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Abstract: Accurate and timely change detection of the Earth’s surface features is extremely important
for understanding the relationships and interactions between people and natural phenomena. Owing
to the all-weather response capability, polarimetric synthetic aperture radar (PolSAR) has become
a key tool for change detection. Change detection includes both unsupervised and supervised
methods. Unsupervised change detection is simple and effective, but cannot detect the type of
land cover change. Supervised change detection can detect the type of land cover change, but
is easily affected and depended by the human interventions. To solve these problems, a novel
method of change detection using a joint-classification classifier (JCC) based on a similarity measure
is introduced. The similarity measure is obtained by a test statistic and the Kittler and Illingworth
(TSKI) minimum-error thresholding algorithm, which is used to automatically control the JCC.
The efficiency of the proposed method is demonstrated by the use of bi-temporal PolSAR images
acquired by RADARSAT-2 over Wuhan, China. The experimental results show that the proposed
method can identify the different types of land cover change and can reduce both the false detection
rate and false alarm rate in the change detection.

Keywords: change detection; joint-classification classifier; similarity measure; test statistic; Kittler
and Illingworth (K & I) threshold segmentation; PolSAR

1. Introduction

In remote sensing, change detection is the process of identifying the changes that have occurred
on the Earth’s surface by multi-temporal images acquired in the same geographical area at different
times [1,2]. As a result of the repeat-pass nature of satellite orbits, time series of remote sensing images
can be acquired to perform change detection. In recent years, optical sensors and synthetic aperture
radar (SAR) have been widely used for change detection, in applications such as land-use and land
cover dynamic analysis [3,4], environmental monitoring [5–9], etc.

On the one hand, optical images have been widely applied in change detection [2,3,10,11].
Unfortunately, night-time and severe weather often limit the use of optical images in practice [12].
On the other hand, thanks to the unique characteristics of microwaves, SAR sensors can not only
acquire periodic images regardless of weather and time, but can also provide valuable information
on biophysical and geophysical parameters [13–16]. Although a number of methods have been
proposed for single-channel SAR images [17–20], the interpretation of the backscattering changes of
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the land cover is limited [7]. When compared with single-channel SAR images, polarimetric synthetic
aperture radar (PolSAR) images contain both phase and amplitude information from the radar returns
transmitted in two different polarizations, and use more scattering information [21]. The current
methods of change detection based on SAR images can be divided into two categories: unsupervised
approaches and supervised approaches.

Because of the simple design, unsupervised change detection represents a hot research field in the
change detection. In general, unsupervised change detection in SAR images involves: (1) preprocessing;
(2) generating the comparison image; and (3) choosing an optimal threshold to divide comparison
images into changed and unchanged parts. The preprocessing of multi-temporal SAR images mainly
involves radiometric calibration, speckle filtering [22,23], and image co-registration, which are all
critical to change detection. The pixel values of SAR images are directly related to the radar backscatter
of the scene after radiometric calibration. This condition is necessary for the comparison of SAR images
acquired at different dates. Speckle filtering is usually carried out to suppress the speckle before
the change detection and classification of SAR images. Image co-registration in the preprocessing
is aimed at reducing the errors caused by the misregistration of the images. It aligns the images
used in the change detection as precisely as possible, so that corresponding pixels in the images
correspond to the same position in the scene. In the second step, two preprocessed images of the same
geographical area at different times are compared to generate the comparison image. There are many
methods of generating the comparison image using two co-registered images, such as the ratio or
log-ratio operator of SAR amplitudes or intensities [17,19,20], the hidden Markov chain model [24,25],
the Kullback–Leibler divergence method [26], etc. These methods are usually applied in multi-temporal
single-channel SAR-based change detection. Unlike the above methods, test statistics can be applied
in not only single-channel SAR data, but also PolSAR data [5,27,28]. The use of multichannel data
(coherency or covariance matrix) can obtain a more accurate comparison image. In the third step of
change detection analysis, the change detection map can be obtained by the decision threshold of
the comparison image. Several algorithms are widely used to automatically determine the threshold,
such as the constant false alarm rate (CFAR) algorithm [29], Otsu’s thresholding method [30], Kapur’s
entropy algorithm [31], the Kittler and Illingworth (K & I) algorithm [32], etc. Although unsupervised
change detection approaches are relatively simple, straightforward, and easy to implement and
interpret, they cannot determine the type of land cover change.

For another, as one of the typical supervised approaches, post-classification comparison (PCC)
methods can provide information on both the change detection map and the type of land cover change.
PCC involves performing change detection by comparing separate supervised classifications of images
obtained on different dates [33]. The procedure of PCC includes the following steps: (1) preprocessing;
(2) classification of the multi-temporal SAR images; and (3) comparing the independently produced
classifications of step 2, and obtaining the change map and the map showing the type of land cover
change [34]. The first step of preprocessing is the same as the unsupervised change detection above.
In the second step, a classification method is used to obtain the classification results of the time-series
images. Unsupervised classification cannot determine the class label; therefore, these methods are
limited in PCC [35]. However, some supervised classification methods [36], such as the Wishart
classifier based on maximum likelihood [37], support vector machine (SVM) [38,39], and random
forests (RF) [12], are widely used with PolSAR images. In the third step, the results of the classification
are used to obtain the change detection map and land cover change map. Although PCC can provide
more information than the unsupervised methods of change detection, it is liable to be affected by
the significant cumulative error caused by the single remote sensing image classification during
the change detection.

Combining the respective advantages of the unsupervised and supervised methods of change
detection, Han and Zhou [35] designed joint-classification classifier (JCC) change detection based on
improved fuzzy adaptive resonance theory mapping in bi-temporal optical images, and obtained
a better performance than PCC. However, this method is not suitable for bi-temporal SAR images.
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Li et al. [40] used a JCC method based on k-means for bi-temporal single-channel SAR image change
detection. However, k-means is an unsupervised classifier, so the class labels need to be determined
after classification; therefore, the algorithm has its limitations. The generalization of the methods
based on JCC to bi-temporal SAR images has proved to be nontrivial. Moreover, literature on change
detection based on JCC in bi-temporal PolSAR data is sparse.

