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Abstract: This paper presents a method for mosaicking unmanned aerial vehicle (UAV) multispectral
images. The main purpose of the proposed method is to reduce spatial distortion in the mosaicking
process and increase robustness and the speed of the operation. Most UAV multispectral images have
multiple bands, and in every band, ground targets have a variety of reflection characteristics that will
result in diverse feature quality for feature matching. In this research, an information entropy-based
evaluation method is used to select the optimal band for feature matching among the UAV images.
To produce more robust matching results for the following alignment step, the evaluation method takes
the contrast and spatial distribution of the feature points into consideration at the same time. In most
common image mosaicking processes, the digital orthophoto map (DOM) is generated to achieve
maximum spatial accuracy. During this process, the original image data will experience considerable
irregular resampling, and the process is also unstable in some circumstances. The alignment step uses
a simplified projection model that treats the ground as planar is provided, by which the alignment
parameters are applied directly to the images instead of generating 3D points, to avoid irregular
resampling and unstable 3D reconstruction. The proposed method is proved to be more efficient and
accurate and has lower spectral distortion than state-of-the-art mosaicking software.

Keywords: Unmanned Aerial Vehicle; image mosaicking; multispectral; feature matching;
optimal band

1. Introduction

Unmanned Aerial Vehicle (UAV) remote sensing is blooming for its low-cost, high resolution,
and great flexibility. In such a situation, UAV multispectral remote sensing has become a new hot spot
topic for researchers in the remote sensing community. UAV remote sensing can be used in fields such
as photogrammetry, vegetation monitoring, and disaster management [1–3]. Agriculture is a main
application area of vegetation monitoring based on UAV multispectral remote sensing. For example,
Honkavaara used a Fabry-Perot Interferometer-based (FPI) spectral camera to monitor the growth
of crops [4]; Gomez-Candon [5] used a quadcopter and a consumer-level digital camera to estimate
the status of wheat growth; Sona [6] captured data of bare land and land with vegetation cover and
evaluated the application potential of these data. However, most of these researches are based on
consumer-level RGB cameras, and they does not have NIR bands, which greatly limits the vegetation
characterization processes. Some consumer-level digital cameras can be modified to capture NIR
data, but the spectral performance is limited. Thus, it is necessary to capture multispectral data using
multispectral cameras that have more than three bands [7]. Moreover, studies on the corresponding
data processing methods are required in UAV remote sensing applications.

UAVs mainly work in a relatively low altitude and, as a result, the area that a single image can
cover is relatively small. Consequently, image mosaicking is an important technique for utilizing
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UAV multispectral image data. In the process of UAV image mosaicking, accurate position and pose
relations among images need to be determined. The process recovering positions and the poses of
images is called the geometric correction. The geometric correction can be divided into image-to-map
correction and image-to-image correction. Image-to-map correction registers the images in question
to existing reference data, such as the Digital Surface Model (DSM) [8–11] or Ground Control Points
(GCPs) [12,13]. Image-to-image correction recoveries position and pose relations of images using tie
points among the images [14–16], and is widely used in UAV data processing methods [17]. However,
the image textures are usually weak or repetitive in most vegetated areas such as farmlands, which
make it difficult to generate sufficient correct tie points. Generally speaking, ground objects have
diverse reflective characteristics with various wavelengths of light and, thus, bands of one image may
have various levels of feature richness. Therefore, to choose the right band for feature matching is
significant for quality geometric correction and image mosaicking.

On the other hand, existing geometric correction methods such as SFM-based 3D reconstruction
work on the regular RGB images and pay more attention to the geometric accuracy of the mosaicking
results [2,3], thus, the correcting process is very computationally expensive. For vegetation monitoring
tasks like agricultural applications, the adequate spectral performance needs to be considered
seriously [18]. However, the characteristics of multispectral image data are not well considered in these
methods. The SFM-based 3D reconstruction methods involve considerable irregular resampling [19],
which may cause significant spectral distortion to the image data. Thus, it is significant and necessary
for the UAV multispectral image mosaicking process to keep the original spectral information as much
as possible and promote the efficiency of the geometric correction process.

In this paper, we will come up with a new method to determine the optimal band for feature
matching so as to obtain sufficient correct tie points on the UAV multispectral images in agricultural
areas. In order to avoid computationally expensive 3D reconstruction and irregular resampling,
we put forward a simplified projection model, which can speed up and satisfy requirements of UAV
multispectral image mosaicking in most agricultural areas.

2. Related Research

Image-to-image correction is widely used in UAV image mosaicking processes and can be divided
into feature matching and transformation estimation [16].

Feature matching is a key step in image mosaicking. Scale invariant feature transform (SIFT) [20]
is a feature descriptor that is invariant to image scaling and rotation in most cases and also has
tolerance to illumination and 3D camera viewpoint change. It is widely used in various kinds
of applications that need to match features between images, including image mosaicking. Other
feature-matching algorithms such as PCA-SIFT [21], SURF [22], and ORB [23] are also applied to various
fields depending on their characteristics. However, Mikolajczyk and Schmid [24] have proved that
SIFT-based descriptors have a better performance than other descriptors in image feature-matching.

