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Abstract: Liver lipid accumulation is a hallmark of non-alcoholic fatty liver disease (NAFLD),
broadly associated with insulin resistance. Inositols (INS) are ubiquitous polyols implied in many
physiological functions. They are produced endogenously, are present in many foods and in
dietary supplements. Alterations in INS metabolism seems to play a role in diseases involving insulin
resistance such as diabetes and polycystic ovary syndrome. Given its role in other metabolic syndromes,
the hypothesis of an INS role as a supplement in NAFLD is intriguing. We performed a systematic
review of the literature to find preclinical and clinical evidence of INS supplementation efficacy in
NAFLD patients. We retrieved 10 studies on animal models assessing Myoinosiol or Pinitol deficiency
or supplementation and one human randomized controlled trial (RCT). Overall, INS deficiency
was associated with increased fatty liver in animals. Conversely, INS supplementation in animal
models of fatty liver reduced hepatic triglycerides and cholesterol accumulation and maintained
a normal ultrastructural liver histopathology. In the one included RCT, Pinitol supplementation
obtained similar results. Pinitol significantly reduced liver fat, post-prandial triglycerides, AST levels,
lipid peroxidation increasing glutathione peroxidase activity. These results, despite being limited,
indicate the need for further evaluation of INS in NAFLD in larger clinical trials.
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1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is the most important emerging liver disease, and its
rising incidence in different countries seems to partly explain the new chronic liver disease pandemic.
In Italy, the incidence of NAFLD is 18.5 per 1000 person/years, and due to the high number of risk
factors in these patients, its prevalence can increase up to 70% in subgroups of patients affected by
type 2 diabetes mellitus [1].

Non-alcoholic fatty liver disease burden does not only weigh on the liver, but is burdened by a
series of cardiovascular, neurological, and kidney complications, making the treatment of this disease
crucial for the improvement of both survival and quality of life in these patients. Non-alcoholic fatty
liver disease patients have an increased risk of developing not only non-alcoholic steatohepatitis
(NASH), but also liver fibrosis, liver cirrhosis, and hepatocellular carcinoma (HCC), albeit NAFLD,
itself, being the third most common cause of liver transplantation [2]. As a consequence of the cross-talk
between metabolic liver disease and the cardiovascular system, NAFLD patients carry an increased
risk of cardiovascular events [3], but more specifically they develop cumulative damage in several
tissues such as valves, myocardium, and conduction systems [4]. Chronic kidney disease also shows
an association with NAFLD, and a more rapid decline of the glomerular filtration rate was present in
NAFLD patients [5].

Several treatments are still under study in order to prevent and slow down the progression of
NAFLD, targeting several steps in the pathogenesis of the disease. Starting with diet, metabolic targets,
such as peroxisome proliferator-activated receptor gamma (PPARγ) [6], and going through cell stress,
apoptosis, oxidative stress, and immune response [7], evidence for a structured treatment tailored to
the patient are still lacking.

Inositols (INS) are ubiquitous polyols implied in many physiological functions. They are produced
endogenously, are present in many foods and are available as dietary supplements. Alterations in
INS absorption, metabolism and excretion seems to play a role in metabolic diseases involving insulin
resistance, recently the therapeutic role of INS in these diseases is gaining more attention and showing
potential benefits.

The aim of this paper was to discuss the potential role of INS in NAFLD and their potential as
therapeutic agents to attenuate the metabolic cascade that leads to the progression of liver disease.
We will provide a general overview of the physiopathological role of INS in humans and their
pharmacological properties as well as a systematic review of the available preclinical and clinical
evidence regarding INS deficiency and supplementation in NAFLD.

2. Biological Role of Inositol and Its Derivates

Inositols are 6-carbon sugar alcohols. There are 9 INS isomers (Figure 1) differing one from the
other on the basis of the spatial orientation of the hydroxyl groups.