To solve the above problems, the objective of this study is to develop a novel method for change
detection using bi-temporal PolSAR images. The proposed method using JCC based on a similarity
measure not only has the advantage of unsupervised change detection in detecting a similarity measure
for each pixel, but also has the advantage of supervised change detection in obtaining the type of land
cover change. The similarity measure map includes the calculating comparison image and threshold
choosing. The variances of the bi-temporal images are used to decide the sequence of classification,
and the similarity measure is used to automatically control the JCC. Test statistics based on maximum
likelihood estimation (MLE) and the Kittler and Illingworth (K & I) algorithm [4] are used to obtain
the similarity measure map of the same geographical area at different times. Furthermore, the similarity
measure map can determine the similarity of the same region at different times, and can distinguish
the similar parts and the different parts. The similar parts are considered as the same category, and
the different parts are classified, respectively. The classifier in the proposed method is the complex
Wishart classifier, which is suitable for PolSAR data [37,41]. After finishing the joint-classification
classifier based on Test statistics and the Kittler and Illingworth (JCC-TSKI) procedure, we can obtain
the binary change detection map (changed and unchanged) and the map of land cover change.

The remainder of this paper is organized as follows. Section 2 presents a brief introduction to
the fundamental theory and details of the proposed change detection framework. Section 3 describes
the experimental results. In Section 4, we draw our conclusions.

2. Materials and Methods

2.1. The Model of PolSAR Data

Assuming that a p-dimensional random complex vector Q = [q1, q2, . . . .qp]
T follows a complex

multi-variate normal distribution with mean 0 and dispersion matrix ΣQ = E
[〈

QQ∗T
〉]

, then
the p × p matrix Z (Z = QQ∗T) is a Hermitian positive definite random matrix, and follows
a Wishart distribution. The PolSAR measures the amplitude and phase of the backscattered
signals in four combinations of linear receive and transmit polarizations: horizontal-horizontal (hh),
horizontal- vertical (hv), vertical-horizontal (vh), and vertical-vertical (vv) [5,42]. Assuming that
the target reciprocity condition is satisfied [43], then the polarimetric information can be expressed by
a complex vector:

Ω = [Shh,
√

2Shv, Svv]
T

, (1)

where h and v denote the horizontal and vertical wave polarization states, []T indicates the
vector transposition, and Shv is the scattering element of the horizontal transmitting and vertical
receiving polarizations.

For multi-look processed PolSAR data, the backscattered signal can be expressed as a
covariance matrix:

C =
〈

Ω ·Ω∗T
〉
=

〈 |Shh|2 ShhS∗hv ShhS∗vv
ShvS∗hh |Shv|2 ShvS∗vv
SvvS∗hh SvvS∗hv |Svv|2

〉. (2)

The covariance matrix C can be modeled by a complex Wishart distribution. The frequency
function of covariance matrix C can be shown as follows:

f (C) = 1
Γp(n)

1
|ΣΩ |n

|C|n−p exp{−tr[Σ−1
Ω C]}

Γp(n) = πp(p−1)/2
p

∏
j=1

Γ(n− j + 1)
, (3)
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where tr(·) is the trace operator, n is the number of looks, and Γp(n) is a normalization factor.
Alternatively, the Pauli-based scattering matrix can be expressed as a complex vector:

k =
1√
2
[Shh + Svv, Shh − Svv, 2Shv]

T . (4)

The coherency matrix can be obtained by:

T =
〈

k · k∗T
〉

. (5)

The covariance and coherency matrix are linearly related, and can be shown as follows:

T = NCNT where N =
1√
2

 1 0 1
1 0 −1
0
√

2 0

. (6)

Since a covariance matrix can be converted to a coherency matrix by a linear transform,
the coherency matrix also follows a complex Wishart distribution [41]:

f (T) = 1
Γp(n)

npn

|Σk |n
|T|n−p exp{−ntr[Σ−1

k T]}

Γp(n) = πp(p−1)/2
p

∏
j=1

Γ(n− j + 1)
. (7)

2.2. The Sequence of Classification in the Proposed Method

The variance of intensity at position (i, j) of time t (t = 1, 2) is defined as follows [35,40]:

σt
ij = ωt

ij(At
ij − Eij)

2, (8)

where At
ij denotes the span value of the corresponding pixel position (i, j) in the image Xt at time t,

ωt
ij denotes the weights, and Eij denotes the weighted arithmetic mean shown in Equation (9). When

σ1
ij < σ2

ij, we choose X1 to first classify; otherwise, we choose X2 to first classify.

ωt
ij = At

ij/(A1
ij + A2

ij) and Eij =
2

∑
t=1

ωt
ij A

t
ij. (9)

2.3. Test Statistics for the Equality of Two Complex Wishart Matrices

We consider that the bi-temporal PolSAR images (X1, X2) are independent, and follow a Wishart
distribution as follows:

X1 ∈W(p, m, Σ1)

X2 ∈W(p, n, Σ2)
, (10)

where p represents the dimensions of X1, X2, and m, n represent the number of looks of X1, X2,
respectively. Σ1 and Σ2 represent the dispersion matrix of X1, X2, and the maximum likelihood
estimation (MLE) of ΣX1 and ΣX2 is shown as follows:

ΣMLE
1 =

1
m

X1 and ΣMLE
2 =

1
n

X2. (11)

Assuming that the null hypothesis H0 : ∑1 = ∑2 means that the two matrices are equal and there
is a strong possibility of non-change, then the alternative hypothesis H1 : ∑1 6= ∑2 means that the two
matrices are different and there is a strong possibility of change [5].
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We suppose that the test statistics based on MLE have joint densities f (∑1, ∑2, θ), where θ is the
set of parameters of the probability function that has generated the data. Then, H0 states that θ ∈ H0,
and the MLE of the test statistic is shown as follows:

