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Abstract: Pregnancy induces a number of immunological, hormonal, and metabolic changes that are
necessary for the mother to adapt her body to this new physiological situation. The microbiome of
the mother, the placenta and the fetus influence the fetus growth and undoubtedly plays a major
role in the adequate development of the newborn infant. Hence, the microbiome modulates the
inflammatory mechanisms related to physiological and pathological processes that are involved in
the perinatal progress through different mechanisms. The present review summarizes the actual
knowledge related to physiological changes in the microbiota occurring in the mother, the fetus,
and the child, both during neonatal period and beyond. In addition, we approach some specific
pathological situations during the perinatal periods, as well as the influence of the type of delivery
and feeding.

Keywords: microbiome; pregnancy; fetus; placenta; newborn; infancy; critical illness; sepsis; allergy

1. Introduction

Pregnancy induces a number of immunological, hormonal, and metabolic changes necessary for the
normal development of the fetus and for a timely onset of labor and successful delivery [1]. It has been
described that maternal microbiota influences prenatal and early postnatal offspring development and
health outcomes [2,3]. There is a lack of consensus about the real nature of microbiome changes during
pregnancy, since discrepant and unpredictable findings have been described [4–6]. These differences
could be explained by the difference in gestational age, genetics, ethnicity, and environmental factors
surrounding the participants included in those studies. Indeed, it has been described that maternal
microbiota composition during pregnancy is related to maternal diet [7–9], and by pre-pregnancy
weight and weight gain over the course of pregnancy [10–13]. Koren et al. described that the amounts
of anti-inflammatory butyrate-producer commensal bacteria present in non-pregnant women gut
microbiota decrease while bacteria associated with pro-inflammatory responses, such as Proteobacteria,
increase during pregnancy [4]. Similarly, bacterial diversity tends to be reduced in vaginal microbiota
during pregnancy while increasing vaginal Streptococci along with several specific Lactobacilli strains,
which are thought to prevent the growth of pathogenic bacteria, as well as to help human digestion,
and influence host innate and adaptive immune system responses [4,14]. Furthermore, the classical
paradigm of the fetus as a sterile organism is under discussion, since a characteristic microbiome has
been identified in the placenta, the amniotic fluid, and the fetus in healthy pregnancies [15,16]. However,
this issue is under discussion. Perez-Muñoz et al. argued the weakness of evidence supporting the
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“in utero colonization hypothesis”, due to methodological difficulties, and concluded that current
scientific evidence does not support the existence of microbiome within the healthy fetal milieu [17].

Gut microbiota influences the immune function [18], and thus may modulate the response
through different microbial-derived metabolites, especially short-chain fatty acids (SCFAs) such as
butyrate, acetate, or propionate [19]. These are the key drivers of T-cell subset proliferation and
activity [19,20]. Gastrointestinal bacteria generate SCFAs after fermentation of complex dietary
carbohydrates. These metabolites may have an influence both in the mother and in the newborn by
down-regulation of pro-inflammatory responses at the specific sites where the allergens are located,
which typically precedes asthma in childhood [21]. In addition, the may also influence bone marrow
stimulation by reprogramming the immunological tone of the mammalian ecosystem [22].

Finally, it is important to consider that the discrepancies of the data obtained to date could be
influenced by a number of factors such as the dietary pattern, the ethnicity, the geographic location,
and the research methodology. The limitations of classical culturable methods have been improved
with new molecular methods used to characterize the microbiota. However, these new methods
have their own limitations, as reagent, laboratory contamination, and the inability to differentiate
living and dead microorganisms. Indeed, recent research complements the study of microbiome
with metabolomics and proteomic analysis in order to complete the whole metabolic picture of the
microbiota and its metabolic status. Therefore, further studies are needed to confirm the evolution of
microbiota during pregnancy and its influence in healthy and complicated labors and the newborn [23].

The present review summarizes the actual knowledge related to changes in maternal and fetal
microbiota occurring during pregnancy, which may influence the newborn and infant development.
In addition, changes in specific pathological infancy situations have also been revised.

2. Changes in the Microbiome during Pregnancy

During pregnancy, the female body undergoes hormonal, metabolic, and immunological changes
to preserve the health of both the mother and the offspring [1]. These changes alter the mother
microbiota at different sites such as the gut, the vagina, and the oral cavity. However, published data
are not consistent, since a number of factors might influence the microbiota profile such as the diet,
antibiotic, or other supplement intakes, as well as the methodology of research. Therefore, a holistic
approach is needed to understand all this information.