The most common form is myoinositol (MI) which is present in animals, plant cells, and in
foods [8]. Myoinositol can be found in free form, as inositol-associated phospholipid and as phosphate
or pyrophosphate INS derivatives (e.g., inositol hexaphosphate or phytic acid and derived diphosphates
and inositol trisphosphate). Phytic acid has a fundamental role as a storage form of phosphorus
in plants. Bran and seeds are particularly rich in MI, and beans and peas contain high amounts of
phytic acid as vegetables. Myoinositol can be synthetized de novo endogenously from D-glucose:
this biosynthesis of MI in humans occurs predominantly in kidneys, though other tissues can also
produce it. Myoinositol catabolism also takes place in kidneys, through the oxidation to D-glucuronic
acid. In addition, kidneys play and important role in the regulation of INS plasmatic concentrations.

Inositol has many key functions in biological systems. It plays a very important structural
role in eukaryotic cells serving as a secondary messenger, particularly in the form of inositol
trisphosphate (IP3) and phosphatidylinositol phosphate lipids (PIP2 or PIP3) and INS glycans.
Membrane phosphatidylinositol are fundamental in cell response to external stimuli such as hormones
and neurotransmitters. The best studied mechanism of response to stimulation is the IP3-mediated
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cytosolic release of calcium from the endoplasmic reticulum [9]. Inositol trisphosphate is responsible
for the regulation of the activity of hormones such as insulin, follicle-stimulating hormone (FSH),
and thyroid stimulating hormone (TSH) [10–12]. Furthermore, MI is responsible for oocyte maturation
and is involved also in several functions of the male reproductive system [13]. In addition to the
classic insulin signaling pathway involving phosphoinositide 3 kinase (PI3K) and protein kinase B/Akt
(PBK/Akt) as second messengers, a complementary pathway involving INS phosphoglycans (IPGs)
exists [14]. After the stimulation of insulin, phospholipase C causes the liberation of IPGs, which acts
as an insulin-mimetic secondary messenger in response to insulin stimulation, promoting GLUT-4
translocation, glucose uptake, and glycogen synthase [15].Nutrients 2020, 12, x FOR PEER REVIEW 3 of 13 
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obtained compounds.

Despite MI being the most abundant INS isoform, a second important active isomer is
D-chiro-inositol (DCI), which is a derivative of MI, formed via inversion in the configuration of
hydroxyls performed by the insulin-dependent enzyme NAD/NADH epimerase [16]. The epimerase
acts upon insulin stimulation.

The liberation of IPGs by the phospholipase C mediates the release of IPGs containing both MI or
DCI, which promotes the activation of different enzymes: DCI stimulates pyruvate dehydrogenase
phosphatase, while MI inhibits protein kinase A and adenylyl cyclase [17]. Myoinositol levels are higher
in tissues utilizing large amounts of glucose such as the brain, heart, and ovaries. D-chiro-inositol is
more prevalent in tissues requiring glucose storage such as liver and muscles. In insulin-resistance
conditions, MI epimerization is impaired in muscles, fat, and liver, and a correlation between the
degree of insulin resistance and reduction in the DCI/MI ratio was observed.

Furthermore, in patients affected by insulin resistance, diabetes, and metabolic syndrome,
a decreased availability of MI has been observed due to the increased MI urinary loss caused by
the glucose-mediated inhibition of MI reabsorption in the kidney, while DCI urinary levels are
reduced [17,18].

The role of INS in insulin resistance is still not completely understood. It is not clear if it depends
on a reduction in the membrane availability of IPGs or an impairment in the epimerase activation.
However, many studies have demonstrated the beneficial role of INS in conditions with underlying
insulin resistance [19–24].
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3. Inositol Pharmacology

Inositol is absorbed in the small intestine, and time plasma concentration after oral administration
is obtained at 4 h (Tmax) [25]. Maximal plasma concentration (Cmax) is 36–45 mcg [26]. Inositol is
actively transported by intestinal cells via a Na + dependent transporter, and glucose is able to affect
this process through a non-competitive mechanism. Intestinal absorption of INS is influenced by lipids;
thus, the pharmaceutical form in soft gel capsules has a better bioavailability than powder [27].