UAV multispectral images usually have multiple bands, and the selected band used in feature
matching has an obvious influence on the matching result directly [25,26]. As the ground targets
have various reflection characteristics, the environmental conditions, such as the atmosphere and the
relative positions of the sun, the targets, and the sensor may also change. Thus, an optimal band for
feature matching may vary among flights. Most current research simply uses the methods for regular
RGB images, or directly designates a band without careful selection. For example, Navia [27] discussed
the application of UAV multispectral image mosaicking techniques in the agriculture field and raised a
mosaicking method based on the Lucas-Kanade-matching algorithm [28] . However, this research was
based on a camera that was modified from a consumer-level RGB camera that had only three bands,
and choosing an optimal band to conduct feature matching was not discussed. Du [29] directly used
the NIR band for feature matching, and the variation of feature quality among images was not taken
into consideration. For the mosaic data from the AISA Eagle hyperspectral sensor, YK Han [30] used
the SIFT matching result to select the optimal band for feature matching. The weakness of this research
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is that the optimal band is known after the feature points of all the bands are extracted and matched,
and the spatial distribution and quality of the feature points are not taken into consideration.

The transformation estimation uses the matched point pairs to estimate the transformations
among the images. In the process, the projection model is needed to describe the motion of the
camera. For most regular frame cameras, the model is the perspective projection model. By using the
perspective projection model, the camera motion can be restored from the image matching results,
and the 3D positions of the matched points can also be estimated if necessary. In some studies, the affine
transformation is used to simplify the estimation process [29]. In the method, affine transformation,
the eight-parameter projective model, and the thin-plate spline model were applied to characterize the
locations and poses of the images. However the affine transformation used in the research work was a
general affine transformation that includes some unnecessary transformation for UAV multispectral
images, and how to choose an optimal band to perform feature matching in the feature matching step
was not well discussed. Li [31] combined viewport reselection and SFM to mosaic UAV multispectral
images. In sparse farmland, this algorithm could improve spatial accuracy by distinguishing crop
canopy and ground, but the loss of spectral accuracy was still not considered.

3. Methodology

3.1. Selecting the Optimal Band for Feature Matching

In our proposed method, SIFT is used to match feature points. Since feature matching algorithms
such as SIFT mainly work on a single band grayscale image, it is necessary to select one optimal band
for feature matching by evaluating all the bands of the image data. The way to evaluate the quality of
a band for feature matching is based on the low-contrast point kick-out method in SIFT. The following
equation is used in SIFT to describe the local contrast level of a keypoint.

D(x̂) = D +
1
2

∂D
∂x

T
x̂ (1)

where D is the first term of the Taylor expansion of the scale-space function D(x, y, σ), and x̂ is the
offset of the extremum from the sample point. By computing the average D(x̂) of the keypoints,
the feature richness and quality of an image can be evaluated. When comparing the average D(x̂) of
each band, the band that has the bigger average D(x̂) is more suitable for feature matching.

However, the purpose of matching images is to reconstruct the accurate positions and poses
of UAV images. If the spatial distribution of the feature points is non-homogeneous, the process of
solving the positions and poses of the images may be unstable. The spatial distribution of the feature
points also needs to be considered, besides the average quality value. The information entropy-based
equilibrium degree [32] is often used to describe the distribution of a point set:
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where ni
points is the number of points in the i-th sub area of the image, ∑ ni

points is the total point number

in the image, and N is the number of sub areas. J = −
N
∑
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points

∑ ni
points

is the information entropy

of the point set when the image is divided into N sub areas, and Jmax = lnN is the maximum of the
information entropy. The unit of E is nat (natural unit) when using ln.

As Figure 1 shows, to calculate the equilibrium degree, the image is divided into many sub areas.
Since the aspect ratio of the image data is 5 to 4, the image can be split into 20 square sub areas, namely,
in this case, N = 20. The product of the average D(x̂) of the points and the information entropy-based
equilibrium degree is used to describe the feature quality of a greyscale image in Equation (3).
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Q = D(x̂)sum·E =
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where M is the number of the keypoints that can be detected, and D(x̂)sum =
M
∑

k=1
D(x̂)k is the sum of

local contrast levels of the keypoints.
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For a set of images, the average Q of the j-th band can be computed using Equation (4):

Qband−J =
1
m

m

∑
iim=1

(
Qband−j

)
iim

(4)

where
(
Qband−J

)
iim

is the feature quality of the j-th band in the iim-th image, and m is the number of

images that used to evaluate Qband−J . To reduce the time consumption of evaluating the Qband−J of
every band, the evaluation can be performed not on all the images. A subset of all the images can be
used depending on the total number of images, for example, selecting one image out of every two to
five images. The band that has the highest Qband−J is considered to have better performance in the
feature matching process.