2.1. Gut Microbiota

The gut microbiota shifts substantially throughout the progression of the pregnancy and is
characterized by reduced individual richness (alpha-diversity) (Figure 1), and increased inter-subject
beta-diversity [4]. These changes are not related to, although they may be influenced by, the diet,
antibiotic treatments, gestational diabetes, or pre-pregnancy body mass index, but are vital for a healthy
pregnancy [4]. It has been suggested that other factors, such as the state of the host immune and
endocrine systems, may actively contribute to the observed modifications [24]. During the first
trimester, the gut microbiota pattern is similar in many aspects to that of healthy non-pregnant women,
showing a predominance of Firmicutes, mainly Clostridiales, over Bacteroidetes [25]. Then, maternal
gut microbiota declines in butyrate-producing bacteria, while Bifidobacteria, Proteobacteria, and lactic
acid-producing bacteria increase from the first to the third trimester, when the microbiota resembles
an unpredictably disease-associated dysbiosis that differs greatly among normal pregnancies [4].
Changes in the host immune system of the gastrointestinal mucosa together with metabolic hormonal
changes may trigger a low-grade pro-inflammatory status that could facilitate an increased diffusion
of glucose from the gut epithelium towards the lumen, and thus may induce weight gain while
modifying the gut microbiota during normal pregnancies [26]. Indeed, changes in the microbiota
may contribute to the evolution of this process. In addition, disruption of maternal gut microbiota
during the third trimester [27] may affect host metabolism in order to provide an energy supply for
the fetus [4,26]. Moreover, it has been reported that the gut microbiota during pregnancy is a critical
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determinant of offspring health [13,28], and that potentially determines the development of atopy and
autoimmune phenotypes in the offspring [28]. However, the relationship among the immune system,
the gut microbiota, and metabolism in pregnancy is unclear, and more research is needed to stablish
final conclusions.
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2.2. Vaginal Microbiota

The composition of the vaginal microbiota is dynamic, corresponding with hormonal fluctuations
throughout the woman’s reproductive life, and also during pregnancy. A number of protective lactic
acid-producing Lactobacillus species dominates the healthy vaginal microbiota in most reproductive-age
women. These bacteria protect against vaginal dysbiosis and inhibit opportunistic infections through
the direct and indirect protective effects of Lactobacillus products, such as lactic acid and bacteriocin
among others. Lactic acid decreases vaginal pH and thus inhibits a broad range of infections [29],
can directly affect host immune functions, by inhibiting pro-inflammatory responses, and also help
to release mediators from vaginal epithelial cells and stimulate antiviral response [30]. In addition,
Lactobacillus-derived bacteriocins may inhibit pathogen growth [31]. The degree of protection varies
according to the predominant Lactobacillus specie [30]. Vaginal dysbiosis is comprised of a wide array
of strict and facultative anaerobes that correlate to increased risk of infection, diseases, and poor
reproductive and obstetric outcomes [32].

During normal pregnancy, the composition of the vaginal microbiota changes as a function of
gestational age, with an increase in the relative abundance for Lactobacillus spp., such as L. crispatus,
L. jensenii, L. gasserii, L. vaginalis, and a decrease in anaerobe or strict anaerobe microbial species, such as
Atopobium, Prevotella, Sneathia, Gardenerella, Ruminococcaceae, Parvimonas, Mobilincus [33]. Those authors
reported for the first time, that the composition and stability of the vaginal microbiota of normal
pregnant women is different from that of non-pregnant women. In fact, low risk pregnant women have
more stable vaginal flora throughout the pregnancy than non-pregnant women. Normal changes in
the vaginal flora during pregnancy are transitions to another Lactobacillus community, and this stability
would protect against ascending infections through the genital tract. In addition, they reported that
Lactobacillus communities vary depending on the ethnicity of the women [33]. Stout et al. [34] confirmed
that vaginal microbiota richness and diversity remained stable during the first and second trimesters
of gestation in pregnancies ended at term, whereas in woman with preterm born, the richness and
diversity decreased early in pregnancy. Therefore, early pregnancy may be an important environment,
modulating preterm delivery. A meta-analysis reported significant diversity differences in vaginal
microbiomes in the first trimester, between women with term and preterm outcomes, indicating
a potential diagnostic utility of microbiome-related biomarkers [35]. In addition, the increase of
pathogens in the vagina is associated with complications of pregnancy, in particular with an increased
risk of preterm birth and spontaneous abortion [6].



Nutrients 2020, 12, 133 5 of 21

2.3. Oral Microbiota

An increase in the microbial load in the oral cavity during pregnancy has been described. It has
been hypothesized that pregnancy creates a nutrient environment that is more favorable to some
sensitive strains [36]. The presence of pathogenic bacteria Porphyromonas gingivalis and Aggregatibacter
actinomycotemcomitans in gingival sulcus were significantly higher during early and middle stages
of pregnancy compared to non-pregnant women [37]. The oral alpha-diversity index was higher
in the third trimester compared to non-pregnant women, and this may be related to the increase of
progesterone and estradiol. [38]. One underlying mechanism refers to estrogens being substituted
for vitamin K in bacterial anaerobic respiration, especially for black-pigmented Bacteroides such as
Bacteroides melaninogenicus and Prevotella intermedia [38].

