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Abstract: In this study, full-waveform LiDAR data were exploited to detect weak returns
backscattered by the bare terrain underneath vegetation canopies and thus improve the generation of
a digital terrain model (DTM). Building on the methods of progressive generation of triangulation
irregular network (TIN) model reported in the literature, we proposed an integrated approach where
echo detection, terrain identification, and TIN generation were carried out iteratively. The proposed
method was tested on a dataset collected by a Riegl LMS Q-560 scanner over a study area near Sault
Ste. Marie, Ontario, Canada (46◦33′56′ ′N, 83◦25′18′ ′W). The results demonstrated that more terrain
points under shrubs could be identified, and the generated DTMs exhibited more details in the terrain
than those obtained using the progressive TIN method. In addition, 1275 points across this study area
were surveyed on the ground and used to validate the proposed approach. The estimated elevations
were shown to have a strong linear relationship with the measured ones, with R2 values above 0.98,
and the RMSEs (Root Mean Squared Errors) between them were less than 0.15 m even for areas with
hilly terrains underneath vegetation canopies.
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1. Introduction

An accurate digital terrain model (DTM) is critical to many applications ranging from
transportation planning and landform monitoring to forest and water resource management [1,2].
Although technologies, such as aerial photogrammetry, have been available in the past to generate
DTMs, the use of airborne discrete LiDAR (Light Detection and Ranging) data revolutionizes the
generation of the digital representation of a terrain surface in terms of accuracy and resolution [2,3].
A discrete LiDAR instrument can record more than one echo backscattered from a surface object and
measure its 3D coordinates together with on-board position and navigation sensors [4]. Research
indicates that the vertical accuracy of the DTM generated from LiDAR data can reach up to 15 cm
RMSE (root mean square error) for open and hard surface [5]. The accuracy tends to decrease on
vegetated landscapes, such as those under shrubs and trees, because in vegetated areas, either the
return generated by such low vegetation canopies as shrubs are often mistaken as those from bare
terrains or no returns are generated from terrain at all [6–8].

For the past decade, research on improving of DTM generation from LiDAR data can be
divided into two clusters. One group is focused on developing advanced filtering and interpolation
algorithms by fully exploiting local contextual information [9–13]. Specifically, an adaptive approach
to employ different interpolation methods based on the complexity of local terrain was designed in
Maguya et al. (2013) [9]. Similarly, an adaptive threshold was employed in filtering non-ground points
in Su et al. (2015) [10]. A novel energy function balanced by adaptive ground saliency was used to adapt
to steep slopes, discontinuous terrains, and complex objects in the filtering process to identify ground
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points in Hu et al. (2015) [11]. A strategy based on segmentation using smoothness constraint was
introduced by Zhang and Lin (2013) [12] to iteratively expand ground seed surfaces into surrounding
smooth terrains as much as possible. A novel cloth simulation filtering was proposed in Zhang et al.
(2016) [13] that employed the nature of cloth and modified the physical process of cloth simulation
to adapt to terrain point cloud. With the abovementioned methods, more and reliable ground points
were generated compared with previously existing approaches [9–13]. However, the gap in the input
LiDAR data resulting from such objects as dense vegetation canopies remains a significant challenge.
The increasing availability of the small footprint full-waveform airborne LiDAR system provides good
opportunity for the improvement of the DTM generation, which leads to the second group of studies.