As dietary supplements, MI and DCI are well tolerated. Despite the shortage of direct toxicity
studies, safety of INS supplementation in humans has been analyzed in several preclinical and
clinical studies at doses ranging from 4 to 12 g/day. Gastrointestinal adverse effects have been
reported in the literature with an incidence of 5% at doses of 12 g/day or higher [28]. In a limited
population of patients with psychiatric disorders, mild neurological drug-related adverse effects have
been observed [29]. A review of five RCTs evaluating the efficacy of INS supplementation during
pregnancy for the prevention of gestational diabetes (GDM) reported a beneficial effect on GDM
incidence and preterm delivery rate, with no reported adverse events (411 patients included) [30].
Furthermore, INS administration at the dose of 4 g/day has not received any reports of adverse
events during clinical studies so far [31]. Inositol supplementation has shown to be effective in
treating different diseases. Several studies have reported positive effects of INS supplementation in
fasting blood glucose improvement and HbA1c [20,32]. Also, GDM, MI or DCI supplementation
has provided encouraging results, positively affecting maternal fetal outcomes and reducing glucose
variability [33,34]. Another syndrome which seems to possibly benefit from INS supplementation is
polycystic ovary syndrome (PCOS), where MI demonstrated results similar to metformin in terms of
homeostatic model assessment-insulin resistance (HOMA-IR) reduction and other metabolic outcomes
such as BMI and menstrual cycle improvement [10,24,35].

4. Systematic Review Methods

4.1. Eligibility Criteria

We included all original clinical research articles in English with the full-text available. In particular,
we included all studies that investigated the role of INS, as Mesoinositol, Myoinositol or Chiro-inositol,
deficiency or supplementation in preclinical in vitro or in vivo models as well as in clinical settings
in patients with non-alcoholic fatty liver disease. We did not include the following: (1) case reports,
editorials/comments, letters; (2) subgroup analyses from the same clinical trial; (3) studies not addressing
study questions, (4) reviews or meta-analysis.

4.2. Information Sources and Search Strategy

We performed a systematic review of the literature searching MEDLINE via PubMed, EMBASE,
and Cochrane Library for a combination of the following keywords: “inositol”, “mesoinositol”,
“myoinositol”, “chiro-inositol”, “non-alcoholic fatty liver disease”, “NAFLD”, “Nonalcoholic Fatty
Liver Disease”, “fatty liver nonalcoholic”, “Nonalcoholic Fatty Livers”, “Nonalcoholic Steatohepatitis”,
and “steatohepatitis nonalcoholic”. References of included articles were searched for other publications
relevant to the present review. The research strategy (Supplementary Materials File S1) was performed
according to PRISMA guidelines with no time restriction until 9 October 2020.

4.3. Study Selection

The study selection was performed in multiple phases. In the first phase, potentially relevant
studies were obtained by combined searches of electronic databases using the selected abovementioned
keywords. Then, studies not in English, with no abstract/full text were excluded. In the second
phase, studies were reviewed and excluded by study typology; thus, letters, editorials, case reports,
and comments were excluded. The third phase consisted of a detailed analysis of full-text articles to
assess whether they addressed the specific study question.
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4.4. Data Collection Process and Data Items

All authors independently screened the titles and abstracts of manuscripts identified through
the database searches to identify studies potentially eligible for further assessment. For each study,
we collected the following information: authors, year of publication, study typology, study aim,
main results, and INS evaluated.

4.5. Ethical Review

Given the study type (i.e., review article), ethical approval was not necessary.