Q =
maxθ∈H0 L(θ)
maxθ∈ΩL(θ)

, where L(θ) = f (∑
1

, ∑
2

, θ) = f (∑
1

, θ) f (∑
2

, θ), (12)

where Ω = H0 ∪ H1, L(·) is the likelihood function, and f (·) is the frequency function.
Putting Equation (3) into Equation (12) and assuming Σ1 = Σ2 = Σ, L(θ) can be expressed as

follows:

L(θ) =
1

Γp(n)Γp(m)
|Σ|−n−m|X1|n−p|X2|m−p exp{−tr[Σ−1(X1 + X2)]} ∈WC(p, n + m, Σ). (13)

The MLE of Equation (12) can be simplified as follows:

Q =
L(Σ)

Lx1

(
Σ1
)

Lx2

(
Σ2
) =

(n + m)p(n+m)

npnmpm
|X1|m|X2|n

|X1 + X2|n+m . (14)

Assuming m = n, the similarity measure map (S) of the bi-temporal PolSAR images can be
denoted as follows:

S =
2p2 − 4pn− 1

2p
(2pln2 + ln|X1|+ ln|X2| − ln|X1 + X2|). (15)

2.4. Kittler and Illingworth Algorithm

After obtaining the S of the bi-temporal PolSAR data, an automatic method of threshold selection
is introduced. The K & I algorithm for the automatic estimation of the optimal threshold is suitable for
SAR data [4,18,19,42], and has been widely used to distinguish the changed and un-changed classes in
the S. The K & I thresholding method is an extension of Bayes minimum-error probability theory, and
can be shown as follows:

J(T) =
L−1

∑
Sl=0

h(Sl)c(Sl , T)where c(Sl , T) =

{
−2 ln P(ωu|Sl , T), Sl ≤ T
−2 ln P(ωc|Sl , T), Sl > T

, (16)

where h(Sl) and L represent the histogram and the number of possible gray levels of the S, respectively;
and c(Sl , T) denotes the cost of classifying pixels by comparing the corresponding gray-level Sl and
threshold T. P(ωi|Sl , T) is the posterior probability, which represents the unchanged (or changed)
class under the condition of gray level Sl and a specific value of the threshold T.

The optimal threshold corresponding to minimizing the classification error is the following cost
function [32]:

T∗ = arg minJ(T)
T=0,1,...L−1

. (17)

In the proposed method, we choose a Gaussian model with mean mu(T) and standard variance
σu(T) to estimate the class-condition probability density function (PDF) of unchanged part, and use
another Gaussian model with mean mc(T) and standard variance σc(T) to estimate the class-condition
probability density function (PDF) of a changed part. Through this way, the criterion J(T) can be
expressed as follows:

J(T) = 1 + 2[pu(T) log σu(T) + pc(T) log σc(T)]− 2[pu(T) log pu(T) + pc(T) log pc(T)]. (18)
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Associated with the unchanged and changed classes, pu(T) and pc(T) denote the prior
probabilities. These parameters of the above formula are estimated by the gray level Sl and the
histogram h(Sl) in Equation (19):

Pu(T) =
T
∑

Sl=0
h(Sl)

mu(T) = 1
Pu(T)

T
∑

Sl=0
Slh(Sl)

σ2
u(T) =

1
Pu(T)

T
∑

Sl=0
[Sl −mu(T)]

2h(Sl)

Pc(T) = 1− Pu(T)

mc(T) = 1
Pc(T)

L−1
∑

Sl=T+1
Slh(Sl)

σ2
c (T) =

1
Pc(T)

L−1
∑

Sl=T+1
[Sl −mc(T)]

2h(Sl)

. (19)

2.5. The JCC-TSKI Classifier

After obtaining the similarity measure of the bi-temporal PolSAR images, the proposed method
needs a supervised classifier to sort the bi-temporal data. In order to increase the applicability and
simplification of the algorithm, a simple supervised classifier based on the Wishart distance is chosen
in our method. This supervised algorithm is a maximum likelihood classifier based on a complex
Wishart distribution, and is suitable for PolSAR data [37,41]. The distance measure between a sample
coherency matrix MT and a cluster mean of the m-th class Vm is shown in Equation (20), and we can
obtain the cluster mean by choosing the classification sample points from the bi-temporal PolSAR
images in the same geographical area at different times, respectively:

d(MT , Vm) = ln|Vm|+ Tr
(

V−1
m MT

)
. (20)

2.6. The Proposed JCC-TSKI Method

The entire procedure of the proposed method is as follows:

Step 1 The bi-temporal PolSAR images should be co-registered and filtered. Image registration is
performed to align the images used in the change detection. Speckle filtering is commonly
used to suppress speckle noise before the change detection and classification of PolSAR images.
The preprocessing is important for change detection. In this study, Refined Lee filtering based
on 7 × 7 windows was used to remove speckle noise [22].

Step 2 The similarity measure can be obtained through the test statistics (TS) using the coherence
matrix of the bi-temporal images. In this step, bi-temporal fully PolSAR data are used to
generate the S. Furthermore, K & I is used to select the optimum threshold for S.

Step 3 Variances of intensity σ1
ij, σ2

ij are used to determine the sequence of JCC-TSKI.

Step 4 If σ1
ij < σ2

ij, we choose X1 to be firstly classified; otherwise, we choose X2 to be firstly classified.

Step 5 Determine the category of position (i, j). If Sij < T, this means that the bi-temporal PolSAR
data in the same position is similar, and the class label in the corresponding pixel position
of another time concurs with the reference; otherwise, we classify the corresponding pixel
position of the other time on its own.

Step 6 Check whether all the pixels of the bi-temporal PolSAR images are classified or not. If not,
move to the next pixel, and return to step 3; otherwise, obtain the results of classification based
on bi-temporal images.

Step 7 Check whether class labels of bi-temporal images are equal or not. If not, record the labels,
and consider index = 1; otherwise, consider index = 0.
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Step 8 We can obtain the change detection map by the value of index and the type of land cover
change by the record of labels.