2.4. Placental Microbiota and Fetal Colonization

The classical paradigm of fetal environment as a sterile harbor has traditionally explained that
microbes, and thus microbiome, are acquired both vertically (from the mother) and horizontally (from
other humans or from the environment) during and after birth. However, recent data have questioned
the traditional accepted dogma of human microbiome acquisition, proposing that neither the placenta,
the amniotic fluid, nor the fetus are sterile.

Several findings using both culture and metagenomic techniques have suggested the presence of
a low biomass microbial community in the healthy placenta [39–43]. The abundance of different species
of Lactobacillus, Propionibacterium, and members of the Enterobacteriaceae family have been detected
by DNA-based studies in placental tissue of pregnant women at term and it is under debate [16].
In addition, other authors have confirmed a distinct microbiota in both the placenta and amniotic
fluid of healthy women at the time of elective C-section, characterized by low richness, low diversity,
and the predominance of Proteobacteria [44]. Similarly, other studies have found microbes in amniotic
fluid and umbilical cord blood in healthy asymptomatic women, as well as in those with pregnancy
complications [45–47].

However, it is unclear where the fetal microbiota comes from, and when is the first fetal exposition.
The presence of a different placental microbiota compared to the vagina raises the possibility that
the infant may be first seeded in utero from other sources. Microorganism may pass through the
placenta and colonize the fetus ascending from the vagina, from the oral cavity, from the urinary track,
or from the intestinal lumen of the mother. These microorganisms may reach via the hematogenous
route, the placenta, and then be transmitted to the fetus [48]. Some of those oral bacteria, such as
Fusobacterium nucleatum, may be transmitted hematogenously during placentation by binding to
the vascular endothelium, and modifying its permeability and the translation of other common
commensals, such as Escherichia coli [49]. In addition, Franasiak et al. observed that Flavobacterium and
Lactobacillus represent the majority of endometrial bacterium at the time of embryo transfer, supporting
a new hypothesis of the endometrial environment participation [50].

Different studies have also detected microbiome in the first baby fecal sample, the meconium,
supporting the in utero exposure to bacteria [51,52]. Staphylococcus has been reported as the most
prevalent bacteria in meconium samples, followed by Enterobacteriaceae, Enterococcus, Lactobacillus,
and Bifidobacterium even in infants born by C-section [52,53]. Modification in placental microbiota may
be related with adverse pregnancy outcomes of pregnancy or symptoms of clinical infection [40].

On the contrary, Perez-Muñoz et al. [17] critically revised scientific evidence supporting both
the “sterile womb” and “in utero colonization” hypotheses. These authors concluded that there
is more evidence supporting a sterile womb environment. They suggest that methodological
approaches, in which contamination is very easy at different steps and does not use appropriate
controls, are responsible for the microorganism colonization described in utero. One well-controlled
study compared oral, vaginal, and placenta samples with paired contamination controls. This study
reported that when using molecular methods, placental samples were undistinguishable from their
paired-contaminated samples. They concluded that while there were distinctive microbial signatures
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in oral and vaginal samples, they did not find a characteristic placental microbiota, evidencing a sterile
environment [54]. Therefore, conclusions remain unachievable, and more studies are needed in
this area.

3. Changes in the Microbiome Related to the Type of Delivery

There is great controversy in the scientific community about the relationship of the meconium
and infant gut microbiota profile, and the type of delivery. Microbiome studies on early infancy
have demonstrated a significant influence of the mode of delivery on the microbiome composition,
suggesting the likely association of the infant gut bacteria with maternal vaginal or skin microbiome
habitats. A systematic review has concluded that the diversity and colonization pattern of the gut
microbiota were significantly associated to the mode of delivery during the first three months of
life, which is a critical period of life for immunological programming [55]. However, the observed
differences disappear after 6 months of infants’ life, when solid foods are included in the diet [56].
It is important to clarify the influence of factors commonly accompanying C-section delivery on the
microbiome, due to the potential influence on some non-communicable diseases, such as neonatal skin
infection, asthma, allergies, obesity, inflammatory bowel disease, or type I diabetes mellitus [56,57].