In the following experiments, we discovered that the value Qband−J could be used to pick up
an optimal band to perform feature matching efficiently. However, it is highly possible that some
individual images will have a different optimal band rather than the Qband−J indicated. Taking this
situation into consideration, a dynamic matching strategy is used. For a certain image pair, we denote
the matched point pair set as P0; if the size of the matched point pairs size(P0) are less than a threshold
Tpairs, the optimal band only for these two images will be re-evaluated, and the two images will be
re-matched using the new optimal band. The new matched point pair set is P1; if size(P0 + P1) exceeds
Tpairs, the matching process of these two images is completed and the matching result is P0 + P1.
If size(P0 + P1) is still less than Tpairs, the matching process will be going on using the second band in
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the re-evaluating result, until size(P0 + P1 . . .) exceeds Tpairs, or all the bands of the two images have
been matched.

3.2. The Simplified Projection Model

Limited by cost and weight, the inertial measurement unit (IMU) sensors on the UAVs have
difficulty in providing accurate pose data for the image mosaicking. After feature matching, we
have to restore the accurate positions and poses of the images using matching results. Fortunately,
the GPS coordinates and pose data can be used for initializing the process. For most frame cameras,
the projection model is [33]:  x

y
z

 = KR

 X
Y
Z

 = KR

 Xp − Xc

Yp −Yc

Zp − Zc


where [Xc, Yc, Zc]

T is the position of the projection center,
[
Xp, Yp, Zp

]T is position of the ground point,
and [x, y, z]T are the image space coordinates. R is the rotation matrix that represents the rotations
around the roll, pitch, and yaw axes of the camera, and can be written as:

R = RϕRωRκ =

 cosϕ 0 −sinϕ

0 1 0
sinϕ 0 cosϕ


 1 0 0

0 cosω −sinω

0 sinω cosω


 cosκ −sinκ 0

sinκ cosκ 0
0 0 1

,

and K is the interior parameters of the camera.
Using this model, the 3D positions of the ground points and the 6-DOF poses (3D positions and

3-Axis rotations) of the camera will be reconstructed at the same time. The time complexity of this
process will be around o

(
n3) to o

(
n4) [34]. Considering that farmlands usually have a lower elevation

variation, and the main purpose of capturing UAV multispectral data is to analyze the status of crop
growth, the model can be simplified to reduce time consumption and avoid irregular resampling at
the same time. First, in the rotation matrix, ϕ, ω, κ represent the roll, pitch, and yaw of the image,
respectively. The image rotation around the roll and pitch axes will cause inconsistent scale variation
around the image; this will lead to severe spectral distortion during resampling. Due to the fact that
most UAV multispectral remote sensing systems can stabilize the camera in these two axes, we can
treat ϕ and ω as zero and consider the two matrices Rϕ and Rω as the identity matrix, like:

R = RϕRωRκ =

 cosϕ 0 −sinϕ

0 1 0
sinϕ 0 cosϕ


 1 0 0

0 cosω −sinω

0 sinω cosω


 cosκ −sinκ 0

sinκ cosκ 0
0 0 1


=

 1 0 0
0 1 0
0 0 1


 1 0 0

0 1 0
0 0 1


 cosκ −sinκ 0

sinκ cosκ 0
0 0 1

 =

 cosκ −sinκ 0
sinκ cosκ 0

0 0 1


= Rκ

The projection model can be written as: x
y
z

 = K

 cosκ −sinκ 0
sinκ cosκ 0

0 0 1


 Xp − Xc

Yp −Yc

Zp − Zc


For flat areas such as farmlands, Zp − Z0 can be approximated to the UAV flying height of H.

At the same time, since our research is mainly focused on the image mosaic, not calibration, we treat
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the images as being already calibrated, and then the K only has

 f 0 0
f 0

1

 left. The model can be

further simplified as: x
y
z

 =

 f 0 0
0 f 0
0 0 1


 cosκ −sinκ 0

sinκ cosκ 0
0 0 1


 Xp − Xc

Yp −Yc

H


The image captured by the camera is planar, so z is a fixed value, and the equation can be

re-written as: [
x
y

]
=

f
H

[
cos κ − sin κ

sin κ cos κ

][
Xp − Xc

Yp −Yc

]
(5)

According to (5), the coordinate of the ground point can be calculated using:{
Xp = H

f xcosκ + H
f ysinκ + Xc

Yp = H
f xsinκ − H

f ycosκ + Yc
(6)

After feature matching, for every matched point pairs, two ground coordinates (Xpj1 , Ypj1) and
(Xpj2 , Ypj2) can be calculated using (6). Since the two points represent the same ground point, the correct
exterior orientation elements should let the distance between (Xpj1 , Ypj1) and (Xpj2 , Ypj2) be minimum.
For all the matched point pairs, the correct exterior orientation parameters should satisfy Equation (7):

min
Cj

m

∑
j1=1

m

∑
j2=1

((
Xpj1 − Xpj2

)2
+
(
Ypj1 −Ypj2

)2
)

(7)

Replace Xpj1 , Xpj2 , Ypj1 , Ypj2 using (6); the Equation (7) will only relate to the exterior orientation
elements of the images and the coordinates on the images of the matched point pairs. By solving
(7) with non-linear least square algorithms such as the Levenberg-Marquardt algorithm, the correct
exterior orientation elements of images can be extracted.

