Suppression of DNCB-Induced Atopic Skin Lesions in Mice by Wikstroemia indica Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Sample Preparation
2.2. Mouse Model
2.3. DNCB-Induced AD Model and W. indica Extract Treatment
2.4. Histological Analysis
2.5. Measurement of IgE and IL-4 Levels by ELISA
2.6. Measurement of Transepidermal Water Loss and Skin Hydration
2.7. Analysis of HPLC/MS
2.8. Statistical Analysis
3. Results
3.1. Effects of W. indica Extract on AD-Like Symptoms in the DNCB Hairless Mouse Model
3.2. Effects of W. indica on Epidermal Thickness in DNCB-Induced Atopic Mice
3.3. Effects of W. indica on Mast Cell Infiltration in DNCB-Induced Atopic Mice
3.4. Effects of W. indica Extract on Serum IgE and IL-4 Levels in DNCB-Induced Atopic Mice
3.5. Effects of W. indica Extract on Skin Barrier Function in DNCB-Induced Atopic Mice
3.6. The Phytochemical Characterization of W. indica Using the High-Performance Liquid Chromatography/Mass Spectrometry (HPLC/MS)
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Lee, J.H.; Han, K.D.; Park, Y.G.; Lee, J.Y.; Park, Y.M. Prevalence of atopic dermatitis in Korean children based on data from the 2008-2011 Korean National Health and Nutrition Examination Survey. Allergy Asthma Immunol. Res. 2016, 8, 79–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pyun, B.Y. Natural history and risk factors of atopic dermatitis in children. Allergy Asthma Immunol. Res. 2015, 7, 101–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Megna, M.; Patruno, C.; Villani, A.; Balato, A.; Monfrecola, G.; Ayala, F.; Balato, N. Systemic treatment of adult atopic dermatitis: A review. Dermatol. Ther. 2017, 7, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Bin, L.; Leung, D.Y. Genetic and epigenetic studies of atopic dermatitis. Allergy Asthma Clin. Immunol. 2016, 12, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leung, D.Y.; Boguniewicz, M.; Howell, M.D.; Nomura, I.; Hamid, Q.A. New insights into atopic dermatitis. J. Clin. Invest. 2004, 113, 651–657. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Kemp, A.; Varigos, G. IL-4 and interferon-gamma production in children with atopic disease. Clin. Exp. Immunol. 1993, 92, 120–124. [Google Scholar] [CrossRef]
- Jensen, J.M.; Pfeiffer, S.; Witt, M.; Bräutigam, M.; Neumann, C.; Weichenthal, M.; Schwarz, T.; Fölster-Holst, R.; Proksch, E. Different effects of pimecrolimus and betamethasone on the skin barrier in patients with atopic dermatitis. J. Allergy Clin. Immunol. 2009, 123, 1124–1133. [Google Scholar] [CrossRef]
- Rawlings, A.V.; Harding, C.R. Moisturization and skin barrier function. Dermatol. Ther. 2004, 17, 43–48. [Google Scholar] [CrossRef]
- Mori, T.; Ishida, K.; Mukumoto, S.; Yamada, Y.; Imokawa, G.; Kabashima, K.; Kobayashi, M.; Bito, T.; Nakamura, M.; Ogasawara, K.; et al. Comparison of skin barrier function and sensory nerve electric current perception threshold between IgE-high extrinsic and IgE-normal intrinsic types of atopic dermatitis. Br. J. Dermatol. 2010, 162, 83–90. [Google Scholar] [CrossRef]
- Atherton, D.J. Topical corticosteroids in atopic dermatitis. BMJ 2003, 327, 942–943. [Google Scholar] [CrossRef]
- Ashcroft, D.M.; Dimmock, P.; Garside, R.; Stein, K.; Williams, H.C. Efficacy and tolerability of topical pimecrolimus and tacrolimus in the treatment of atopic dermatitis: Meta-analysis of randomized controlled trials. BMJ 2005, 330, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Elias, P.M.; Schmuth, M. Abnormal skin barrier in the etiopathogenesis of atopic dermatitis. Curr. Allergy Asthma Rep. 2009, 9, 265–272. [Google Scholar] [CrossRef]