This new LiDAR instrument offers certain advantages for the DTM generation in dense vegetation
over that recording discrete returns. Specifically, full-waveform systems store the whole signature of a
returned radiation [14], so that advanced methods can be applied to detect weak echoes generated
from terrain under vegetation canopies [15]. In addition, waveform parameters such as the pulse
width and the backscatter cross-section can be used to improve the separation between terrain and
vegetation canopies [16]. However, the classification of terrain points in a dense natural forest is
still very difficult, even with the additional waveform parameters [16]. In 2009, Lin and Mills [17]
proposed a novel routine to integrate the pulse width information to the progressive densification
filter developed by Axelsson [18]. Their approach was demonstrated to be more effective in terms
of the removal of low vegetation points and a more accurate DTM generation, compared with the
traditional methods. Nonetheless, in their method [17], the pulse information was derived using a
Gaussian decomposition method [19,20] before the integrated filtering process. To the best of the
authors’ knowledge, all existing algorithms for the DTM generation from full-waveform data start
their processing chains by decomposing signals to discrete returns (e.g., [21–23]). A problem with these
methods is that weak echoes from the terrain may not be detected using a decomposition method,
but they are very important to increase the DTM accuracy in densely vegetated terrain. To illustrate
this issue, a recorded full-waveform of the return by a tree and the terrain underneath it is shown in
Figure 1, where the echo generated by the terrain is marked. The function-fitting utility in Matlab
was used to fit the full-waveform with a sum of Gaussian functions. Different numbers of Gaussian
functions were tried. The best results in term of the residual error and visual inspection were achieved
by fitting seven or eight Gaussian functions to the observations (Figure 1).
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Figure 1. An example of a returned full-waveform of a laser pulse passing through a tree (blue points), 
the modelled ones by fitting the summation of eight and seven Gaussian functions to whole waveform 
(orange and grey lines, respectively). The echo generated by the terrain is pointed by the red arrow. 

As expected, the “weak” echo generated by the terrain underneath the tree could not be detected. 
One may argue that the peak of the weak terrain echo may be detected based on the first and second 
derivative of the waveform. However, such an approach may lead to many false positives. Rigorous 
constraints are needed to filter out unwanted peaks. For example, in Xu et al., 2016 [24], initial echo 
components were first identified based on peak and inflection points in a full-waveform signal and 
then iteratively sifted based on a pre-determined energy term. This method was especially effective 
with overlapping echo components. In Ma et al., 2017 [25], an advanced optimization method, the 
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the modelled ones by fitting the summation of eight and seven Gaussian functions to whole waveform
(orange and grey lines, respectively). The echo generated by the terrain is pointed by the red arrow.

As expected, the “weak” echo generated by the terrain underneath the tree could not be detected.
One may argue that the peak of the weak terrain echo may be detected based on the first and second
derivative of the waveform. However, such an approach may lead to many false positives. Rigorous
constraints are needed to filter out unwanted peaks. For example, in Xu et al., 2016 [24], initial echo
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components were first identified based on peak and inflection points in a full-waveform signal and
then iteratively sifted based on a pre-determined energy term. This method was especially effective
with overlapping echo components. In Ma et al., 2017 [25], an advanced optimization method, the
grouping Levenberg-Marquardt (LM) algorithm, was used to fit the generalized Gaussian mixture
function to a waveform. The grouping LM optimization method was demonstrated to be less sensitive
to the initial parameters compared with the traditional one. Instead of using Gaussian functions,
Salas et al. (2016, 2017) [26,27] introduced the new Moment Distance (MD) framework to characterize
the canopy height based on the geometry and return power of the LiDAR waveform without having
to go through curve modeling processes. Similarly, several studies in bathymetry used strategies in
waveform decomposition considering there were usually two echoes with one from water surface and
the other from the bottom [28,29].

In this study, we proposed an alternative method employing gained knowledge on the possible
position of terrain to detect weak returns backscattered by the bare terrain and evaluate the benefit of their
inclusion in the DTM generation. The developed method was validated using ground-measured elevations
in a study area near Sault Ste. Marie, Ontario, Canada and demonstrated to generate accurate DTM.