The result resolved by the Levenberg-Marquardt algorithm corresponds to local minima.
To increase the robustness and speed of the algorithm, the GPS coordinates and pose data are used
to initialize the algorithm. In fact, what Equation (7) solves is the accurate relative positions and
poses between the images; the actual georeference can be obtained using the method described in
our previous work [35]. f can be found from the datasheet of the sensor. Since the UAV is able to
maintain a steady flying height, H can be estimated by the average altitude of the whole working
trajectory; for every image, the DOF (degree of freedom) of the exterior orientation parameters can
be reduced from 6 to 3. This modification can promote the robustness of the model and reduce the
time consumption remarkably. After estimating the locations of the ground points and the exterior
orientation elements of the images, the images are transformed using the exterior orientation elements
instead of the locations of the points. For one single image, such a transformation can be kept the same
in every part of the image so that the irregular resample can be reduced.

3.3. Estimation of the Possible Overlapping Relations

To match a set of images, we may have to try every possible combination of image pairs to
find possible overlapping relations if the spatial relations among the images are unknown. The time
complexity of this process is o

(
n2), and the actual time consumption will increase quickly with the

number of UAV images. In fact, every single image only has overlapping relations with surrounding
images, and only these image pairs need to be matched. So when matching one image with others, it is
necessary to restrict the match attempt only to the adjacent images.
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As mentioned above, most UAV multispectral systems can stabilize the rotation of the camera
around the pitch and roll axes, so the camera can be kept vertical to the ground. The footprint can be
treated as a rectangle, and the long side is w and the short side is h. When having overlapping relations,
the longest center distance l for such two rectangles is

√
w2 + h2. Obviously, setting l <

√
w2 + h2

as the threshold for trying to match two images may cause a lot of false positives, so we tightened
the restriction to l < w. If the center distance l of the two images satisfies the following equation,
it is assumed these two images are close enough to have an overlapping relation, and the matching
processing of these two images will be tried in the feature matching step.

l < 2H tan
θ

2
(8)

where H is the height of the camera from the ground and θ is the field of view (FOV) of the camera.
Since we treat the flying trajectory as planar, H can be set with the average of all the heights of
the images. As shown in Figure 2, using the distance threshold to restrict matching attempts can
significantly improve the efficiency of the matching process.

Remote Sens. 2017, 9, 962  7 of 21 

 

3.3. Estimation of the Possible Overlapping Relations 

To match a set of images, we may have to try every possible combination of image pairs to 
find possible overlapping relations if the spatial relations among the images are unknown. The 
time complexity of this process is ݋(݊ଶ), and the actual time consumption will increase quickly 
with the number of UAV images. In fact, every single image only has overlapping relations with 
surrounding images, and only these image pairs need to be matched. So when matching one 
image with others, it is necessary to restrict the match attempt only to the adjacent images. 

As mentioned above, most UAV multispectral systems can stabilize the rotation of the 
camera around the pitch and roll axes, so the camera can be kept vertical to the ground. The 
footprint can be treated as a rectangle, and the long side is ݓ and the short side is ݄. When having 
overlapping relations, the longest center distance ݈  for such two rectangles is √ݓଶ + ݄ଶ . 
Obviously, setting ݈ ൏ ଶݓ√ + ݄ଶ as the threshold for trying to match two images may cause a lot 
of false positives, so we tightened the restriction to ݈ ൏  If the center distance ݈ of the two .ݓ
images satisfies the following equation, it is assumed these two images are close enough to have 
an overlapping relation, and the matching processing of these two images will be tried in the 
feature matching step. ݈ ൏ ܪ2 tan  (8) 2ߠ

where ܪ is the height of the camera from the ground and ߠ is the field of view (FOV) of the 
camera. Since we treat the flying trajectory as planar, ܪ can be set with the average of all the 
heights of the images. As shown in Figure 2, using the distance threshold to restrict matching 
attempts can significantly improve the efficiency of the matching process. 

 
Figure 2. Estimating possible overlapping relations using distance threshold. One dot represents one 
image. For a certain image represented by the red dot, all the images in the circle of radius ݈ are 
supposed to have possible overlapping relations with the image represented by the red dot. 

3.4. The Workflow of the Proposed Method 

The complete workflow of the proposed method is shown in Figure 3. The original image 
data and the GPS/pose data are captured by the UAV. The proposed image mosaicking process 
is composed of four steps:  

Step 1. In the pre-processing stage the GPS/pose records, and original images are processed 
separately. The GPS/pose data are used to estimate potential overlapping relations using the 
distance-based method described above. The original images are used to find the optimal band 
for feature matching. The detailed steps are: 

Figure 2. Estimating possible overlapping relations using distance threshold. One dot represents
one image. For a certain image represented by the red dot, all the images in the circle of radius l are
supposed to have possible overlapping relations with the image represented by the red dot.