The detailed process flow of JCC-TSKI is shown in Figure 1.

Remote Sens. 2017, 9, 846  7 of 17 

 

Step 5 Determine the category of position ( , )i j . If ijS T< , this means that the bi-temporal PolSAR 
data in the same position is similar, and the class label in the corresponding pixel position of 
another time concurs with the reference; otherwise, we classify the corresponding pixel 
position of the other time on its own. 

Step 6 Check whether all the pixels of the bi-temporal PolSAR images are classified or not. If not, 
move to the next pixel, and return to step 3; otherwise, obtain the results of classification 
based on bi-temporal images. 

Step 7 Check whether class labels of bi-temporal images are equal or not. If not, record the labels, 
and consider index = 1; otherwise, consider index = 0. 

Step 8 We can obtain the change detection map by the value of index and the type of land cover 
change by the record of labels. 

The detailed process flow of JCC-TSKI is shown in Figure 1. 

 

Figure 1. The flow chart of Joint-Classification Classifier based on Test statistics and the Kittler and 
Illingworth (JCC-TSKI). 

 

Generate similarity measure image S and obtain the 
threshold T

Obtain the variance  

Obtain results of classification based on bi-temporal 
images (Cr1, Cr2)

1 2
ij ijσ σ<

t
ijσ

Classify

YES

1
ijX Classify

NO

2
ijX

ijS T<
ijS T<

Belong to the same 
category Classify 2

ijX
Belong to the same 

category Classify 1
ijX

YES YESNO NO

Obtain the change detection map

Original image 
X1 (time t1)

Original image 
X2 (time t2)

Filtered for X1 Filtered for X2 

Co-registered

Classify all the pixels of the images?
NO

YES

Cr1 = Cr2YES NO

index =0 index =1

Record categories of 
bi-temporal images 

Obtain the type of land cover change

Figure 1. The flow chart of Joint-Classification Classifier based on Test statistics and the Kittler and
Illingworth (JCC-TSKI).

2.7. Evaluation Criterion

Quantitative evaluation is important to determine the result of the change detection. When the
ground truth is available, a quantitative evaluation can be performed [42,44]. In order to verify the
performance of the proposed method, we calculated the false alarm (FA) rate, total errors (TE), overall
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accuracy (OA), and Kappa coefficient [45] of the experimental results. These indicators are calculated
as follows: 

FA = FP
Nu

N = Nu + Nc

TE = FP+FN
N , OA = TP+TN

N
Kappa = OA−Pe

1−Pe
Pe = (TP+FN)(TP+FP)+(FP+TN)(FN+TN)

N2

, (21)

where TP (true positives) means the number of changed points correctly detected; TN (true negatives)
means the number of unchanged points correctly detected; FP (false positives) means the number
of unchanged points incorrectly detected as changed (false alarm); and FN (false negatives) means
the number of changed points incorrectly detected as unchanged (missed detections). Nu and Nc

are the number of unchanged points and changed points of the ground-truth change map, respectively.

3. Results and Discussion

3.1. Study Area and Background

The city of Wuhan is in the east of Hubei province and lies in the eastern Jianghan Plain,
at the intersection of the middle reaches of the Yangtze (Figure 2). Its climate is humid subtropical, with
abundant rainfall and four distinctive seasons. In July 2016, a 50-year return period of rainfall occurred,
and the rainfall was significantly higher than the average annual precipitation. Wuhan was affected
by the continuous heavy rain, and some areas were seriously flooded and dramatically changed.
The use of optical sensors was limited by this severe weather. In order to detect the flooded regions,
bi-temporal PolSAR images can acquire not only the region of change, but can also detect the type of
land cover change (e.g., surface features changed to water), allowing a rapid emergency response.

3.2. RADARSAT-2 Images and Preprocessing

Two C-band quad-polarimetric RADARSAT-2 (single look complex) images of Wuhan were
acquired on 25 June 2015 and 6 July 2016. The nominal pixel spacings in the azimuth and range
directions were 5.12 × 4.73 m and 4.86 × 4.73 m, respectively. The swath width was 25 × 25 km,
and the beams of the images were FQ21 and FQ27, with the incidence angle ranging from 40.16 to
41.58◦ and 45.23 to 46.49◦, respectively. The repeat cycle was 24 days. The preprocessing consisted of
radiometric calibration, speckle filtering, and image co-registration. After the radiometric calibration,
the pixel values of the bi-temporal PolSAR images are directly related to the radar backscatter of
the scene. This condition is necessary for the comparison of PolSAR images acquired at different
dates. Image co-registration and speckle filtering are performed. Image co-registration is aimed at
reducing the errors caused by the mis-registration of the images. Two free open-source software
packages—the Next ESA SAR Toolbox (NEST) [46] and the PolSARpro SAR Data Processing and
Educational Tool [47]—were used in the preprocessing of the SAR datasets. The co-registration image
sizes are 4906 × 5114 pixels.

The Pauli-RGB images (|Shh − Svv| for red (R), |Shv| for green (G), and |Shh + Svv| for blue (B))
are shown in Figure 3a,b. The regions labeled by the four red boxes in the Figure 3a are used to give
a detailed assessment. All of these regions have a common characteristic, i.e., containing water bodies.
The ground reference is shown in Figure 3c, displaying corresponding optical images obtained by
Google Earth (version 7.1.8) and field surveys conducted by researchers.
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Figure 3. The Pauli-RGB images of Wuhan after preprocessing, for (a) 25 June 2015; and (b) 6 July 2016;
(c) the ground reference (white denotes the change and black denotes the non-change). In (a), region 1
is YanDong Lake, region 2 is LiangZi Lake, region 3 is YanXi Lake, and region 4 is Nan Lake.