2. Materials and Methods

2.1. Study Area and Data Used

The study area is located in a Great Lakes-St. Lawrence forest region near Sault Ste. Marie,
Ontario, Canada (46◦33′56′ ′N, 83◦25′18′ ′W), as shown in Figure 2. The terrain within the study area
varies from 220 m to 440 m above the mean sea level and has a mild slope. The images of DTM and
slope at a spatial resolution of 30 m by 30 m are shown in Figure 3. Four test sites, identified as Open
Area, Maple, Mixed Woods, and Jack Pine, were selected and surveyed on the ground to validate the
developed algorithm. The Open Area of the site features relatively flat terrain and sparse coverage
with shrubs and spruce. Even though the terrain in the whole area is relatively flat, as shown in
Figure 3, there are small rolling hills in the sites of Maple and Jack Pine and steep hills in the site of
Mixed Woods. In the three forest sites (Maple, Jack Pine, and Mixed Woods), tree canopies are dense
and closed, and maple, jack pine, and mixed coniferous and deciduous trees dominate, respectively.
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Figure 2. The location of the study area (left panel) and the plots for validation (right panel).

The full-waveform LiDAR data used in this study were acquired in August 2009 over each
site with a Riegl LMS Q-560 scanner mounted on an aircraft with an Applanix’ POS AV 310 system.
The data were collected at the flight height of 150–300 m above the terrain by GeoDigital International
(http://www.geodigital.com/) on two flight lines. The nominal footprint was approximately 10–20 cm.
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In addition to full-waveform data, the scanner also provided discrete data with a point density of
20 points per square meters (4 pulses per square meter). The ortho-views of the discrete LiDAR data of
the four sites are shown in Figure 4, illustrating the canopy coverages in the study area.Remote Sens. 2017, 9, 871  4 of 17 
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In order to validate the derived DTM, a ground surveying mission was introduced. Each study
site was surveyed using relative static GPS positioning techniques and total station equipment within
the designed geodetic network. Due to the labor intensity of ground survey operation, a subset of
each site was selected, which was representative to the site and easy to access. Within each subset, one
point was normally surveyed within 1 squared meter if logistically possible. The numbers of points
surveyed were 301 (Open Area), 398 (Maple), 249 (Mixed Woods), and 327 (Jack Pine) for the four sites,
respectively. In addition, a number of points on roads were also collected to help assess the horizontal
accuracy of the LiDAR data. As an example, the layout of the collected points for the site of Maple
is shown in Figure 5. The surveyed topographic points had accuracies of 4.33 cm horizontally and
3.57 cm vertically in heavily wooded areas and 3.67 cm horizontally and 2.22 cm vertically in open
areas. The detailed procedures followed in the field and the results were provided in [30].
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Figure 5. The topographic points collected in the field in the Maple site and on a road that were used
as references to assess the horizontal accuracy of LiDAR points and to validate the generated DTM
using the proposed method, overlain on the digital surface model generated from the LiDAR data.

2.2. Methods

2.2.1. Overview

As illustrated in Figure 1 and discussed in Section 1, with a standard Gaussian decomposition
method, weak returns generated by the terrain underneath trees are normally hard to detect. However,
if one knows where the terrain would roughly be and thus where to look for a weak echo, the Gaussian
decomposition could be constrained to a certain interval to detect the weak terrain echo. As a result, an
integrated approach was proposed in this study to progressively carry out echo detection, identification
of terrain points, and generation of triangular irregular network (TIN). As shown in the algorithmic
diagram (Figure 6), with this method, each full-waveform was first decomposed into several discrete
echoes using the Gaussian decomposition method [31,32]. A TIN model was then built from the terrain
points and used to guide the detection of the weak echoes backscattered by the terrain but undetected
by the Gaussian decomposition method. To do this, for any given TIN facet, the full-waveforms of
the returns associated with the pulses passing through this TIN facet were examined near the surface
for any terrain echoes. This process was identified as “seeded Gaussian decomposition” in Figure 6.
The latest detected terrain points were used for the further iteration. These processes continued until
no further terrain points were detected. In the following, the steps in the proposed method will be
described in details.
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2.2.2. Gaussian Decomposition

The Gaussian decomposition method [31,32] is commonly used to decompose the recorded
full-waveform into several discrete echoes by fitting the Gaussian models, shown in Equation (1),
to the recorded signal.

fr(t) =
N

∑
i=1

aie
− (t−ti)

2

σ2
i (1)

where N is the number of the used Gaussian functions and was determined a prior to the
decomposition, and ai, ti, and σi are the magnitude, central position, standard deviation (echo width)
of the Gaussian function (echo) i, respectively, that would be solved by minimizing the cost function
(Equation (2)) using the Levenberg-Marquardt optimization method [15,33].