5. Results

After duplicates removal, a total of 76 references were screened by title and abstract. Overall,
73 references were excluded with reason (Figure 2). Three studies (one animal deficiency, one animal
supplementation, and human supplementation trial) were included. After the revision of references of
included studies, an additional six studies assessing animal supplementation and two assessing animal
deficiency were retrieved. A total of 11 studies were included in our systematic review. Included study
characteristics are presented in Table 1.Nutrients 2020, 12, x FOR PEER REVIEW 7 of 13 
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Table 1. Included studies.

Study Year Evaluated INS Study Characteristics Main Results

Animal Studies—Deficiency

Hayashi [36] 1974 MI Rats fed with an
MI-deficient diet or the
same diet with the
addition of 0.5% MI for up
to five weeks.

Increased levels of liver TG,
CE, and non-esterified fatty
acids and concomitant
increase in serum
non-esterified fatty acids in
the MI-deficient group.

Hayashi [37] 1974 MI Rats fed with an
MI-deficient diet or the
same diet with the
addition of 0.5% MI for
one or two weeks.

Liver TG levels were
increased in MI-deficient
rats, especially in palmitic,
palmitoleic, and oleic acids.

Thakur [38] 2011 PI Zebrafish mutants
incapable of PI synthesis.

Mutants exhibited
hepatomegaly with
microscopic NAFLD
features with upregulated
endoplasmic reticulum
stress markers.

Animal Studies—Supplementation

Katayama [39] 1994 MI Rats fed with either corn
starch or a high-sucrose
diet, with or without MI,
for 16–17 days.

Reduction in the increase of
liver weight, total lipids, TG,
and CE by MI in
high-sucrose fed rats;
reduction in serum TG
increase in the same group.

Katayama [40] 1997 MI, sodium
phytate

Rats fed with either corn
starch or a high-sucrose
diet, with or without the
addition of MI or sodium
phytate for 12–13 days.

MI and sodium phytate
reduced liver enlargement
and suppressed to normal
levels liver TG and total
lipids levels; reduced liver
G6PD, ME, and FASN.

Geethan [41] 2008 Pinitol Streptozotocin-induced
diabetic rats treated with
or without 100 mg/kg
Pinitol for 30 days.

Pinitol reduced blood
glucose and serum TG, free
fatty acids, and CE;
decreased TG and CE liver
concentration; decreased the
concentration of liver
phospholipids and free fatty
acids; increased HDL and
reduced LDL.

Zhou [42] 2008 Pinitol Rats fed with a high-fat
diet for 8 weeks, with or
without 0.1%, 1.0%, or
2.0% Pinitol, and induced
hepatic injury by a single
administration of GalN.

After GalN administration,
Pinitol suppressed the
increase in ALT and AST;
attenuated liver CE increase;
reduced TNFα levels;
reduced lipid peroxidation;
increased glutathione levels;
increased liver catalase;
Mn–SOD; GR activities.
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Table 1. Cont.

Study Year Evaluated INS Study Characteristics Main Results

Choi [43] 2009 Pinitol Hamsters fed with a
high-fat, high-cholesterol
diet with or without 0.05%
or 0.1% Pinitol for 10
weeks.

Pinitol reduced epididymal
and perirenal white adipose
tissue; reduced plasma total
CE, non-HDL CE, glucose,
and total-CE/HDL ratio;
reduced liver TG and CE;
lowered HMGR and ACAT
activities; suppression of
liver lipid accumulation and
reduction in adipocyte size.

Sivakumar [44] 2010 Pinitol Streptozotocin-induced
diabetic rats treated with
Pinitol, gliclazide, or
neither for 30 days.

Both Pinitol and gliclazide
reversed increase in blood
glucose and glycosylated
Hgb; reduced blood TNF-α,
IL-6, and IL-1β; reduced
liver peroxides and
hydroperoxides; contrasted
the diabetes-induced
microscopic liver alterations
normalizing the
tissue architecture.

Shimada [45] 2019 MI Rats fed with either a
high-glucose or
high-fructose diet, with or
without MI 0.05% or 0.25%
supplementation for 15
days.