Vaginally delivered newborn have shown bacterial communities resembling their own mother’s
vaginal microbiota, dominated by Lactobacillus, Prevotella, or Sneathia spp. In contrast, C-section-born
infants harbored bacterial communities similar to those found on the skin surface niche, dominated by
Staphylococcus, Corynebacterium, and Propionibacterium spp. [58] or potentially pathogenic microbial
communities such as Klebsiella, Enterococcus, and Clostridium [57]. Other authors have reported that
Bifidobacterium [59] and Bacteroides [55] seem to be significantly more frequent in vaginally compared
with C-section delivered infants, which were mainly colonized by Clostridium and Lactobacillus [55].
The high abundance of Bifidobacterium species in infants is considered to promote the maturation
of the healthy immune system, while high presence of Clostridium difficile is considered as one of
the major intra-hospital hazards of severe gastrointestinal infections during infancy [55]. Another
study proposed that some species of Propionibacterium were most abundant in the meconium of
vaginally delivered Chinese infants, whereas C-section-born children had higher amounts of Bacillus
licheniformis. In addition, the diversity of the microbial composition was also higher in vaginal
than in C-section deliveries, although no correlation with maternal microbiome was reported [60].
Similarly, a metagenomic analysis found a Propionibacterium-enriched meconium in vaginal delivery
mothers, which may proceed from skin or fecal microbes through direct contact during the natural
labor [61]. Therefore, there is no consensus regarding the most colonizable pattern of the first
microbiota community in the first three days after birth, although it seems that according to phyla,
vaginal deliveries are more related to Actinobacteria and Bacteroidetes, while C-section deliveries are
more related to Firmicutes. In addition, it has also been suggested that the transfer of maternal vaginal
microbes plays a minor role in seeding infant stool microbiota since the overlap of maternal vaginal
microbiota and infant faecal microbiota is minimal, while the similarity between maternal rectal
microbiota and infant microbiota was more pronounced [62].

The discrepances of the results obtained could be due to different factors associated to C-section
delivery such as antibiotic administration, but also to breastfeeding, maternal obesity, gestational
diabetes mellitus, and even the analytical methodology. In addition, the diversity from Firmicutes and
Bacteroides colonization levels on infants gut microbiota may be influenced by geographical variation
such as the latitude [63].

Some authors have proposed that the lower presence of Bifidobacteria and Bacteroides, and the
abundance of Clostridia and Lactobacillus, in infants delivered by C-section could be explained
by perinatal antibiotics administration [55]. Mothers delivering by C-section receive antibiotic
prophylaxis before the beginning of surgery or, in some countries, after the cord clamping to minimize
the direct exposure of the neonate to antibiotics [64]. In addition, Azad et al. determined that
intrapartum antibiotics both in C-section and vaginal deliveries are associated with infant gut
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microbiota dysbiosis, although breastfeeding modifies some of these effects [65]. Nevertheless,
Martinez et al. [66] performed antibiotic-free C-section delivery in mice and determined that these mice
did not have the dynamic developmental gut microbiota changes observed in control natural born
mice, evidencing the involvement of maternal vaginal bacteria in a proper metabolic development
even in absence of antibiotics supporting the hypothesis of the antibiotic-modulated dysbiosis. It is
worth to take into account that perinatal antibiotic administration may be associated with increased
risk of developing morbidities such as asthma, allergies and obesity, which may be influenced by
dysbiosis. In accordance, epidemiological data show that atopic diseases appear more often in infants
born by C-section than after vaginal delivery [67,68].

Furthermore, bacterial richness and diversity were lower in the infant gut of babies born after
elective C-section and higher in emergency C-section, suggesting that colonization may be affected
differently in both situations. It is important to highlight that emergency C-section and vaginal delivery
labor are frequently accompanied by rupture of fetal membranes, and exposing the fetus to maternal
vaginal bacteria [65].

Importantly, C-section may decrease the colonization of milk-digested bacteria including the
genus Lactobacillus in newborns during the first months of life [58]. In addition, the mode of delivery
has a relevant impact on the microbiota composition of colostrums and milk [69,70], which also may
be influenced by antibiotics administrated during C-section. It has been proposed that infants born
by C-section lacked the early provision of breast milk essential to attain a proper gut microbiota that
contains microbes such as Lactobacilli and Bifidobacteria. This could explain the higher colonization
rates of these genera in vaginal compared to C-section-delivered infants [71]. In fact, Sakwinska et
al. reported that only vaginal delivered and fully breastfed infants had gut microbiota dominated by
Bifidobacteria [62].

Finally, there are several potential preventive intervention strategies to restore the gut microbiota
after C-section [72]. The intervention could be focused on maternal administration of probiotics and
prebiotics during gestation. There is a great interest about “seeding approaches” as “vaginal seeding” to
reverse the effects of C-section delivery mode on the microbiome in early life, but at the same time there
are critical voices concerned about safety and efficacy of this practice [56,72]. In addition, the intervention
could concentrate on the neonate using “seeding” methods such as encouraging breastfeeding instead
of formula feeding, or the use of infant enriched formulas. In this sense, supplementation with
symbiotic, the combination of synergistic pre- and probiotics, might offer an innovative strategy to
re-establish the delayed colonization of Bifidobacterium spp. in C-section-delivered children [73].

4. Microbiome and the Type of Feeding

Maternal diet establishes long-lasting effects on offspring gut microbial composition, which may
have important clinical implications [74,75]. Complex interactions between breast milk cytokines and
microbiota guide the microbiological, immunological, and metabolic programming of infants’ health,
which may explain the higher risk of obesity in infants with overweight and excessive weight gain
mothers [76]. In addition, data supporting the notion of bacterial translocation from the maternal gut
to extra-intestinal sites during pregnancy are emerging and potentially explain the presence of bacteria
in breast milk [28].