ε =
M

∑
j=1

(
f j − Xj

)2 (2)

where M is the number of samples in the recorded echo, and f j and Xj are the magnitudes calculated by
Equation (1) and measured at each sample point j, respectively. For each waveform, only the samples
whose amplitudes were greater than a threshold T were used in the Gaussian decomposition. In this
study, the method used in [34,35] was adopted, and the threshold T was set as three times the standard
deviation of the noise, whose level in the data was estimated based on the recorded 15,000 samples of
the emitted waveforms. For the LiDAR data used in this study, the standard deviation of the noise was
estimated to be 3.5, and thus T was set as 10.5. It is worth mentioning that T was set to a higher value
in this study to minimize the effect of the noise. A higher T value might result in some weak echoes
being overlooked, which was not an issue, since the weak echoes generated by terrain under vegetation
canopies were detected in the subsequent steps. The number of Gaussian functions to be used to fit a
given waveform was determined by the number of local maxima detected as zero-crossings toward the
negative direction in the first-derivative of this waveform. The location and magnitude of the counted
local maxima were used for the initial values of the Gaussian variables as well (Equation (1)). After
Gaussian decomposition, the last or the only return of each waveform were identified and further
examined to suppress any false returns caused by the so-called ringing effect [36,37], which is caused
by the detection electronics of a LiDAR instrument when a strong backscatter signal is received. The
delay between the true echo and its ringing copy lies typically within the range of 10 to 14 ns. In this
study, based on experiments, a last return was considered to be an artifact caused by the ringing
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effect and removed if it trailed a strong return with a time delay between 10 to 14 ns and was 7 times
weaker in the magnitude than the strong echo. The position, magnitude, and width of the remaining
last returns or the only returns were recorded and used in the subsequent processes. A processing
procedure was developed and implemented to geo-reference the locations of the detected LiDAR
returns as well as each full-waveform signal using on board INS (Integrated Navigation System) data.
It involved a series of coordinate transformation. Please refer to [30] for details.

2.2.3. TIN Generation

The progressive TIN method [18] was used in this study to construct the TIN representation
of the DTM. A variation of the progressive TIN algorithm is also deployed as a module in the
TerraSolid’s software: TerraScan [38]. The progressive TIN algorithm implemented in this study is a
realization of TerraSolid’s ground extraction tool and was developed based on [18] and the information
extracted from TerraScan’s User Guide. Starting from the lowest points in the neighborhoods with
a pre-determined size, an initial TIN model was then constructed. During each iteration, all the
points were evaluated against the TIN using the following threshold parameters: iteration angle,
iteration distance, and terrain angle, all of which were user-defined. The iteration angle threshold
was the maximum accepted value for an angle that was computed between the candidate terrain
point, the closest vertex of the TIN, and candidate point’s projection onto the surface of the TIN
facet (angle is labelled θ in Figure 7). The iteration distance threshold was the maximum allowable
distance (in magnitude) of the normal vector computed between the TIN facet to the candidate point
(labelled D in Figure 7). The third and final threshold parameter used was the terrain angle, which
was the threshold for the slopes of the three new TIN facets that form as a result of the addition of
the candidate point. If a candidate point satisfied all three thresholds, it was accepted by the TIN
model. Once all the points were evaluated, the new vertices were added to the TIN model. The
algorithm ran until there were no new points to be added to the model or until fewer points than
a preset threshold were introduced into the model, producing a TIN model ready to be used in the
seeded Gaussian decomposition. For the study area, the maximum iteration angle and distance were
set to 6 degrees and 1.4 m, respectively, and the maximum resulting terrain angle was chosen to be
80 degrees. These values were determined experimentally. The algorithm was implemented using
CGAL (Computational Geometry Algorithm Library, http://www.cgal.org/). Triangulation was done
via Delaunay triangulation in CGAL. The implemented progressive TIN generation was also applied
to the discrete LiDAR data provided by the laser scanner (together with the full-waveform signals)
and the generated DTMs were compared with those obtained by the proposed method (Figure 6).
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Figure 7. Progressive triangular irregular network (TIN) algorithm parameters: θ, the iteration angle
and D, the iteration distance, P is the point to be tested, and A, B, and C are the TIN facet vertices.