3.3. Result of Change Detection in the Bi-Temporal PolSAR Images

3.3.1. Similarity Measures

The results of the S based on the test statistics were adjusted to the range [0, 1] by linear mapping,
as shown in Figure 4a. Using the automatic threshold method of K & I, the optimal threshold
value was 0.53. In this experiment, we focused on the water change. Therefore, we only classified
the bi-temporal PolSAR data into three categories: city (C), forest (F), and water (W). The chosen
training samples included 3755 points of city (red), 11,784 points of forest (green), and 9750 points of
water (blue), as shown in Figure 4b.
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Figure 4. (a) the result of S; (b) training samples.

3.3.2. Experimental Results

After obtaining the necessary parameters described above, we could obtain the result of change
detection based on the proposed method. In order to verify the efficiency of the proposed method,
comparative experiments were designed. We compared unsupervised change detection based on TSKI,
supervised change detection based on PCC using the Wishart classifier, and the proposed method.
The results for the bi-temporal PolSAR images of Wuhan are shown in Figure 5. The change detection
maps show change (white) and non-change (black) information. The computational time for TSKI,
PCC, and our method are 253 s, 242 s, and 301 s, respectively.
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In Figure 5a, the result of unsupervised change detection based on TSKI can accurately reflect
the changes, but it has a high false alarm rate. As another drawback, the details of the changes are not
maintained well. In Figure 5b, the result of PCC based on the Wishart classifier can reflect the type
of land cover change, but PCC depends on the result of classification of the bi-temporal PolSAR
images, and the result contains many incorrect detections and a high false alarm rate. The result of
the proposed method is shown in Figure 5c, where it can be seen that the proposed method not only
preserves some of the details, but it also corrects the incorrect detection of PCC. As a result of adding
the similarity measure in JCC-TSKI, the similar parts are retained, and the different parts are checked
again by the type category of the classification of the bi-temporal PolSAR images. The proposed
method is effective at preserving the detail and decreasing the false alarms. As we focus on the change
in the highlighted regions in Figure 3, these areas are chosen to give detailed assessments.

The areas of YanDong Lake (region 1 of the Figure 3a,) and LiangZi Lake (region 2 of the Figure 3a,
400 × 400 pixels) have similar surface features. Moreover, the main changes of these parts occurred
in the water area because of the rain. Results of these regions are shown in Figures 6 and 7. The three
methods were all able to detect the main changes. However, the results of TSKI and PCC contain many
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false alarms. Because of the large difference in the backscattering of these land cover types, it is easy to
classify these categories. Therefore, PCC based on the Wishart classifier shows a good performance
in maintaining the details, but it still shows some weaknesses, including incorrect detections and
false alarms. TSKI also has a problem of high false alarms. The proposed method shows a significant
improvement in decreasing the false alarms, and maintains the details of the change information of
the water bodies.
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The quantitative comparison of the three detection schemes shown in Tables 1 and 2 also indicates
that the proposed approach shows a better performance. The proposed approach achieves the best
results in four indicators (FA (%), TE (%), OA (%), KAPPA). Moreover, the proposed method not only
shows a significant improvement in decreasing the false alarms over the unsupervised method and
can detect the type of land cover change, it also obtains fewer incorrect detections and false alarms
than PCC. This confirms that the proposed method is effective and shows a significant improvement
over PCC and TSKI.

Table 1. Performance evaluation of the change detection over YanDong Lake.

Method FA (%) TE (%) OA (%) KAPPA

TSKI 5.64 5.92 94.08 0.6755
PCC 4.0 5.63 94.36 0.6460

JCC-TSKI 2.52 4.40 95.60 0.6997

FA, TE, OA, KAPPA denote the false alarm, total errors, overall accuracy and Kappa coefficient, respectively.

Table 2. Performance evaluation of the change detection over LiangZi Lake.

Method FA (%) TE (%) OA (%) KAPPA

TSKI 7.4 8.05 91.95 0.7038
PCC 7.4 8.99 91.05 0.6608

JCC-TSKI 4.68 6.80 93.20 0.7249

The areas of YanXi Lake (region 3 of the Figure 3a, 600 × 600 pixels) includes grassland, city, and
water bodies. The main changes not only occurred in the water area as a result of the rain, but also
occurred in the city area. Results of these regions are shown in Figure 8. The three methods were all
able to detect the main changes. However, the results of TSKI and PCC contain many false alarms.
Because of the large differences in the backscattering of these land cover types, it is easy to classify these
categories. Therefore, PCC based on the Wishart classifier shows a good performance in maintaining
the detail, but it still has some weaknesses, such as incorrect detections and false alarms. TSKI also
has the problem of a high false alarm rate. The proposed method shows a significant improvement
in decreasing the false alarms, and maintains the details of the change information of the water bodies
and city area. The quantitative comparison of the three detection schemes shown in Table 3 indicates
that the proposed approach shows a better performance. The proposed approach achieves the best
results in four indicators (FA (%), TE (%), OA (%), KAPPA). Above all, these experimental analyses
show that our proposed method is suitable for detecting the changes in both water and part of city areas.

Table 3. Performance evaluation of the change detection over YanXi Lake.

Method FA (%) TE (%) OA (%) KAPPA

TSKI 4.86 6.19 93.81 0.5862
PCC 5.56 7.57 92.43 0.4919

JCC-TSKI 2.68 5.06 94.94 0.5927

The area of Nan Lake (region 4 of the Figure 3a, 400 × 400 pixels) consists of water, bridge and
city. Because of the impacts of the surrounding buildings, Nan Lake appears different in Figure 9a,b.
However, the water body of Nan Lake has been keeping the same for the two acquisitions. Results
of these regions are shown in Figure 9. Because of different results of classifications in this part of
bi-temporal PolSAR images, the PCC method considers this region as changed. Because of the inclusion
of similarity measure in our method, the results of TSKI and the proposed method correct this incorrect
detection, marking this area as unchanged. However, due to the same classifier used in PCC and
JCC, some changed parts in the ground truth are put into the same category in the same classification
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result. This causes some missed detection. This result demonstrates that the proposed method obtains
fewer incorrect detections than PCC, and has a lower false alarm rate than PCC and TSKI. As it can be
clearly seen that the result of PCC in Figure 9e contains many incorrect detections, we did not need to
undertake a quantitative comparison between PCC and our proposed method in this region.
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As a result of adding the similarity measure in the proposed method, it decreases the rate of
incorrect detection and the false alarm rate, and shows a dramatic improvement over PCC. Compared
to TSKI, the similar parts are retained, and the different parts are checked again by the type category of
the bi-temporal PolSAR data in JCC-TSKI. This can preserve the details and decrease the false alarms.
Moreover, our proposed method can detect the type of land cover change.