Some authors have reported changes in meconium microbiota when delaying the collection of
meconium samples by one day, supporting that the type of feeding or the environment has an influence
after the birth, which may be more determinant to establish the intestinal microbiome during
childhood [53]. Breast milk has been recognized as the gold standard for human nutrition [77]. The type
of feeding has an important impact on gut microbial composition in preterm infants. In preterm infants,
breast milk has been associated with improved growth and cognitive development [78] and a reduced
risk of necrotizing enterocolitis and late sepsis onset [76,79,80]. Occasionally, the absence of mother’s
own milk (MOM) requires the use of donated human milk (DHM). A prospective cohort study has been
launched to determine the impact of DHM upon preterm gut microbiota admitted in a neonatal intensive
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care unit. Despite the high variability of DHMs, no differences in microbial diversity and richness
were found, although feeding type significantly influenced the preterm microbiota composition and
predictive functional profiles. Inferred metagenomic analyses showed higher presence of Bifidobacterium
in the MOM, a genus related to enrichment in the glycan biosynthesis and metabolism pathway, as well
as an unclassified Enterobacteriaceae and lower unclassified Clostridiaceae compared with the DHM
or in the formula fed groups. After adjusting for gender, postnatal age, weight, and gestational age,
the diversity of gut microbiota increased over time and was constantly higher in infants fed their MOM
relative to infants with other types of feeding. In addition, DHM favors an intestinal microbiome
more similar to MOM despite the differences between MOM and DHM [81]. Preterm infants are
prone to develop free radical-associated conditions [82] that may be influenced by the microbiota.
In a recent study, urine oxidative stress biomarkers such as 8-hydroxy-deoxyguanosine (8OHdG/2dG),
orto-tyrosine, and F2 isoprostanes, neuroprostanes, neurofurans, and di-homo-isoprostanes were
longitudinally measured in preterm infants fed either MOM or DHM using validated mass spectrometry
techniques. No significant differences for any of the markers studied were found between preterm babies
fed MOM or DHM [83]. However, exfoliated epithelial intestinal cells transcriptome of preterm infants
fed their MOM or a DHM induced a differential gene expression of specific genes which may contribute
to a more efficient antioxidant response in the postnatal period [84]. Therefore, using DHM could have
potential long-term benefits on intestinal functionality, the immune system, and metabolism [85–87].
However, available pasteurization methods cause changes that may blunt many of the positive aspects
derived from the use of MOM [88–90]. Further studies are needed to understand the complex links
between microbiome and breastfeeding, its impact on health programming, and to develop sensitive
methods capable of providing human milk as similar as possible to their MOM, when the latter is
not available.

5. Microbiome in Pathological and Adverse Pregnancy Outcomes

Some studies have compared the fetal and mother microbiome in relation to adverse outcomes
such as prematurity or low birth-weight without reaching firm conclusions. Ardissone et al. [91]
compared the meconium microbiome in newborn before and after 33 weeks of gestation and concluded
that Enterococcus and Enterobacter negatively correlated with gestational age, and Lactobacillus and
Phortorhabdus were more abundant in newborns with less than 33 weeks of gestation. They indicated
that the composition of the microbiome may be involved in the inflammatory response that
leads to premature birth more than the colonization alone. Specifically, preterm subjects with
severe chorioamnionitis had higher abundance of Ureaplasma parvum, Fusobacterium nucleatum,
and Streptococcus agalactiae [16]. The placental microbiome varies as a consequence of an excess
of gestational weight gain, but is not related to obesity among women with spontaneous preterm
birth. Indeed, this placental dysbiosis affects different bacterially encoded metabolic pathways that
may be related to pregnancy outcomes [92]. Furthermore, it has been reported high abundance of
Burkholderia, Actinomycetales, and Alphaproteobacteria in placental samples from gravidae delivered
preterm, and of Streptococcus and Acinetobacter in placental samples from patients with a history of
antepartum urinary infection. In contrast, Paenibacillus predominated in term placental specimens [15].
Other authors have proposed that the fetal intestinal microbiota derives from swallowed amniotic fluid,
and that they may trigger an inflammatory response which leads to premature birth [91]. Considering
that some Lactobacillus strains may possess potential anti-inflammatory activities, and could regulate
blood glucose levels in diabetic humans [93], the low abundance of Lactobacillus in placentas of low
birth weight neonates reported by Zheng et al. [94] might be related to a pro-inflammatory status in
these pregnancies. Thus, the higher sensitivity of fetal intestinal tissue to inflammatory stimuli may
induce labor due to an immune-mediated reaction. However, as mentioned previously, the presence
of placental microbiota is under discussion due to methodological doubts, and these data have to be
discussed with caution.
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Finally, a number of bacteria, viruses, and protozoa infections have been associated with pregnancy
complications. Liu et al [95] analyzed the gut microbiome in pregnant women affected by preeclampsia.
They showed an overall increase in pathogenic bacteria such as Clostridium perfringens and Bulleidia
moorei and a reduction in probiotic bacteria Coprococcus catus. A correlation between periodontitis and
the risk of spontaneous abortion or miscarriage has also been described [96]. More well-controlled
studies should be carried out in order to identify interactions between pregnancy microbiome and
mother and children health which might help to predict gestational and newborn complications and
search for new therapeutic targets in adverse obstetrical conditions.

