m.

5.2. LPAD Downscaling

Figures 4–8 illustrate, for the five sites (Table 2), the Sentinel-2A 20-m true color images (a) and
256 × 256 20-m pixel Sentinel-2A sub-sets selected over regions of high image spatial contrast (b).
In addition, for each sub-set, the conventional Landsat-8 bilinear (c) and cubic convolution (e)
resampled 20-m data, and the bilinear-based LPAD (d) and cubic convolution-based LPAD (f) 20-m
results are illustrated.

It is evident that the LPAD 20-m results provide more clear object boundaries and finer spatial
detail than the conventionally resampled 20-m data. Visually, the LPAD generated 20-m data appear
spatially and spectrally almost the same as the Sentinel-2A 20-m reference data. The texture of the New
York city blocks and even other fine objects can be unambiguously identified (Figure 4d,f). In contrast,
the object boundaries are blurry in the 20-m urban areas resampled from the original 30-m data using
bilinear and cubic convolution resamplers (Figure 4c,e) and the fine spatial and textural details of the
city blocks are degraded. The LPAD generated Landsat-8 20-m crop fields (Figure 5d,f) have sharper
boundaries than the Landsat-8 20-m conventionally resampled band data (Figure 5c,e). Similarly,
the LPAD generated Landsat-8 20-m burned areas (Figure 6d,f) boundaries appear more distinct
than the bilinear and cubic convolution resampling generated 20-m results (Figure 6c,e). The LPAD
generated Landsat-8 20-m landslides (Figure 7d,f) appear identical to the Sentinel-2A 20-m reference
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data (Figure 7b). The small and elongated landslides can be visually identified in LPAD generated
20-m data but they are blurry and cannot be accurately identified in the bilinear and cubic convolution
resampled 20-m data (Figure 7c,e). The LPAD generated 20-m deforested patches (Figure 8d,f) appear
almost consistent with the Sentinel-2A 20-m reference data (Figure 8b) and their boundaries are more
blurred in the bilinear and cubic convolution resampled data (Figure 8c,e). In general, objects with
pixel-scale small axis dimensions, such as narrow roads, are visually discernable in the LPAD generated
Landsat-8 20-m data but not in the bilinear and cubic convolution resampled 20-m data.
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Figure 4. New York city true color images showing: (a) Sentinel-2A 20-m image (1500 × 1500 20-m 
pixels) and sub-set (red box); (b) Sentinel-2A 256 × 256 20-m pixel sub-set; (c) Landsat-8 bilinear 
resampled to 20 m; (d) Landsat-8 bilinear-based LPAD 20-m data; (e) Landsat-8 cubic convolution 
resampled to 20 m; (f) Landsat-8 cubic convolution-based LPAD 20-m data. 

Figure 4. New York city true color images showing: (a) Sentinel-2A 20-m image (1500 × 1500 20-m
pixels) and sub-set (red box); (b) Sentinel-2A 256 × 256 20-m pixel sub-set; (c) Landsat-8 bilinear
resampled to 20 m; (d) Landsat-8 bilinear-based LPAD 20-m data; (e) Landsat-8 cubic convolution
resampled to 20 m; (f) Landsat-8 cubic convolution-based LPAD 20-m data.
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Figure 5. Crop field, California, true color images showing: (a) Sentinel-2A 20-m image (3000 × 3000 
20-m pixels) and sub-set (red box); (b) Sentinel-2A 256 × 256 20-m pixel sub-set; (c) Landsat-8 bilinear 
resampled to 20 m; (d) Landsat-8 bilinear-based LPAD 20-m data; (e) Landsat-8 cubic convolution 
resampled to 20 m; (f) Landsat-8 cubic convolution-based LPAD 20-m data. 

Figure 5. Crop field, California, true color images showing: (a) Sentinel-2A 20-m image (3000 × 3000
20-m pixels) and sub-set (red box); (b) Sentinel-2A 256 × 256 20-m pixel sub-set; (c) Landsat-8 bilinear
resampled to 20 m; (d) Landsat-8 bilinear-based LPAD 20-m data; (e) Landsat-8 cubic convolution
resampled to 20 m; (f) Landsat-8 cubic convolution-based LPAD 20-m data.
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Figure 6. Burned forest area, California, true color images showing: (a) Sentinel-2A 20-m image  
(3600 × 3600 20-m pixels) and sub-set (red box); (b) Sentinel-2A 256 × 256 20-m pixel sub-set; (c) 
Landsat-8 bilinear resampled to 20 m; (d) Landsat-8 bilinear-based LPAD 20-m data; (e) Landsat-8 
cubic convolution resampled to 20 m; (f) Landsat-8 cubic convolution-based LPAD 20-m data. 