Compared with the unsupervised method of change detection, the supervised method of change
detection can detect the type of land cover change, as shown in Figure 10. Because PCC is affected by
the cumulative error of the single remote image classification, the PCC result contains many incorrect
detections and false alarms. In Figure 10a, the change types of forest to city (F to C) and city to
forest (C to F) are the main changes in PCC. As a result of the low backscatter of water, it is easy to
classify the water by means of the Wishart classifier. The PCC method shows a good performance
in detecting the change types of forest to lake and city to lake. The results of the proposed method
show the advantage of detecting the changes of water regions and decreasing the incorrect detections
and false alarms. In Figure 10b, the change types of forest to city and city to forest are decreased, and
the results show a dramatic improvement. Due to large study areas and inclement weather conditions,
the map of land cover change over a couple of days is not available. Therefore, the quantification for
the type of land cover change is difficult to achieve.
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4. Conclusions

In this paper, we have presented a novel bi-temporal PolSAR image change detection approach.
A similarity measure and JCC are used to deal with the challenges faced by both the unsupervised
and supervised change detection approaches. Bi-temporal PolSAR images are used in the proposed
method. Unlike other change detection approaches using bi-temporal single-channel SAR images,
the proposed method applies the bi-temporal fully PolSAR images to detect the changes. As a result
of using the information of the PolSAR data, it is easier to detect the slight differences. We use TSKI
to obtain the similarity measure. This can make use of all the PolSAR information and automatically
choose the threshold of the test statistic and Kittler and Illingworth algorithm. The similarity measure
used in the proposed method can determine the similarity of the same region at different times, and
can distinguish both similar and different parts. We consider the similar parts as the same category,
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and the different parts are classified, respectively. Because the backscatter of water is low, it is easy to
distinguish using the Wishart classifier. The results of the proposed method are more effective and
accurate. This paper describes a novel change detection process. Thus, we believe that the proposed
method will be a practical solution for unsupervised change detection. The experimental results
include the change type information and contain fewer false alarms than TSKI. The proposed method
also solves some of the problems of supervised change detection, such as the high level of incorrect
detections and false alarms. In the experiments, the proposed method showed a dramatic improvement
over PCC.

Acknowledgments: The authors would like to thank the National Natural Science Foundation of China (Grant
No. 91438203, No. 61371199, No. 41501382, and No. 41601355); the Public Welfare Project of Surveying
and Mapping Interest (201412002); the Hubei Provincial Natural Science Foundation (No. 2015CFB328,
No. 2016CFB246); the National Basic Technology Program of Surveying and Mapping (No. 2016KJ0103); and the
Technology of Target Recognition Based on GF-3 Program (No. 03-Y20A10-9001-15/16). The figures and analysis
in our study were generated and performed by VS2010 and Matlab2015.

Author Contributions: Jinqi Zhao defined the research problem, proposed the method, undertook most of the
programming in Matlab and VS2010, and wrote the paper; Jie Yang gave some key advice; Zhong Lu gave useful
advice and contributed to the paper writing; Pingxiang Li provided the RADARSAT-2 data and some useful
advice; Wensong Liu collected the data and processed the datasets in ENVI (version 5.1), PolSARpro (version 4.2.0),
and NEST software (version 5.1); Le Yang obtained the ground-truth map.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Singh, A. Review article digital change detection techniques using remotely-sensed data. Int. J. Remote Sens.
1989, 10, 989–1003. [CrossRef]

2. Bruzzone, L.; Bovolo, F. A novel framework for the design of change-detection systems for
very-high-resolution remote sensing images. IEEE Proc. 2013, 101, 609–630. [CrossRef]

3. Anaya, J.A.; Colditz, R.R.; Valencia, G.M. Land Cover Mapping of a Tropical Region by Integrating Multi-Year
Data into an Annual Time Series. Remote Sens. 2015, 7, 16274–16292. [CrossRef]

4. Zhao, J.Q.; Yang, J.; Li, P.X.; Liu, M.Y.; Shi, Y.M. An Unsupervised Change Detection Based on Test Statistic
and KI from Multi-temporal and Full Polarimetric SAR Images. Int. Arch. Photogramm. Remote Sens. Spat.
Inf. Sci. 2016, XLI-B7, 611–615. [CrossRef]

5. Conradsen, K.; Nielsen, A.A.; Schou, J.; Skriver, H. A test statistic in the complex Wishart distribution and its
application to change detection in polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 4–19.
[CrossRef]

6. Lu, Z.; Kwoun, O. Radarsat-1 and ERS InSAR analysis over southeastern coastal Louisiana: Implications for
mapping water-level changes beneath swamp forests. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2167–2184.
[CrossRef]

7. Zhao, L.L.; Yang, J.; Li, P.X.; Zhang, L.P. Seasonal inundation monitoring and vegetation pattern mapping of
the Erguna floodplain by means of a RADARSAT-2 fully polarimetric time series. Remote Sens. Environ. 2014,
152, 426–440. [CrossRef]

8. Huang, C.Q. Forest Change Analysis Using Time-Series Landsat Observations. In Advances in Environmental
Remote Sensing: Sensors, Algorithms, and Applications; CRC Press: Boca Raton, FL, USA, 2011; pp. 339–365.