6. Microbiome and Obese Pregnancy

Epidemiological evidence shows that 50% of women in childbearing age and 20%–25% of pregnant
women in Europe can be affected by overweight or obesity [97], increasing the cardiometabolic risk in
mothers [98] and the susceptibility to metabolic diseases in offspring [99–102]. Pregnancy-associated
changes are different in overweight or obese women compared to normal-weight pregnant women.
Overweight pregnant women show a reduction in the number of Bifidobacterium and Bacteroides,
and an increase in the number of Staphylococcus, Enterobacteriaceae, and Escherichia coli [11]. Additionally,
higher levels of Staphylococcus and Akkermansia muciniphila, and lower levels of Bifidobacterium were
detected in women with excessive weight gain during pregnancy as compared to normal-weight
ones [76]. Consequently, this altered maternal microbiome will contribute to shape an altered
composition of the offspring’s microbiome [103,104] and thus influence their future health.

Vaginal-born neonates from overweight or obese mothers show increased numbers of Bacteroides
and depleted in Enterococcus, Acinetobacter, Pseudomonas, and Hydrogenophilus [104]. When specifically
examining phyla level relative taxonomic abundance among preterm women by virtue of maternal
weight gain, other authors have reported an appreciable and significant increased abundance of
Firmicutes, Actinobacteria, and Cyanobacteria, and decreased relative abundance of Proteobacteria [92].
Furthermore, this altered maternal microbiota composition may be transferred from mother to fetus
during the prenatal period [94] and through lactation [105].

In addition, gut microbiota can induce obesity in children by several mechanisms. For example,
lower amounts of Bifidobacteria can affect weight gain in infants through mucosal host-microbe crosstalk,
and immune and inflammatory dysregulation. Moreover, higher presence of Bacteroides, Clostridium,
and Staphylococcus can stimulate greater energy extraction from food, combined with a reduced control
of inflammation during the first six months of life in infants of overweight mothers [12]. These first
months of life are of great importance since rapid weight gain during this period is associated with
an increased risk of obesity during childhood, and this influence is even more important than the birth
weight [106].

7. Microbiome in Critical Ill Children

Critical illness itself or its treatment can influence the composition of microbiota [107,108].
Although broad-spectrum antibiotics are probably the factor which further alters its composition,
other factors can alter the ecosystem in which develops the microbiota, such as enteral or parenteral
feeding, drugs administration, disease co-morbidities, central venous catheters, or intubation and
mechanical ventilation. These studies have shown that the intestinal microbiota of critical patients
has low diversity, with a shortage of key commensal bacteria and overgrowth of pathogenic bacteria
such as Clostridium difficile, and some species of Enteococcus, Escherichia and Shigella [107,109–111].
In addition, the microbiota changes throughout the stay in the intensive care units (ICU) [112], and the
possibility of pathogenic colonization increases with the time of stay in the unit.

To our best knowledge, only one study has analyzed the microbiota in children in a pediatric ICU
(PICU) [113]. These authors found that the skin, oral, and fecal microbiota differs sharply from critically
ill children compared with healthy children and adults. They reported a PICU-associated dysbiosis
with less alpha-diversity, different composition (beta-diversity), and the loss of body site-specificity,
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increasing the abundance of nosocomial pathogens across all body sites and reducing gut commensals
such as Faecalibacterium [113]. A number of studies have shown an association between the microbiota
and the immune function [114], the systemic inflammation [115], the metabolism of nutrients [116],
the function of the central nervous system [117], the circadian rhythm [118], and the digestive
system [119]. Therefore, PICU-associated dysbiosis may contribute to malnutrition, nosocomial
infection, neurocognitive alteration, organ dysfunction, and sepsis associated to critical illness [113],
and may also have an effect on the lung, the brain, and the kidneys [107].

Critically ill patient conditions may contribute to changes in the oropharynx microbiota, such as the
increase of Klebsiella or Pseudomonas proliferation. On one hand, sedation and endotracheal intubation
decrease mucociliary clearance and cough, reducing the elimination of microorganisms. On the other
hand, mechanical ventilation, pneumonia, and acute respiratory distress syndrome (ARDS) favor
alveolar edema, increasing the amount of nutrients available and decreasing the amount of oxygen
in some areas. These facts stimulate bacterial proliferation [120], and increase the risk of nosocomial
infection and ARDS [121].