Figure 6. Burned forest area, California, true color images showing: (a) Sentinel-2A 20-m image
(3600 × 3600 20-m pixels) and sub-set (red box); (b) Sentinel-2A 256 × 256 20-m pixel sub-set;
(c) Landsat-8 bilinear resampled to 20 m; (d) Landsat-8 bilinear-based LPAD 20-m data; (e) Landsat-8
cubic convolution resampled to 20 m; (f) Landsat-8 cubic convolution-based LPAD 20-m data.
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Figure 7. Mountain landslides, New Zealand, true color images showing: (a) Sentinel-2A 20-m image 
(1500 × 1500 20-m pixels) and sub-set (red box); (b) Sentinel-2A 256 × 256 20-m pixel sub-area; (c) 
Landsat-8 bilinear resampled to 20 m; (d) Landsat-8 bilinear-based LPAD 20-m data; (e) Landsat-8 
cubic convolution resampled to 20 m; (f) Landsat-8 cubic convolution-based LPAD 20-m data. 

Figure 7. Mountain landslides, New Zealand, true color images showing: (a) Sentinel-2A 20-m image
(1500 × 1500 20-m pixels) and sub-set (red box); (b) Sentinel-2A 256 × 256 20-m pixel sub-area;
(c) Landsat-8 bilinear resampled to 20 m; (d) Landsat-8 bilinear-based LPAD 20-m data; (e) Landsat-8
cubic convolution resampled to 20 m; (f) Landsat-8 cubic convolution-based LPAD 20-m data.
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Figure 8. Tropical forest, Democratic Republic of the Congo, true color images showing: (a) Sentinel-2A 
20-m image (1230 × 1425 20-m pixels) and sub-set (red box); (b) Sentinel-2A 256 × 256 20-m pixel sub-set; 
(c) Landsat-8 bilinear resampled to 20 m; (d) Landsat-8 bilinear-based LPAD 20-m data; (e) Landsat-8 
cubic convolution resampled to 20 m; (f) Landsat-8 cubic convolution-based LPAD 20-m data. The 
smoke aerosols present in the Sentinel-2A image are evident in the north and west of (a). 

Tables 3 and 4 summarize quantitative comparisons (i.e., ܳ2௡  values, where lower values 
indicate more distortion) between the Sentinel-2A 20-m data and the various combinations of 
downscaled data considering the whole image areas illustrated in Figures 4a,5a,6a,7a and 8a. 

Figure 8. Tropical forest, Democratic Republic of the Congo, true color images showing: (a) Sentinel-2A
20-m image (1230 × 1425 20-m pixels) and sub-set (red box); (b) Sentinel-2A 256 × 256 20-m pixel
sub-set; (c) Landsat-8 bilinear resampled to 20 m; (d) Landsat-8 bilinear-based LPAD 20-m data;
(e) Landsat-8 cubic convolution resampled to 20 m; (f) Landsat-8 cubic convolution-based LPAD 20-m
data. The smoke aerosols present in the Sentinel-2A image are evident in the north and west of (a).

Tables 3 and 4 summarize quantitative comparisons (i.e., Q2n values, where lower values indicate
more distortion) between the Sentinel-2A 20-m data and the various combinations of downscaled data
considering the whole image areas illustrated in Figures 4a, 5a, 6a, 7a and 8a.
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Table 3 summarizes the results considering just the red, green, and blue bands. For all the sites,
except the Congo forest site, the conventional bilinear resampling approach has the most distortion,
followed in descending order of distortion by the conventional cubic convolution resampling, cubic
convolution-based LPAD, and bilinear-based LPAD approaches. The Q2n differences between the
conventional bilinear and cubic-convolution resampling site results are expected for the reasons
discussed above (Section 5.1). However, less immediately expected is the higher performance of the
bilinear-based LPAD approach compared to the cubic convolution-based LPAD approach.