- Simpson, E.L.; Chalmers, J.R.; Hanifin, J.M.; Thomas, K.S.; Cork, M.J.; McLean, W.H.; Brown, S.J.; Chen, Z.; Chen, Y.; Williams, H.C. Emollient enhancement of the skin barrier from birth offers effective atopic dermatitis prevention. J. Allergy Clin. Immunol. 2014, 134, 818–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simpson, E.L.; Berry, T.M.; Brown, P.A.; Hanifin, J.M. A pilot study of emollient therapy for the primary prevention of atopic dermatitis. J. Am. Acad. Dermatol. 2010, 63, 587–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, W.S.; Xue, J.Y.; Sun, S.S.; Ooi, V.E.; Li, Y.L. Antiviral activity of daphnoretin isolated from Wikstroemia indica. Phytother. Res. 2010, 24, 657–661. [Google Scholar]
- Wang, L.Y.; Unehara, N.; Kitanaka, S. Lignans from the roots of Wikstroemia indica and their DPPH radical scavenging and nitric oxide inhibitory activities. Chem. Pharm. Bull. 2005, 53, 1348–1351. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.M.; Zhu, L.; Jiang, J.G.; Yang, L.; Wang, D.Y. Bioactive components and pharmacological action of Wikstroemia indica (L.) CA Mey and its clinical application. Curr. Pharm. Biotechnol. 2009, 10, 743–752. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.H.; Tagahara, K.; Suzuki, H.; Wu, R.Y.; Haruna, M.; Hall, I.H.; Huang, H.C.; Ito, K.; Iida, T.; Lai, J.S. Antitumor agents. 49. Tricin, kaempferol-3-0-β-D-Glucopyranoside and (+)-nortrachelogenin, antileukemic principles from Wikstroemia indica. J. Nat. Prod. 1981, 44, 530–535. [Google Scholar] [CrossRef] [PubMed]
- Nunome, S.; Ishiyama, A.; Kobayashi, M.; Otoguro, K.; Kiyohara, H.; Yamada, H.; Omura, S. In vitro antimalarial activity of biflavonoids from Wikstroemia indica. Planta Med. 2004, 70, 76–78. [Google Scholar] [PubMed] [Green Version]
- Wang, L.Y.; Unehara, T.; Kitanaka, S. Anti-inflammatory activity of new guaiane type sesquiterpene from Wikstroemia indica. Chem. Pharm. Bull. 2005, 53, 137–139. [Google Scholar] [CrossRef] [Green Version]
- Hu, K.; Kobayashi, H.; Dong, A.; Iwasaki, S.; Yao, X. Antifungal, antimitotic and anti-HIV-1 agents from the roots of Wikstroemia indica. Planta Med. 2000, 66, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, A.; Takata, R.; Aizawa, S.; Watanabe, H.; Wada, T. A murine model of atopic dermatitis can be generated by painting the dorsal skin with hapten twice 14 days apart. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.S.; Jeong, E.S.; Heo, S.H.; Seo, J.H.; Jeong, D.G.; Choi, Y.K. A novel model for human atopic dermatitis: Application of repeated DNCB patch in BALB/c mice, in comparison with NC/Nga mice. Lab. Anim. Res. 2010, 26, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Zhang, X.; Wang, Y.; Ye, W.; Ooi, V.E.C.; Chung, H.Y.; Li, Y. Antiviral biflavonoids from Radix wikstroemiae (Liaogewanggen). Chin. Med. 2010, 5, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nirmala, M.J.; Samundeeswari, A.; Sankar, P.D. Natural plant resources in anti-cancer therapy—A review. Res. Plant Biol. 2011, 1, 1–14. [Google Scholar]
- Rastogi, R.P.; Dhawan, B.N. Anticancer and antiviral activities in Indian medicinal plants: A review. Drug Dev. Res. 1990, 19, 1–12. [Google Scholar] [CrossRef]