2.2.4. Seeded Gaussian Decomposition

Every facet of the TIN model, obtained from the progressive TIN algorithm, was treated as a
plane. Its equation was determined by its three vertices. To determine which waveforms passed a
particular facet, each waveform was represented as a line defined by the point of origin (X0, Y0, Z0)
where the laser scanner was located and the unit direction vector (∆X, ∆Y, ∆Z) to which the emitted
pulse pointed. For a given facet, if a waveform was found to intersect with this facet by solving the
line and plane equations, the location on the waveform where the laser pulse intersected with the facet
was used as the seed to assist the Gaussian decomposition. If no waveform passed through a given

http://www.cgal.org/


Remote Sens. 2017, 9, 871 8 of 17

facet, the process moved on to next facet. As an example, one of the laser pulses passing through the
red facet in the TIN model along with its full-waveform return is shown in Figure 8.Remote Sens. 2017, 9, 871  8 of 17 
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Figure 8. Left panel: A recorded waveform passing through a facet of the terrain TIN model. Right
Panel: The black circles are the peaks of the returns detected by the typical Gaussian decomposition
method. The red line shows the location of the seed (point of intersection of the waveform and the
TIN facet) used for the seeded Gaussian decomposition, and the green curve is the result of fitting one
Gaussian function to the region near the seed.

For the waveform in Figure 8, three returns were detected (blue dashed line with circle marking
the peak) using the typical Gaussian decomposition method described above. These returns were
backscattered from a tree. The red dashed line shows the location of the intersection of the facet and the
waveform. The intersection location was used as a seed to initiate a fitting of a Gaussian function near
the seed, which generated additional return (green curve). The seeded Gaussian decomposition was
similar to the typical Gaussian decomposition method described previously with the seeded region
(approximately one meter in either direction from the estimated terrain level) evaluated from right to
left in order to locate the cluster of points that best resembled a return pulse (green line in Figure 8).
The rightmost maxima point in the seeded region was then identified as a first point of a segment
to be fitted. The segment was grown recursively starting from the maxima point and expanded in
both directions to include all the samples that were less in the amplitude than the samples added
in a previous iteration. If the total length on the segment satisfied the minimum point requirement
(7 samples minimum due to the larger noise effects associated with the lower amplitude pulses), the
Gaussian fitting was performed on the extracted segment to fit one return only. If the fitted echo was
not caused by ringing effect, the position of the echo was geo-referenced and then included into the
dataset. Otherwise, the next candidate cluster in the seeded region (going right to left) was evaluated.
After the process of seeded Gaussian decomposition, a number of new candidate terrain points were
detected. These new candidate points were fed back into the module of “TIN generation” (Figure 6)
and the previously built TIN was modified. If there were no more new points detected with the aid of
the seeds, the latest TIN terrain model was stored as the final DTM. In general, two iterations were
sufficient for vast majority of the discernible low amplitude echoes to be included into the DTM.
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2.2.5. Validation

To validate the effectiveness of the proposed method, several quantitative measures were
employed. As mentioned earlier, the elevations of a series of points in each study site were measured
using traditional surveying methods (Section 2.1). For each surveyed point, the LiDAR-derived
elevation was calculated from its corresponding TIN facet in the generated DTM. Both the DTMs
generated by the proposed and progressive TIN methods were evaluated. The correlation coefficients
between the ground-measured and LiDAR-derived elevations were calculated and a Fisher’s z-test was
applied to evaluate whether the correlation coefficients corresponding to the proposed and progressive
TIN methods were significantly different. Let the population correlation coefficients in elevations
between the ground-measured and those derived from the progressive TIN and developed methods be
ρ1 and ρ2, respectively; their corresponding sample correlation coefficients r1 and r2; and the sample
size n. The null and alternative hypothesis for the Fisher’s z-test was H0 : ρ1 = ρ2; Ha : ρ1 6= ρ2.
The z-statistics was calculated by Equation (3). At the significant level of 0.05, the critical value is
1.96. If the calculated z-value was smaller than 1.96, the null hypothesis was accepted, otherwise, the
alternative hypothesis was accepted.