The Congo forest site results are anomalous compared to the other sites (Table 3). There is
negligible difference between the conventional bilinear and bilinear-based LPAD approaches (both
have Q2n = 0.733 to 3 d.p), the least distortion is for the conventional cubic convolution resampling
approach (0.743), and the cubic convolution-based LPAD approach has the most distortion (0.708).
Unlike for the other sites, the Congo Sentinel-2A and Landsat-8 data were acquired one day apart
(Table 2) and the atmosphere changed during this period, with aerosol from biomass burning apparent
in the Sentinel-2A data with much less apparent aerosols the day before in the Landsat-8 data (Figure 8).

Table 3. Q2n values comparing the Sentinel-2A 20-m data with the conventional bilinear (BL), BL-based
LPAD, conventional cubic convolution (CC), and CC-based LPAD Landsat-8 20-m data. Results for the
true color reflectance (red, green, blue) bands (Table 1) and the image areas illustrated in Figures 4a, 5a,
6a, 7a and 8a.

Location—Major Land Cover BL Resampler BL-Based LPAD CC Resampler CC-Based LPAD

New York—urban area 0.7770 0.8970 0.8017 0.8953
California—crop fields 0.8826 0.9294 0.8955 0.9223

California—burned forest 0.9025 0.9608 0.9165 0.9547
New Zealand—landslides 0.7132 0.7511 0.7247 0.7474

Congo—tropical forest 0.7334 0.7330 0.7431 0.7080

Table 4 summarizes the same results as for Table 3 but considering all six corresponding bands
and not just the red, green and blue bands. The same pattern of Q2n values in Table 4 as Table 3 is
found. For all the sites, except the Congo forest site, the conventional bilinear resampling approach has
the most distortion, followed in descending order of distortion by the conventional cubic convolution
resampling, cubic convolution-based LPAD, and then the bilinear-based LPAD approaches.

Table 4. Q2n values comparing the Sentinel-2A 20-m data with the conventional bilinear (BL), BL-based
LPAD, conventional cubic convolution (CC), and CC-based LPAD Landsat-8 20-m data. Results for the
six corresponding Sentinel-2A and Landsat-8 bands (Table 1) and the image areas are illustrated in
Figures 4a, 5a, 6a, 7a and 8a.

Location—Major Land Cover BL Resampler BL-Based LPAD CC Resampler CC-Based LPAD

New York—urban area 0.8227 0.8870 0.8414 0.8787
California—crop fields 0.9205 0.9410 0.9298 0.9333

California—burned forest 0.9290 0.9590 0.9388 0.9505
New Zealand—landslides 0.7385 0.7569 0.7465 0.7524

Congo—tropical forest 0.7989 0.7955 0.8039 0.7780

6. Discussion

The integration of Landsat-8 and Sentinel-2 data for both research and applications is expected to
receive growing attention in the global change research community [3,4]. One challenge is the spatial
resolution difference between the sensors. Rather than downscaling by conventional resampling,
that we showed (Figure 3) will cause either smoothing of the downscaled results (e.g., with convention
bilinear or cubic convolution resampling) or introduce locational shifts (e.g., with nearest neighbor
resampling or pixel duplication approaches), the Landsat-8 15-m panchromatic band was used to
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assist the downscaling of the Landsat-8 OLI 30-m bands to 20 m. We note that it is not meaningful to
downscale Landsat-8 data to 10 m using the LPAD method as the Landsat-8 panchromatic band is
defined at 15 m.

Visual comparisons demonstrated that the LPAD method introduced less spectral and spatial
distortion than conventional bilinear and cubic convolution resampling. The bilinear-based LPAD
approach performed systematically better than the cubic convolution-based LPAD approach. This was
because after downscaling from 30 m to 15 m the Landsat-8 15-m data were resampled to 20 m.
This resampling from 15 m to 20 m is more like a pixel aggregation problem than an interpolation
problem. In such cases, previous studies have noted the advantage of bilinear over cubic convolution
resampling [55,56].