3.4. The Workflow of the Proposed Method

The complete workflow of the proposed method is shown in Figure 3. The original image data
and the GPS/pose data are captured by the UAV. The proposed image mosaicking process is composed
of four steps:

Step 1. In the pre-processing stage the GPS/pose records, and original images are processed
separately. The GPS/pose data are used to estimate potential overlapping relations using the
distance-based method described above. The original images are used to find the optimal band
for feature matching. The detailed steps are:

1. Pickup sample images according to a fixed interval, such as every three or five images for feature
quality estimation.

2. Divide every band image into several sub areas as close to the square as possible.
3. Detect SIFT feature points on all the bands of the images.
4. For every band of each frame of the image, calculate the Qband−j using Equation (3).

5. Calculate the Qband−J of each band among all the sample images using Equation (4).

6. The band that has the highest Qband−J will be used for feature matching.



Remote Sens. 2017, 9, 962 8 of 21

Step 2. In the feature matching step, the optimal band that was chosen in Step 1 is used to match
the image pairs that have potential overlapping relations. For every pair of images, the matching
steps are:

1. Try matching the two images using the optimal band selected in Step 1. The matched point pair
set is P0.

2. If size(P0) is less than Tpairs (in this research Tpairs is set to 30), redo the optimal band evaluation
according Step 1 on only these two images, and use the new optimal band to re-match the image
pair. The new matched point pair set is P1.

3. If size(P0 + P1) is still less than Tpairs, continue matching with the band that has the second
highest Qband−J in the re-evaluation result until size(P0 + P1 . . .) exceeds Tpairs, or every band of
the two images is matched.

Step 3. In the alignment step the matched results are used to compute the accurate position
and pose of the images. Every pair of matched points corresponds to two images (j1, j2). The two
points positions on the two images are [x1, y1]

T and [x2, y2]
T . The exterior orientation parameters

of the two images are [Xc1, Yc1, κ1]
T and [Xc2, Yc2, κ2]

T . Substitute them into Equations (6), then get
Xpj1 , Ypj1 and Xpj2 , Ypj2 Then, the Levenberg-Marquardt algorithm is used to find the accurate exterior
orientation parameters of all the images that satisfy Equations (7). In fact, this process is a global
Bundle Adjustment, since the Bundle Adjustment can handle “almost any predictive parametric
model [36]”. In order to make the process stable and fast, the GPS/pose data are used to initialize the
exterior orientation parameters for the LM-algorithm.

Step 4. In the blending step, the accurate exterior orientation parameters are applied to all the
bands of all the images at the same time. Then, the resampled images are blended together. In our
research, the blending algorithm described in reference [37] is used to blend the resampled images.
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Figure 3. The workflow of the proposed method.
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4. Datasets

A Tetracam Mini-MCA6 multispectral camera onboard the AF25b UAV platform is used to capture
the UAV multispectral image in Beitun city, Xinjiang, China. The camera has six bands, including three
visible and three NIR bands, and can capture 1280 × 1024 pixels images with a horizontal field of
view (FOV) of 38.26 degrees. The sensor dimension of the MiniMCA6 is 6.66 mm × 5.32 mm, and the
focal length of the lenses is 9.6mm. The example images captured by the MiniMCA6 are shown in
Figure 4, and the specification of the MiniMCA6 is listed in Table 1. The UAV system was used to
acquire two datasets in the study area, as shown in Figures 5 and 6. One dataset has 412 shots and
contains urban land, bare land, farmland, and a waterbody, and the other dataset has 223 shots and
contains farmland and roads. The main crop in the study area is popcorn. The first dataset will be
called the dataset-urban, and the other one will be called the dataset-popcorn in the following sections.
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Table 1. Band Parameters of MiniMCA6.

Band Wave Length-Band Width (nm) Name Relative Exposure (%)

Band1 550-10 Green 70
Band2 490-10 Blue 127
Band3 680-10 Red 100
Band4 720-10 NIR 100
Band5 800-10 NIR 80
Band6 900-20 NIR 100
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5. Experiment Results

5.1. Selection of the Optimal Band for Feature Matching

Based on the evaluation method described in 3.1, the feature quality evaluation is conducted
among the two datasets. In order to reduce the time consumption on evaluation, one out of every
three images is used to perform the evaluation on the dataset-urban, and the evaluating results are
illustrated in Figures 7 and 8; the average Q-Values of each band of the two datasets are presented in
Table 2.
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Figure 7. Q-value of dataset-urban; band3 has the best performance, and the other bands also have
good performance.