z =
r′1 − r′2√
2/(n− 3)

, r′ = 0.5ln
1 + r
1− r

(3)

In addition, the basic statistics of the differences between the LiDAR-derived and the
ground-measured elevations were calculated, such as the minimum, maximum, mean, standard
deviation, and RMSE. An F-test was employed to evaluate the ratio of two variances for their
homogeneity, here specifically about whether the proposed method had a smaller RMSE in comparison
with the progressive TIN method. Let the population mean squared error of those elevations derived
from the progressive TIN and developed methods be σ2

1 and σ2
2 , respectively; their corresponding

estimated values as ε2
1 and ε2

2 with the sample size n, which are materialized by using the elevation
differences from two methods against the ground measured values as their references. The null and
alternative hypothesis for the Fisher’s F-test was H0 : σ2

1 = σ2
2 ; Ha : σ2

1 > σ2
2 . The F-statistics was

calculated as F = ε2
1/ε2

2. At the significantly level of 0.05 for the sample size at 200, the critical value is
1.26. Because the sample sizes were over 200 for all of four sites; the critical value for each case was
smaller than 1.26. If the calculated F-value was smaller than 1.26, the null hypothesis was accepted,
otherwise, the alternative hypothesis was accepted. For the details of the hypothesis tests, please refer
to [39,40].

3. Results

The generated DTMs for the study sites are shown in Figure 9. For comparison, the DTMs
generated using the progressive TIN method described in Section 2.2.3 are shown in Figure 10.
By observing the presented DTMs, more details can be seen from the ones generated by the proposed
algorithm. Obviously, the additional terrain points detected using the novel integrated algorithm
provided a better definition of the shapes of the mounds. As shown in Table 1, on average the number
of the terrain points per square meter detected by the developed algorithm was bigger than the one by
the progressive TIN method.

Table 1. The average density of the terrain points (points/m2) detected by the developed algorithm
and by the progressive TIN method.

Sites Progressive TIN Developed Algorithm

Open Area 1.6 2.5
Maple 1.3 2.5

Mixed Woods 1.8 2.3
Jack Pine 2.1 2.9
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Figure 10. The TIN representation of the generated DTM models using the progressive TIN method.

To examine how the increased terrain points affect DTM generation, each test site was assigned a
one-by-one meter grid and the number of points that fell within each grid cell was calculated. A ratio
of the number of cells containing at least one point to the total number of cells was computed for each
site to provide the information on coverage of the derived terrain model as the visualization of the grid
demonstrated the distribution of gaps in coverage. Figure 11 displays the results of this analysis for all
the study sites generated using both the proposed novel iterative algorithm and the progressive TIN
method. The plots in Figure 11 demonstrated that the novel DTM extraction method systematically
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had a better point coverage than that of the DTMs obtained by the progressive TIN method. This
overall improvement in coverage could be more beneficial for terrain reconstruction than the detection
of a large number of points in areas that already had ground points detected. By minimizing gaps in
coverage, there was a greater probability of detecting terrain variations that could have been missed
otherwise, and therefore a more accurate representation of the terrain could be obtained as a result.
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Figure 11. The grid of point densities and coverage at each site, with the densities from the developed
algorithm on the left and the progressive TIN method on the right. The red color represents the cells
where there were no points detected for the given terrain model, and the points ranging from black
to white representing a range from 1 point per cell to 4+ points per cell. The panels from the top to
bottoms are the results for the sites of Jack Pine, Mixed Woods, and Maple, respectively.