9. Kwoun, O.-I.; Lu, Z. Multi-temporal RADARSAT-1 and ERS backscattering signatures of coastal wetlands
in southeastern Louisiana. Photogramm. Eng. Remote Sens. 2009, 75, 607–617. [CrossRef]

10. Celik, T. Unsupervised change detection in satellite images using principal component analysis and k-means
clustering. IEEE Geosci. Remote Sens. Lett. 2009, 6, 772–776. [CrossRef]

11. Song, D.-X.; Huang, C.Q.; Sexton, J.O.; Channan, S.; Feng, M.; Townshend, J.R. Use of Landsat and Corona
data for mapping forest cover change from the mid-1960s to 2000s: Case studies from the Eastern United
States and Central Brazil. ISPRS J. Photogramm. Remote Sens. 2015, 103, 81–92. [CrossRef]

12. Sun, W.D.; Shi, L.; Yang, J.; Li, P.X. Building collapse assessment in urban areas using texture information
from postevent SAR data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3792–3808. [CrossRef]

http://dx.doi.org/10.1080/01431168908903939
http://dx.doi.org/10.1109/JPROC.2012.2197169
http://dx.doi.org/10.3390/rs71215833
http://dx.doi.org/10.5194/isprsarchives-XLI-B7-611-2016
http://dx.doi.org/10.1109/TGRS.2002.808066
http://dx.doi.org/10.1109/TGRS.2008.917271
http://dx.doi.org/10.1016/j.rse.2014.06.026
http://dx.doi.org/10.14358/PERS.75.5.607
http://dx.doi.org/10.1109/LGRS.2009.2025059
http://dx.doi.org/10.1016/j.isprsjprs.2014.09.005
http://dx.doi.org/10.1109/JSTARS.2016.2580610


Remote Sens. 2017, 9, 846 16 of 17

13. Zhao, L.L.; Yang, J.; Li, P.X.; Zhang, L.P.; Shi, L.; Lang, F.K. Damage assessment in urban areas using
post-earthquake airborne PolSAR imagery. Int. J. Remote Sens. 2013, 34, 8952–8966. [CrossRef]

14. Zhao, L.L.; Yang, J.; Li, P.X.; Zhang, L.P. Characteristics analysis and classification of crop harvest patterns by
exploiting high-frequency multipolarization SAR data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7,
3773–3783. [CrossRef]

15. Lu, Z.; Dzurisin, D. InSAR imaging of Aleutian volcanoes. In InSAR Imaging of Aleutian Volcanoes; Springer:
Berlin, Germany, 2014; pp. 87–345.

16. Novellino, A.; Cigna, F.; Sowter, A.; Ramondini, M.; Calcaterra, D. Exploitation of the Intermittent SBAS
(ISBAS) algorithm with COSMO-SkyMed data for landslide inventory mapping in north-western Sicily, Italy.
Geomorphology 2017, 280, 153–166. [CrossRef]

17. Rignot, E.J.; van Zyl, J.J. Change detection techniques for ERS-1 SAR data. IEEE Trans. Geosci. Remote Sens.
1993, 31, 896–906. [CrossRef]

18. Bazi, Y.; Bruzzone, L.; Melgani, F. An unsupervised approach based on the generalized Gaussian model to
automatic change detection in multitemporal SAR images. IEEE Trans. Geosci. Remote Sens. 2005, 43, 874–887.
[CrossRef]

19. Moser, G.; Serpico, S.B. Generalized minimum-error thresholding for unsupervised change detection from
SAR amplitude imagery. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2972–2982. [CrossRef]

20. Sumaiya, M.; Kumari, R.S.S. Logarithmic Mean-Based Thresholding for SAR Image Change Detection.
IEEE Geosci. Remote Sens. Lett. 2016, 13, 1726–1728. [CrossRef]

21. Liu, M.; Zhang, H.; Wang, C.; Wu, F. Change detection of multilook polarimetric SAR images using
heterogeneous clutter models. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7483–7494.

22. Lee, J.-S.; Jurkevich, L.; Dewaele, P.; Wambacq, P.; Oosterlinck, A. Speckle filtering of synthetic aperture
radar images: A review. Remote Sens. Rev. 1994, 8, 313–340. [CrossRef]

23. Cozzolino, D.; Parrilli, S.; Scarpa, G.; Poggi, G.; Verdoliva, L. Fast adaptive nonlocal SAR despeckling.
IEEE Geosci. Remote Sens. Lett. 2014, 11, 524–528. [CrossRef]

24. Carincotte, C.; Derrode, S.; Bourennane, S. Unsupervised change detection on SAR images using fuzzy
hidden Markov chains. IEEE Trans. Geosci. Remote Sens. 2006, 44, 432–441. [CrossRef]

25. Bouyahia, Z.; Benyoussef, L.; Derrode, S. Change detection in synthetic aperture radar images with a sliding
hidden Markov chain model. J. Appl. Remote Sens. 2008, 2, 023526.

26. Inglada, J.; Mercier, G. A new statistical similarity measure for change detection in multitemporal SAR
images and its extension to multiscale change analysis. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1432–1445.
[CrossRef]

27. Akbari, V.; Anfinsen, S.N.; Doulgeris, A.P.; Eltoft, T.; Moser, G.; Serpico, S.B. Polarimetric SAR Change
Detection With the Complex Hotelling—Lawley Trace Statistic. IEEE Trans. Geosci. Remote Sens. 2016, 54,
3953–3966. [CrossRef]

28. Zhang, Y.; Wu, H.A.; Wang, H.; Jin, S. Distance Measure Based Change Detectors for Polarimetric SAR
Imagery. Photogramm. Eng. Remote Sens. 2016, 82, 719–727. [CrossRef]

29. Bunch, J.R.; Fierro, R.D. A constant-false-alarm-rate algorithm. Linear Algebra Its Appl. 1992, 172, 231–241.
[CrossRef]