For the dataset-urban, band3 has the highest Q-Values among all the images, which means band3
(the red band) can provide better performance in the matching process all the time. Considering that
the dataset-urban covers a large area of urban land and bare land, the evaluation result is reasonable.
For the dataset-popcorn, things are a little bit complicated. As we can see in Figure 6, the test site of the
dataset-popcorn is mostly farming land, and the image texture is relatively weak. Although band3 still
has higher global average Q-Values, band5 performs better, and band3 performs much worse in some
images. The green band (band1) performs not as well as the red band (band3) in the farming areas
because the red band can have a higher contrast level between vegetation and bare land and provide
feature points that have a much higher quality. Using only one certain band for feature matching may
be not suffice to handle such a complex situation well. The flexible matching strategy of the proposed
method can get a steady matching result for further processes.
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Figure 8. Q-value of dataset-popcorn. Band3 has the best performance but is not stable. In some
images, the NIR band has better performance.

Table 2. Comparison of average Q-Values for each band.

Dataset Name Band1 Band2 Band3 Band4 Band5 Band6

Dataset-urban 88.931 57.232 141.191 31.346 13.180 6.365
Dataset-popcorn 27.063 15.183 54.798 20.561 38.970 15.472
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The Q-Value and the number of matched point pairs in the dataset-popcorn are listed in Table 3.
The correlation coefficient of these two sets of values is 0.7470, which means the Q-Value and the
number of matched pairs have a significant correlation with the confidence > 0.9. The correlation
coefficient result proved that the Q-value was an efficient way to select the optimal band for
feature matching.

Table 3. Q-Value and number of matched point pairs, dataset-popcorn.

Band1 Band2 Band3 Band4 Band5 Band6

Q-Value 27.063 15.183 54.798 20.561 38.970 15.472
Matched PointPairs 29506 26703 31751 20130 29288 23003

5.2. Mosaicking Results

The mosaicking results in the RGB mode of the two datasets, dataset-urban and dataset-popcorn,
using our proposed method, are displayed in Figures 9 and 10 respectively. Figures 11 and 12 are
mosaicking DOM results generated by the Pix4Dmapper [38]. The experiment was performed on a
computer that has Core i7-2600 CPU, 16GB RAM.

As we can see in Figures 9 and 10, the results generated by our proposed method have no obvious
distortion and malposition. This suggests that the proposed method can generate visually satisfactory
results for both datasets. The flexible matching strategy and the simplified model enable the proposed
method to get enough correct matches for the image alignment. Because the transformation of each
image only depends on the image elements of the exterior orientation, the side and corner area can
be utilized efficiently in mosaicking. On the contrary, Pix4Dmapper needs the 3D point cloud to
generate the DOM, which means only the area inside the outermost 3D points can be used. As shown
in Figure 13, in the mosaicking result of the dataset-urban generated by the Pix4Dmapper, the bottom
left area has a slight malposition. For the dataset-popcorn, the Pix4Dmapper can produce a visually
satisfactory result. Besides the significant distortion, the result of the Pix4Dmapper also has significant
local breakages. Some examples are shown in Figure 14. These breakages are also caused in the
sensitive 3D-reconstruction process. According to the official document of the Pix4Dmapper [39],
the Pix4Dmapper is not quite in favor of MiniMCA6 because of the slow rolling shutter of MiniMCA6.
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As shown in Figure 14, obvious geometric and spectral distortions in the transitional areas 
between the adjacent images can be observed in the mosaicking result by the Pix4Dmapper, 
indicating that the mosaicking result by our proposed method can produce the result that has a 
much better geometrical quality of the UAV MiniMCA6 image stitching.  
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Figure 14. Comparison of local mosaicking results of the two methods. The upper two regions are from
the dataset-urban, the lower two regions are from the dataset-popcorn. (a) by the proposed method;
(b) by Pix4Dmapper.

As shown in Figure 14, obvious geometric and spectral distortions in the transitional areas
between the adjacent images can be observed in the mosaicking result by the Pix4Dmapper, indicating
that the mosaicking result by our proposed method can produce the result that has a much better
geometrical quality of the UAV MiniMCA6 image stitching.
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6. Assessments and Discussion

6.1. Assessment of Processing Efficiency

To compare processing speeds, we divided the dataset-urban into several subsets that have
different sizes. The size of each subset and the computing time by our method and the Pix4Dmapper
are listed in Table 4. The time consumption of the Pix4Dmapper increased dramatically with the scale
of the dataset. Meanwhile, the time consumption of our proposed method has a nearly linear growth.
This is because the Pix4Dmapper tried to match all images exhaustively and recover the 3D structure of
the ground surface. These two processes are time-expensive. In the comparison of the complicatedness
of the models, the sparse 3D reconstruction process will take more time than the alignment process
in the proposed method and, furthermore, the dense 3D reconstruction will take much longer than
the sparse 3D reconstruction. On the contrary, the proposed method spent much less time in the
reconstruction process by incorporating the simplified projection model. The implementation of the
proposed method has not used GPU acceleration so far in the experiment, and the deeply optimized
math library Numpy [40] has been used to perform the matrix operations. In the future, to implement
the proposed method with GPU acceleration is indeed attractive.