The scattering plots between the LiDAR-derived elevations generated by the developed method
and by the progressive TIN method vs. the ground-measured elevations for the four study sites
are shown in Figures 12 and 13, respectively. The results from the Fisher’s z-test on the correlation
coefficients are summarized in Table 2. The statistical summary about the differences between the
LiDAR-derived and the ground-measured elevations is given in Table 3.
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Table 2. Fisher’s z-test on the correlation coefficients between the ground-measured and LiDAR derived
elevations with subscripts 1 and 2 for progressive TIN and developed algorithm, respectively.

Correlation Coefficient
Sample Size z-Value Acceptance

r1 r2

Open Area 0.9942 0.9940 301 −0.21 H0
Maple 0.9967 0.9971 398 0.47 H0

Mixed Woods 0.9976 0.9985 249 2.67 Ha
Jack Pine 0.9864 0.9904 327 2.04 Ha

Table 3. The statistics on the differences between the LiDAR-derived and ground-measured elevations
(with the LiDAR-derived elevation as the minuend).

Methods Differences (m)
Sites

Open Area Maple Mixed Woods Jack Pine

Progressive
TIN

Minimum −0.159 −0.494 −0.453 −0.413
Maximum 0.210 0.357 0.825 0.433

Mean 0.023 −0.072 0.022 −0.008
Standard deviation 0.055 0.092 0.145 0.098

RMSE, ε1 0.059 0.117 0.147 0.098

Developed
method

Minimum −0.210 −0.0606 −0.440 −0.347
Maximum 0.165 0.285 0.237 0.370

Mean 0.011 −0.077 −0.051 −0.017
Standard deviation 0.057 0.089 0.114 0.084

RMSE, ε2 0.058 0.118 0.125 0.086

F-test F = ε2
1/ε2

2 1.06 1.01 1.38 1.33

Acceptance H0 H0 Ha Ha

4. Discussion

As shown in Table 1 and Figure 11, with the developed method, the number of terrain points
detected was increased. This increase in the number of the terrain points was contributed by the
detected weak echoes that were back-scattered by the terrain underneath vegetation. For the Maple
site with dense deciduous canopies present, some laser pulses could pass through within-crown gaps
and were reflected back by the terrain as the weak echoes, which could not be normally detected by the
current available processing methods. For other sites, a number of the evergreen trees exited. These
coniferous trees with few within-crown gaps allowed relatively few LiDAR pulses travelling through
and thus few returns were generated by the underneath terrain. Furthermore, thick underbrush existed
in the sites of Jack Pine and Open Area, which could further impede the LiDAR penetration to ground.
As reviewed in Section 1, several advanced methods [9–13] were reported in the literature to generate
more reliable terrain points for a given set of discrete points using local properties. These methods
can be used together with the proposed method to further filter out falsely identified terrain points.
A further discussion will be provided in the next paragraph. The proposed method provided an
alternative way to improve the decomposition of a full-waveform signal. Different from the newly
emergent methods [24–26], this method used an iteratively built terrain model to guide the process of
full-waveform decomposition and was not sensitive to the initial values.