30. Otsu, N. A threshold selection method from gray-level histograms. Automatica 1975, 11, 23–27. [CrossRef]
31. Kapur, J.N.; Sahoo, P.K.; Wong, A.K. A new method for gray-level picture thresholding using the entropy of

the histogram. Comput. Vis. Graph. Image Proc. 1985, 29, 273–285. [CrossRef]
32. Kittler, J.; Illingworth, J. Minimum error thresholding. Pattern Recognit. 1986, 19, 41–47. [CrossRef]
33. Qi, Z.; Yeh, A.G.O.; Li, X.; Zhang, X.H. A three-component method for timely detection of land cover changes

using polarimetric SAR images. ISPRS J. Photogramm. Remote Sens. 2015, 107, 3–21. [CrossRef]
34. Zhou, W.; Troy, A.; Grove, M. Object-based land cover classification and change analysis in the Baltimore

metropolitan area using multitemporal high resolution remote sensing data. Sensors 2008, 8, 1613–1636.
[CrossRef] [PubMed]

35. Han, M.; Zhou, Y. Joint-classification change detection based on improved fuzzy ARTMAP. In Proceedings
of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy,
26–31 July 2015.

http://dx.doi.org/10.1080/01431161.2013.860566
http://dx.doi.org/10.1109/JSTARS.2014.2308273
http://dx.doi.org/10.1016/j.geomorph.2016.12.009
http://dx.doi.org/10.1109/36.239913
http://dx.doi.org/10.1109/TGRS.2004.842441
http://dx.doi.org/10.1109/TGRS.2006.876288
http://dx.doi.org/10.1109/LGRS.2016.2606119
http://dx.doi.org/10.1080/02757259409532206
http://dx.doi.org/10.1109/LGRS.2013.2271650
http://dx.doi.org/10.1109/TGRS.2005.861007
http://dx.doi.org/10.1109/TGRS.2007.893568
http://dx.doi.org/10.1109/TGRS.2016.2532320
http://dx.doi.org/10.14358/PERS.82.9.719
http://dx.doi.org/10.1016/0024-3795(92)90028-9
http://dx.doi.org/10.1109/TSMC.1979.4310076
http://dx.doi.org/10.1016/0734-189X(85)90125-2
http://dx.doi.org/10.1016/0031-3203(86)90030-0
http://dx.doi.org/10.1016/j.isprsjprs.2015.02.004
http://dx.doi.org/10.3390/s8031613
http://www.ncbi.nlm.nih.gov/pubmed/27879784


Remote Sens. 2017, 9, 846 17 of 17

36. Gomez, L.; Alvarez, L.; Mazorra, L.; Frery, A.C. Classification of complex Wishart matrices with a
diffusion—Reaction system guided by stochastic distances. Philos. Trans. R. Soc. A 2015, 373, 20150118.
[CrossRef] [PubMed]

37. Lee, J.-S.; Grunes, M.R.; Kwok, R. Classification of multi-look polarimetric SAR imagery based on complex
Wishart distribution. Int. J. Remote Sens. 1994, 15, 2299–2311. [CrossRef]

38. Huang, C.; Davis, L.; Townshend, J. An assessment of support vector machines for land cover classification.
Int. J. Remote Sens. 2002, 23, 725–749. [CrossRef]

39. Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm.
Remote Sens. 2011, 66, 247–259. [CrossRef]

40. Li, J.-J.; Jiao, L.C.; Zhang, X.R.; Yang, D.D. Change detection for SAR images based on joint-classification of
bi-temporal images. J. Infrared Millim. Waves 2009, 6, 015. [CrossRef]

41. Lee, J.-S.; Grunes, M.R.; Ainsworth, T.L.; Du, L.-J.; Schuler, D.L.; Cloude, S.R. Unsupervised classification
using polarimetric decomposition and the complex Wishart classifier. IEEE Trans. Geosci. Remote Sens. 1999,
37, 2249–2258.

42. Yang, W.; Yang, X.L.; Yan, T.H.; Song, H.; Xia, G.S. Region-Based Change Detection for Polarimetric SAR
Images Using Wishart Mixture Models. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6746–6756. [CrossRef]

43. Lee, J.-S.; Pottier, E. Polarimetric Radar Imaging: From Basics to Applications; CRC Press: Boca Raton, FL,
USA, 2009.

44. Pham, M.-T.; Mercier, G.; Michel, J. Change detection between SAR images using a pointwise approach and
graph theory. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2020–2032. [CrossRef]

45. Stehman, S.V. Selecting and interpreting measures of thematic classification accuracy. Remote Sens. Environ.
1997, 62, 77–89. [CrossRef]

46. ESA. The PolSARpro SAR Data Processing and Educational Tool. Available online: https://earth.esa.int/
web/polsarpro/home (accessed on 29 May 2017).

47. ESA. The Next ESA SAR Toolbox. Available online: http://nest.array.ca/web/nest (accessed on
29 May 2017).

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1098/rsta.2015.0118
http://www.ncbi.nlm.nih.gov/pubmed/26527815
http://dx.doi.org/10.1080/01431169408954244
http://dx.doi.org/10.1080/01431160110040323
http://dx.doi.org/10.1016/j.isprsjprs.2010.11.001
http://dx.doi.org/10.3724/SP.J.1010.2009.00466
http://dx.doi.org/10.1109/TGRS.2016.2590145
http://dx.doi.org/10.1109/TGRS.2015.2493730
http://dx.doi.org/10.1016/S0034-4257(97)00083-7
https://earth.esa.int/web/polsarpro/home
https://earth.esa.int/web/polsarpro/home
http://nest.array.ca/web/nest
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	The Model of PolSAR Data 
	The Sequence of Classification in the Proposed Method 
	Test Statistics for the Equality of Two Complex Wishart Matrices 
	Kittler and Illingworth Algorithm 
	The JCC-TSKI Classifier 
	The Proposed JCC-TSKI Method 
	Evaluation Criterion 

	Results and Discussion 
	Study Area and Background 
	RADARSAT-2 Images and Preprocessing 
	Result of Change Detection in the Bi-Temporal PolSAR Images 
	Similarity Measures 
	Experimental Results 


	Conclusions 