Table 4. Comparison of time consumption in the mosaicking of the dataset-urban.

Dataset Size Proposed Method (Time in S) Pix4Dmapper (Time in S)

147 449 960
254 1047 3720
362 2117 11,400 s

6.2. Accuracy Assessment

Assessment of the mosaicking results can be done in two aspects: spatial and spectral accuracy.
Higher spatial accuracy means the mosaicking leads to less geometric distortion while higher spectral
accuracy means the mosaicking operation can keep better the spectral information from original
images at each pixel location.

A SPOT 5 satellite image of Beitun city was used as a reference for assessing spatial accuracy.
The satellite image is the 2.5 m resolution SPOT full-color image, captured on 21 November 2014.
The matching points are selected manually and used to calculate the spatial root mean square error
(RMSE). The matching points are illustrated in Figure 15.
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The comparison in Table 5 shows that the proposed method has a smaller RMS error than the
Pix4Dmapper, even if the latter should theoretically have higher spatial accuracy. This is because the 3D
reconstruction model has more DOFs. Thus, it is more sensitive to matching noise. In local areas, the
reconstruction process may be unstable due to the reasons like wrong matches or the rolling shutter effect.
Since it has experienced simplification, our proposed model is more stable with the quality variation of
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the data. For the dataset-popcorn, despite the fact that the Pix4Dmapper generated a visually satisfactory
result, the point cloud of the result has considerable distortion (Figure 16) and the calibrated camera
positions also have major distortion because the 3D reconstruction algorithm is more sensitive to image
data quality. Without additional information such as the Ground Control Points (GCPs), the error will
accumulate and finally form the arc of the point cloud shown in Figure 17, especially with datasets that
have low texture such as the dataset-popcorn. The lack of matched point pairs will reduce the chance to
correct such errors in the 3D-reconstruction process. On the contrary, the proposed method is more robust
in such circumstances because of the hypothesis of planar ground and flying trajectory.

Table 5. Comparison of root mean square (RMS) errors with the dataset-urban.

RMS Proposed Method (pixel) Pix4Dmapper (pixel)

AVERAGE 12.84 38.89
MIN 4.34 14.58
MAX 23.36 80.51
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To evaluate the spectral accuracies of the image mosaic results, a comparative method based on
feature matching is adopted. Because it is difficult to pick up sufficient points manually to perform the
spectral comparison. Thus, we just chose several original images from the datasets and matched them
with the two mosaicking results. The average RMS error of all the bands for one pixel is calculated
based on the following equation:
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eRMS =

√√√√∑nbands
j=1

(
goriginal

j − gresult
j

)2

nbands
(9)

where n is the total number of the image bands, goriginal
j and gresult

j is the gray value of the j− th band
at a matching point, and the nbands are the total number of the image bands. In this case, the nbands is
equal to six.

To keep the same point set used to make the comparison, the point pairs that correspond to the
same points on the original images were used to perform the comparison, i.e., the point pairs linked
by solid lines in Figure 18. The positions of the original images in the mosaicking results are shown in
Figure 19:
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Table 6 shows the RMS errors of spectra at the seven areas on the mosaic images generated
by the proposed method and the Pix4Dmapper. Z-Tests are performed to estimate the significance
of the diversity of the two sets of the RMS errors. The result indicates that the proposed method
has a smaller RMS error than the Pix4Dmapper in vegetated areas such as farmlands. In the bare
soil area (site No.6) the two results have similar performances (|Z| < 1.96). Moreover, in the urban
area (site No.3), the Pix4Dmapper performed better than the proposed method, but the diversity
is also not significant. In sites No.1, 2, 4, and 7, the proposed method performs better than the
Pix4Dmapper, and the diversity has major significance (|Z| > 2.58). In site No.5, the performance
of the Pix4Dmapper is significantly better than the proposed method. Considering the proposed
method mainly aims to be used in the farming areas, the result is acceptable. The spectral distortion of
the mosaicking results is mainly caused by the resample process and the blending process. For the
proposed method, an image will be resampled using the same translation and rotation parameters.
On the contrary, the Pix4Dmapper will resample the pixels according to the 3D reconstruction results,
indicating the resampling parameters will vary in different parts of the image, and this process will
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bring more spectral distortion. Considering the agricultural areas always have a smaller elevation
variation, the simplified projection model of the proposed method may have great potential in
agriculture applications.

Table 6. Comparison of spectral distortion.

Sample
Zone No.