In addition to the critical patients, associated dysbiosis, hypoperfusion, and reperfusion of the
intestinal wall produce an intense inflammation of the digestive mucosa which alters the gradient of
oxygen concentration and increases the concentration of nitrates favoring the growth of pathogenic flora.
Furthermore, the slowing down of intestinal transit, frequent drugs (sedatives, opioids, catecholamines),
and the alteration of the mechanisms of microbial elimination (decreased production of bile salts and
IgA, pharmacological alkalinization of pH, etc.) may also influence the alteration of the digestive
functions [122]. Freedberg et al. observed that colonization by some microorganisms prior to admission
in ICU was associated with increased risk of infection by that same germ, and subsequently increased
mortality [123]. This fact indicates that the gastrointestinal microbiome can help stratification and early
identification of the risk of ICU patient complications.

8. Microbiome and Sepsis in the Newborn

The modification of the normal microbiota pattern can contribute to the development of
a systemic inflammatory response with increased cytokine production, sepsis, multi-organ failure,
and morbi-mortality [107,109–111]. In spite of variation in net incidence, neonatal sepsis remains one
of the leading causes of preventable neonatal morbidity and mortality throughout the world. The main
agents responsible for sepsis are group B Streptococcus (GBS), Escherichia coli, and coagulase-negative
Staphylococci (CONS) [124]. However, this scenario may be modified depending on the use of antibiotics
and/or the implementation of non-culture diagnostic techniques [125].

In recent years, there has been growing interest in the role of commensal bacteria in an individual´s
susceptibility to infection. A few studies have evaluated the maternal vaginal microbiota in relation
to GBS carrier status. Although it seems that some specific taxa might be associated with the
presence of GBS [126], there is no apparent parallel reduction of the predominant commensal bacteria
Lactobacilli [127]. Indirect evidence suggests that the neonatal gut microbiome might be of relevance
in GBS infection, since different colonizing species have been found in the stool of infants from
GBS positive and negative mothers, while the protective effect of pre and probiotics has also been
suggested [127].

It seems that gastrointestinal microbiota might induce an increase in permeability, modulating gut
and systemic immune response, and decreasing the tight junction integrity [128]. As a consequence,
intestinal bacteria can promote the systemic inflammatory response syndrome, facilitate bacterial
translocation, and cause late-onset sepsis and necrotizing enterocolitis, especially affecting premature
neonates. Most, but not all, of the evidence suggests that premature newborns with low microbiome
gut diversity, or with predominance of Staphylococcus, Firmicutes, and Proteobacteria are associated
with increased risk for late-onset sepsis compared to those premature infants at lower risk [129].
Furthermore, gut colonization with Bifidobacterium and increased presence of prebiotic oligosaccharides
in feces, has been related to less disruption of the mucosal barrier and gut epithelial translocation,
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providing an improved gut development and protection [130]. It remains unclear if invasion of
the bloodstream during sepsis is caused by the same microorganisms identified in stool [131] or by
others [129], in which case the gut microbiota would act as a facilitating mechanism by interfering with
the gut barrier or intestinal immune function. Further studies are needed to tease out if the differences
observed in gut colonization in ICU patients predispose to sepsis or if they respond to other factors
such as the diet, site differences in initiating and advancing feeds, breastfeeding, the use of antibiotics,
or interpatient transmission within the neonatal intensive care units [131].

9. Microbiome and Allergic Conditions

Allergy disorders represent an important global health burden with an increasing prevalence in
infants and children, mainly as food allergies, atopic eczema [132], and respiratory pathologies such as
rhinitis [133] or asthma [134]. Their causes are multifactorial and contemplate interactions between
genetic, environmental, and socioeconomic factors leading to different symptoms or phenotypes [135].
Among this heterogeneity, a restricted microbial exposure at early life seems to play an important role
influencing allergic diseases, and asthma onset [136].

9.1. Gut Microbiome and Atopy

Eczema or atopic dermatitis (AD) is the first typical allergic manifestation in newborns [137].
A recent study has reported a high proportion of Faecalibacterium prausnitzii on the gut microbiome
from AD subjects. The presence of these bacteria is lower in Crohn’s disease patients, as well as
anti-inflammatory fecal bacteria metabolites [138]. Besides, it has been shown that infants with AD
improved their symptomatology when the abundance of fecal Coprococcus eutactus, a butyrate-producing
bacterium, is increased [139]. Consequently, it has been proposed that dysbiotic gut microbiota and
subsequent dysregulation of the gut inflammation may promote an aberrant Th2-type immune response
to allergens altering the epithelial barrier in AD skin [140].

9.2. Gut Microbiome and Food Allergy

Available literature on animal models suggests that gut microbiome may have an important role
in the susceptibility to food sensitization and food allergy, mainly at early stages of life [141]. Chen et
al. [142] recently showed both lower microbiota alpha-diversity and altered gut microbiota composition
(an increased number of Firmicutes in detriment of Bacteroidetes) in children with food sensitization in
early life compared with children without these conditions. Among the causes, the increasing use of
antibiotics both in humans and in agriculture, and the lower intake of dietary fiber may have an impact
on these situations [143].