By comparing the DTMs generated from the developed algorithm (Figure 12) and those from the
progressive TIN method (Figure 13) for the four study sites, one can see that the sites of Maple and
Open Area achieved similar accuracies. For the sites of Jack Pine and Mixed Woods, the developed
algorithm reached better results in predicting surface elevations demonstrated by the higher correlation
coefficients. The Fisher’s z-test (Table 3) demonstrated that the differences in the correlation coefficients
obtained by these two methods were significant at the significant level of 0.05. For the Open Area site,
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the terrain was relatively flat and even with a few of the terrain points, a high accurate DTM could be
achieved. Both the progressive TIN and the developed methods generated similar results as indicated
by the similar correlation coefficients. For other sites, some small mounds were observed during field
inspection and some points were collected around these mounds. As mentioned in Section 2.1, 398,
249, and 327 points were surveyed on the ground for the sites of Maple, Mixed Woods, and Jack Pine,
respectively. Among the large number of surveyed points (398) in the Maple site, most of them lied on
the relatively flat terrain. As a result, the accuracy improvement in this site was not as significant as in
the sites of Mixed Woods and Jack Pine. Similarly, the RMSE and F-test results in Table 3 showed that
the proposed method generated higher accurate DTMs compared with the progressive TIN method
for the sites of Jack Pine and Mixed Woods at the significant level of 0.05. For the sites of Maple and
Open Area, the two methods generated similar results. The F-test was also applied to the standard
deviations of the differences. For the sites of Open Area and Maple, the standard deviations related
to the two methods were similar, while the standard deviation for the progressive TIN method was
significantly larger than the one for the proposed method for the sites of Jack Pine and Mixed Woods.
Examining the mean values of the differences between the ground-measured and LiDAR-derived
elevations reveals that the developed method tended to underestimate the elevation. This might be
because that weak echoes caused by noise were falsely taken as those detected by terrains. A better
filtering methods, such as those proposed in [9–13] may help to remove false terrain points. It is worth
mentioning that noise might be introduced by adding the weak echoes, which might negatively affect
the accuracy of the generated DTM, especially in the flat areas. In the future study, a cost-benefit
analysis may be necessary to evaluate how much point position accuracy can be sacrificed in order to
extract additional terrain features. This decision-making process would subdivide the scanned area
into zones and identify areas that would benefit from having additional point coverage. This would
assist in determining where the inclusion of the lower amplitude pulses would benefit the terrain
extraction and where it would be detrimental to quality of the derived DTM. There certainly is a need
to monitor the accuracy of the derived points, and to have an error value assigned to the coordinates
of each point extracted from the LiDAR waveform.

Based on the 1275 (301 + 398 + 249 + 327) points surveyed in four study sites across this study
area, the estimated elevations using the developed method had a strong linear relationship with the
measured ones with r above 0.99 and the RMSEs between them were less than 0.15 m even for areas
with hilly terrains underneath vegetation canopies. Such an accuracy can normally be achieved for
open and hard surface [5]. The reported accuracies in [5] might be improved by using the advanced
filtering methods in [9–13]. As mentioned earlier, this developed method can be employed together
with these new filtering methods to improve DTM generated as well, which will be investigated in
future studies.

5. Conclusions

In this study, an integrated approach was developed to improve the DTM generation in the
vegetated area by detecting the weak pulses (with low amplitudes) generated from the terrain under
trees, which could not be detected by the commonly used Gaussian fitting. Our results show that
in heavily forested areas, the extraction of low amplitude return pulses from full-waveform LiDAR
signatures provided a denser point sampling of the terrain in comparison with the commercially
available methodology which was shown to be instrumental to improving the quality of the derived
terrain model.

The point distribution and density plots (Figure 11) demonstrated the consistent improvements in
point coverage of the derived DTM when one compares the developed algorithm with the progressive
TIN method. For areas containing hilly terrain, the increased point coverage leads to a more accurate
modeling of the terrain variations and thus a more accurate representation of the ground surface.
It is visible from the DTMs generated using the developed algorithm for the sites of Maple, Mixed
Woods, and Jack Pine (Figures 9 and 10) that the addition of weak echoes backscattered by the terrain
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underneath vegetation canopies provided detailed characterization of the variable terrain in these sites.
Statistical analysis carried out on elevations of more than 1000 points demonstrated that the elevations
estimated from the developed methods had a strong linear relationship with ground-measured ones
with correlation coefficients above 0.99 and the RMSEs between them were less than 0.15 m even
for areas with hilly terrains underneath vegetation canopies. For the sites of Mixed Woods and Jack
Pine, the correlation coefficients were significantly higher and the RMSEs were lower than those
with the existing progressive TIN method at the significant level of 0.05. The site of Open Area
and Maple featuring a flat terrain did not benefit from the introduction of the weak echoes. In this
study, the evaluation of this developed method was carried out based on ground-measured elevations.
In future work, we will extend the validation to some of the end-products of DTM. We will assess the
performance of our method in the analysis of specific geomorphic features.
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