Matched
Point

Number

RMS Error
of Proposed

Method

Standard Deviation
of RMS Errors

(Proposed Method)

RMS Error of
Pix4Dmapper

Standard Deviation
of RMS Errors
(Pix4Dmapper)

Z-Test Value

1 321 7.9892 4.6523 8.8905 5.0781 −2.4201
2 775 6.3240 3.2269 7.8622 4.2996 −7.9659
3 233 9.4951 5.0966 8.8159 5.0751 1.4414
4 493 5.9284 3.5761 6.8598 4.0188 −3.8441
5 452 8.7438 5.0430 7.8676 4.9279 2.6420
6 634 7.3783 3.7951 7.7523 4.4444 −1.6114
7 336 6.6388 3.3675 7.6904 3.7820 −3.8064

For most 3D reconstruction methods, the feature points are used as reference points, which will
have a lower precision loss in the resampling process. Meanwhile, the proposed method applies
the same rotation parameter to one single image, which means such a comparison is not in favor of
the proposed method. Even in such a comparison, the proposed method performs better than the
state-of-the-art commercial software in agricultural lands. We can conclude that the proposed method
can realize a lower precision loss in the spectral properties of the target.

The spectral distortion reduced by the proposed method can be discussed from two aspects. From
one aspect, the proposed method completed the mosaicking of the two datasets in a rather shorter time
than the Pix4Dmapper. This indicates that our proposed method may be a more efficient solution to
conduct UAV image mosaicking in some emergency response applications such as disaster monitoring.
From the other aspect, the spectral distortion brought by the blending process is not adequately studied
in this research. Thus, a blending algorithm with less spectral distortion needs to be studied in the
future. The lower spectral distortion with a conventional blending algorithm also indicates that the
modified projection model is necessary to reduce the spectral distortion during the mosaicking process;
thus, with a better blending algorithm, the spectral distortion may be further reduced.

6.3. The Impact of Altitude Accuracy

The simplification of the projection model depends on the steadiness of the working altitude of
the UAV. Because the simplified projection model treats both the ground and the working trajectory of
the UAV as planar, the unstable altitude of the UAV platform will result in a considerable spatial error
or an intolerable image misplacement. Unfortunately, the accuracy of the GPS altitude is not good
enough on most occasions, especially for onboard GPS receivers which suffer from severe limits by the
weight and cost. So it is necessary to discuss whether the low positioning accuracy of the onboard GPS
receivers has a strong impact on the result.

The altitude of a UAV depends on the GPS altitude. But since the GPS altitude is not quite
reliable and may have a sudden change during the flight, the UAV also uses other sensors such as the
accelerometer and the gyroscope to keep the pose and the altitude steady. Under this circumstance,
the unstable GPS altitude can be supposed to vary around the true altitude. Therefore, an average of
the GPS altitudes of the images is good enough to be an estimation of the H in Section 3.2.

6.4. The Impact of the Alignment of the Bands

In this research, it acquiesces that the bands of an image are already aligned because the alignment
between the bands is beyond the topic of this study. However, during the experiment it is not possible
to ignore this issue. The MiniMCA6 has an exclusive software package to correct the offsets between
bands according to the factory calibration file. According to the FOV and the pixel size of the sensor,
it can be calculated that when the UAV works 200 m high above the ground, the ground resolution
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is 108.33 mm. This length is greater than the distance between the two farthest lenses. So the offset
between the lenses can be ignored.

6.5. The Impact of the Other Reflection Characteristics of the Ground Targets

As we mentioned above, the environmental condition factors such as the atmosphere and the
relative positions of the sun, the target, and the sensor may also affect the reflective properties. These
factors indeed have a strong impact on the reflectivity of the ground targets, especially in agricultural
areas because the plant canopy has anisotropic reflective properties. Although the environmental
conditions may have an influence on the UAV images, the band selection method still can work very
well, because the proposed method only evaluates the gray scale images of each band and uses the
selected optimal band that has the highest average Q-Value to perform the feature matching of the
image mosaicking. On the other hand, the environmental conditions mainly affect the remote sensing
applications such as crop growth monitoring by changing the reflectance. A Teflon board can be
used to calibrate the MiniMCA6 sensor right before every flight for the further applications using the
mosaicking results.

7. Conclusions

This paper presents a simplified but efficient method for UAV multispectral image mosaicking in
agricultural applications. In the proposed method, an algorithm for automatic image band selection
was proposed and used in selecting an optimal band for feature matching, and a simplified projection
model was also adopted to avoid the computationally expensive 3D reconstruction. The simplified
projection is able to promote the efficiency of the mosaicking process and can reduce the spectral
distortion by avoiding the irregular resampling in the 3D reconstruction process. The performance
of the proposed method was demonstrated through a case study in Beitun City, Xinjiang Province,
China. Results showed that the proposed method performed well on the two datasets and achieved
better mosaicking results than the state-of-the-art commercial software Pix4Dmapper. The resultant
mosaicked images by our proposed method have less spectral distortion and higher spatial accuracy,
and the mosaicking process consumed much less time than the Pix4Dmapper package.

The limitation of this study is that the spectral distortion of the image blending process is not well
considered. An image blending algorithm producing less spectral distortion has to be studied in future
work. The evaluation process for feature matching will be very time consuming if the onboard sensor
has a large number of bands (e.g., the hyperspectral sensor); thus, in future work, we should consider
how to reduce the band number by merging bands or band selection based on the spectral features of
the ground targets. Using GPU to accelerate the mosaicking process is also an attractive direction to
study in the future.
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