- Kim, T.Y.; Park, N.J.; Jegal, J.; Choi, S.; Lee, S.W.; Hang, J.; Kim, S.N.; Yang, M.H. Chamaejasmine isolated from Wikstroemia dolichantha Diels suppresses 2, 4-dinitrofluoro-benzene-induced atopic dermatitis in SKH-1 hairless mice. Biomolecules 2019, 9, 697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simpson, E.L. Atopic dermatitis: A review of topical treatment options. Curr. Med. Res. Opin. 2010, 26, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Gelmetti, C.; Wollenberg, A. Atopic dermatitis–all you can do from the outside. Br. J. Dermatol. 2014, 170, 19–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jujo, K.; Renz, H.; Abe, J.; Gelfand, E.W.; Leung, D.Y. Decreased interferon gamma and increased interleukin-4 production in atopic dermatitis promotes IgE synthesis. J. Allergy Clin. Immunol. 1992, 90, 323–331. [Google Scholar] [CrossRef]
- Kashiwada, M.; Levy, D.M.; McKeag, L.; Murray, K.; Schröder, A.J.; Canfield, S.M.; Traver, G.; Rothman, P.B. IL-4-induced transcription factor NFIL3/E4BP4 controls IgE class switching. Proc. Natl. Acad. Sci. USA 2010, 107, 821–826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jabara, H.H.; Ahern, D.J.; Vercelli, D.; Geha, R.S. Hydrocortisone and IL-4 induce IgE isotype switching in human B cells. J. Immunol. 1991, 147, 1557–1560. [Google Scholar] [PubMed]
- Ovsiy, I.; Riabov, V.; Manousaridis, I.; Michel, J.; Moganti, K.; Yin, S.; Liu, T.; Sticht, C.; Kremmer, E.; Harmsen, M.C.; et al. IL-4 driven transcription factor FoxQ1 is expressed by monocytes in atopic dermatitis and stimulates monocyte migration. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaburagi, Y.; Shimada, Y.; Nagaoka, T.; Hasegawa, M.; Takehara, K.; Sato, S. Enhanced production of CC-chemokines (RANTES, MCP-1, MIP-1α, MIP-1β, and eotaxin) in patients with atopic dermatitis. Arch. Dermatol. Res. 2001, 293, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Kagami, S.; Kakinuma, T.; Saeki, H.; Tsunemi, Y.; Fujita, H.; Nakamura, K.; Takekoshi, T.; Kishimoto, M.; Mitsui, H.; Torii, H.; et al. Significant elevation of serum levels of eotaxin-3/CCL26, but not of eotaxin-2/CCL24, in patients with atopic dermatitis: Serum eotaxin-3/CCL26 levels reflect the disease activity of atopic dermatitis. Clin. Exp. Immunol. 2003, 134, 309–313. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.E.; Leung, D.Y.; Boguniewicz, M.; Howell, M.D. Loricrin and involucrin expression is down-regulated by Th2 cytokines through STAT-6. Clin. Immunol. 2008, 126, 332–337. [Google Scholar] [CrossRef] [Green Version]
- Howell, M.D.; Kim, B.E.; Gao, P.; Grant, A.V.; Boguniewicz, M.; DeBenedetto, A.; Schneider, L. Cytokine modulation of atopic dermatitis filaggrin skin expression. J. Allergy Clin. Immunol. 2009, 124, R7–R12. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-Y.; Park, N.-J.; Jegal, J.; Jo, B.-G.; Choi, S.; Lee, S.W.; Uddin, M.S.; Kim, S.-N.; Yang, M.H. Suppression of DNCB-Induced Atopic Skin Lesions in Mice by Wikstroemia indica Extract. Nutrients 2020, 12, 173. https://doi.org/10.3390/nu12010173
Lee S-Y, Park N-J, Jegal J, Jo B-G, Choi S, Lee SW, Uddin MS, Kim S-N, Yang MH. Suppression of DNCB-Induced Atopic Skin Lesions in Mice by Wikstroemia indica Extract. Nutrients. 2020; 12(1):173. https://doi.org/10.3390/nu12010173
Chicago/Turabian StyleLee, So-Yeon, No-June Park, Jonghwan Jegal, Beom-Geun Jo, Sangho Choi, Sang Woo Lee, Md. Salah Uddin, Su-Nam Kim, and Min Hye Yang. 2020. "Suppression of DNCB-Induced Atopic Skin Lesions in Mice by Wikstroemia indica Extract" Nutrients 12, no. 1: 173. https://doi.org/10.3390/nu12010173
APA StyleLee, S. -Y., Park, N. -J., Jegal, J., Jo, B. -G., Choi, S., Lee, S. W., Uddin, M. S., Kim, S. -N., & Yang, M. H. (2020). Suppression of DNCB-Induced Atopic Skin Lesions in Mice by Wikstroemia indica Extract. Nutrients, 12(1), 173. https://doi.org/10.3390/nu12010173