Our expectation was that because the Landsat-8 15-m panchromatic band has a bandwidth that
includes only the Landsat-8 red, green and blue bands [46] the LPAD approach would work better
for these three OLI bands than for the other bands (Table 1). However, the same pattern of the Q2n

values considering just the red, green, and blue bands (Table 3) and considering all six spectral bands
(Table 4) was found. Perhaps this reflects the reduced atmospheric scattering that occurs at longer
wavelengths [57,58]. The results of this study indicate that the LPAD approach can be applied to
downscale all of the Landsat-8 30-m OLI bands.

The Democratic Republic of the Congo results were anomalous, with negligible difference between
the Q2n values for the conventional bilinear and bilinear-based LPAD approaches. They were included,
not because there is anything particularly different about the Congo scene content compared to the
other four sites, but because their results illustrate an important issue. Specifically, atmospheric
and perhaps surface differences (due to biomass burning) between the Landsat-8 and Sentinel-2A
images meant that differences between the downscaled Landsat-8 20 m and Sentinel-2A 20 m were not
due only to the downscaling. The Sentinel-2A image was acquired a day after the Landsat-8 image
and contained spatially extensive aerosols that are known to scatter and absorb radiation and that
effectively reduce the image contrast [57,58]. Atmospheric correction methodologies that use radiative
transfer algorithms and atmospheric characterization data are most suitable for large area and/or
repeat atmospheric correction [25]. Unfortunately, to date, there is no publically available Landsat-8
and Sentinel-2A atmospheric correction approach that uses the same radiative transfer algorithm and
atmospheric characterization approach. Evidently, fusion of Landsat-8 and Sentinel-2A data should be
undertaken with caution when images are acquired at different times [59] unless the data are acquired
with similar surface and atmospheric conditions or are pre-processed very robustly.

In this study we did not consider sensor differences due to different viewing geometry conditions
combined with surface reflectance anisotropy [15,16], or sensor spectral band pass differences [60,61],
or differences in the interaction of radiation with the atmosphere across high contrast edges (“adjacency
effects”) that are dependent on the atmospheric contents and the sensor point spread function [62,63].
These sensor differences are scene dependent and are likely to cause systematic distortions between the
Sentinel-2A and Landsat-8 data. Despite this, with the exception of the Congo results, the bilinear-based
LPAD approach provided the best downscaling results with less spatial and spectral distortion than
conventional resampling approaches.

In the LPAD method the Landsat-8 30-m band data are first downscaled to 15 m using the simple
Brovey method [45] with fixed spectral weights derived by considering a large number of laboratory
spectra and the Landsat-8 OLI spectral response functions [46]. This is computationally efficient
and so is appropriate for global application. Computation efficiency is important for large-area or
long-term Landsat-8 and Sentinel-2 studies due to the high satellite data volumes. However, for small
data volumes, and/or when computational constraints are not an issue [64], advanced downscaling
methods [41] could be used to provide less spatial and spectral distortion, although such improvements
are usually subtle and less than the noise introduced by atmospheric and sun-sensor-target geometry
effects [46].
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7. Conclusions

A new way to downscale Landsat-8 30-m OLI data to Sentinel-2 20-m resolution was presented.
Rather than downscale by conventional resampling, that will cause either smoothing of the downscaled
results or introduce pixel-level locational shifts, the Landsat-8 15-m panchromatic band is used to assist
the Landsat-8 30-m downscaling. The Landsat panchromatic-assisted downscaling (LPAD) approach
was tested over five study areas with different land covers and containing anthropogenic and natural
features with straight and irregular boundaries. Near-contemporaneous Sentinel-2A 20-m data were
used as reference data for qualitative and quantitative comparison. Results demonstrated that (1) the
LPAD method introduced less spectral and spatial distortion and provided visually more coherent
data than traditional bilinear and cubic convolution resampling approaches; (2) the LPAD approach
can be effectively applied to downscaling the Landsat-8 30-m OLI bands; (3) the bilinear-based
LPAD approach provided the least spectral and spatial distortion; and (4) Landsat-8 and Sentinel-2A
data fusion should be undertaken with caution when images are acquired at different times under
different atmospheric conditions. The LPAD source code is made available at GitHub for public use
and evaluation at https://github.com/jasonleepolyu/Landsat-Panchromatic-Assisted-Downscaling-
LPAD-/tree/master.
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