9.3. Gut Microbiome and Asthma

Allergies are the strongest risk factors for childhood asthma in Western countries [144], but the
relationship between asthma and the microbiota is not clear. Although it seems that the diversity
of the gut microbiota in infancy is even more determinant for asthma onset than the prevalence of
specific bacterial taxa, it has been suggested that there might be specific important bacterial species
related to the prevention of asthma, and that gut microbial diversity during the first month of life
may be the most important factor associated with asthma development at school age than with other
allergic manifestations [136]. In addition, another study has indicated that the neonatal gut microbiota
influences susceptibility to childhood allergic asthma via alterations in the gut microenvironment
that modulates CD4+ T-cell proliferation and functions. These authors have observed a characteristic
depletion of dihomo-γ-linoleate, a precursor of anti-inflammatoryω-3 polyunsaturated fatty acid and
prostaglandins that may be related [145].

As described previously, different factors have been associated with infant microbiome and the
risk of asthma, such as furry pets exposure [146], gestational age, the mode of delivery (vaginal vs.
C-section), and antibiotic treatment (direct vs. indirect via mother) among others [147,148]. However,
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there is no doubt that a key issue is the type of feeding. A systematic review addressing the effect of
breastfeeding in the development of asthma concluded that children who were breastfed for a longer
time during the first two years of life had a lower risk of developing asthma, and this effect could be
mediated by an adequate and early shaping of the gut microbiota [149,150], although whether the
dysbiotic microbiota is the cause or the consequence of atopic and allergic diseases is still unknown [140].
Besides, interventional studies have suggested that pre- and probiotics could prevent or down-regulate
the severity of some diseases, such as asthma or allergies, but the biological mechanisms, as well as the
best taxa or type of intervention, require further research [151].

10. Microbiome and Infection in Infants

The role of microbiome diversity and its variations in the incidence and susceptibility to infection
has also aroused great interest beyond the neonatal period. In view of the interaction between the
microbiota and the immune system, the implications are probably major and remain challenging,
but for some authors, is even more attractive the idea of its usefulness as a diagnostic tool, a preventive
strategy, or even a therapeutic target. As described in the neonatal period, in most infectious diseases
scenarios, a decrease in alpha and beta diversity of the microbiota seems to be present. Regarding
respiratory infections, diversity of the oropharyngeal and nasopharyngeal microbiota in children
with pneumonia was lower compared with healthy controls. Furthermore, a correlation between the
presence of certain taxa in sputum and the clinical course of community acquired pneumonia has been
described [152,153].

HIV infected children present reduced gastrointestinal microbial diversity [154]. Modulation of
the intestinal microbiome through nutritional supplementation, with the aim of decreasing bacterial
permeability, has been attempted in the context of HIV infection with scarce success [155,156].
In addition, the microbiome has been suggested to impact the risk of different infectious diseases.
Both vaginal and penile microbiotas modify the risk of sexual acquisition of HIV, due to their influence
on inflammatory pathways and metabolization of antiretroviral drugs [157,158]. Recent studies have
shown how an altered vaginal microbioma increases the risk of vertical transmission of HIV [159].
These studies beautifully exemplify the potential influence of the microbiome on the risk of infections,
as well as its implications in pharmacokinetics modulating bacterial metabolism.

Finally, based on the potential role of the gut microbiota as a modulator of the immune function,
attempts of supplementation with pre and probiotics have also been carried out. Two randomized
controlled trials have analyzed the impact of probiotic supplementation on children with acute
gastroenteritis without proving any beneficial clinical outcome [160,161]. Supplementation with
prebiotics or probiotics may also enhance vaccine response and thus becomes a new tool for the
improvement of vaccine efficacy [162]. However, results have been controversial in this field and
warrant further investigation. The evidence for a beneficial effect of probiotics on vaccine response was
strongest for oral vaccinations and for parenteral influenza vaccination, and depended on the choice of
probiotic, strain, dose, viability, purity, and the time and duration of administration [163].

11. Conclusions

There are many data confirming the interaction of microbiota in pregnancy and in the newborn
period, on the establishment of labor, children growth and development, and susceptibility to infections
and diseases. However, most studies are descriptive and entangling factors influencing the human
microbiome such as the age, race, type of feeding, mother’s diet, and antibiotics treatments is
challenging. Whatever it is, what is clear is that a number of microbiota-derived substances may easily
reach the bloodstream, and impact human metabolism.

Recent advances in genome sequencing technologies, metabolomics, proteomics, transcriptomics,
and bioinformatics will enable researchers to explore the fascinating field of the microbiota and,
in particular, its functions at a more detailed level. Therefore, larger and prospective studies are needed
to characterize the evolution of the microbiota during different conditions and its influence on healthy
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and pathological pregnancies, on labor onset, and on the perinatal period, in order to promote the
development of new preventive, diagnostic, and therapeutic tools.
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