MI dose-dependent
reduction of liver TG content
and expression levels of
G6PD, ME1, FASN, ACCα,
and S14 in fatty liver
high-fructose induced rats;
reduction in hepatic
ChREBPβ expression;
reduction in ChREBP
binding to the ChoRE
ChREBPβ and FASN genes.

Human Studies—Supplementation

Lee [46] 2019 Pinitol Double-blind RCT on 90
NAFLD patients taking
Pinitol 600 mg, 1000 mg or
PBO for 12 weeks

No significant between
groups differences in liver
fat content at 12 weeks;
significant reduction in liver
fat content in the 600 mg
arm compared to its baseline.
Pinitol significantly reduced
AST levels at 12 weeks;
reduced lipid peroxidation
in terms of urinary MDA
stability compared to PBO
increased GPx. Pinitol
reduced blood TG increase
after postprandial high-fat
formula compared to PBO.

INS = inositol; MI = myoinositol; PI = phosphatidylinositol; TG = triglycerides; GalN = D-galactosamine; ALT
= alanine aminotransferase; AST = aspartate aminotransferase; TNFα = tumor necrosis factor alpha; Mn–SOD =
MN-superoxide dismutase; GR = glutathione reductase; CE = cholesterol; HMGR = HMG-CoA-Reductase; ACAT =
acyl-CoA cholesterol acetyltransferase; Hgb = hemoglobin; G6PD = glucose-6-phosphate-dehydrogenase; ME1 =
malic enzyme 1; FASN = fatty acid synthase; ACCα = acetyl-CoA-carboxylase alpha; S14 = modulator of fatty acid
synthesis; ChREBP = carbohydrate-responsive element-binding protein; RCT = randomized controlled trial; PBO =
placebo; MDA = malondialdehyde; GPx = glutathione peroxidase; non-alcoholic fatty liver disease = NAFLD.
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6. Inositol Deficiency in NAFLD

Non-alcoholic fatty liver disease is now considered as a hepatic component of the metabolic
syndrome and, although its incidence is still rising, no specific therapies are actually available. Over the
last decades, some nutraceuticals, such as vitamin C and E, silymarin, flavonoids or resveratrol,
were raised as potential treatments for NAFLD by reducing oxidative stress, inflammation, and insulin
resistance [47–50]. However, these treatments counteract the pathological effects of the fatty liver but
do not target specific metabolic and signal transduction pathways.

Rather, a potential preventive role on NAFLD may be represented by INS. Indeed, the lack of
INS and its compounds may worsen the fatty liver disease as shown in a zebrafish model, in which a
reduction of phosphatidylinositol synthesis increased endoplasmic reticulum stress and, consequently,
hepatic steatosis [38]. The role of INS in preventing the development of NAFLD is enhanced in rats,
where the withdrawal of INS was associated with the onset of NAFLD, especially if accompanied with
a diet rich in fat [51].

Rats with MI deficiency had increased levels of triacylglycerols in the liver (2.6− and 5.3−fold
higher for one and two weeks of treatment, respectively), a concomitant increase in the non-esterified
fatty acid levels in serum, and raised levels of cholesterol in the liver, causing fat accumulation,
compared to controls [36,37]. This condition may be reversible administrating MI and omega-3 fatty
acids. In addition, MIs may reduce serum lipid levels lowering the risk of fatty liver [52].

Another fundamental role of INS in the prevention of fatty liver disease is to reduce the risk factors
that cause steatosis. Indeed, MI and DCI are involved in the treatment of insulin resistance states.
Indeed, both isomers have been shown to exert insulin-mimetic action and to lower postprandial
glucose [53]. Of note, DCI may improve the insulin sensitivity of α-cells, which could control glucagon
levels in patients with diabetes mellitus.

Furthermore, patients with uncontrolled diabetes mellitus had also polyuria increasing the
excretion of INS by kidneys and worsening the insulin resistance of patients.

This evidence regarding INS deficiency and NAFLD, diabetes, and dyslipidemia lead us to study
the effect of supplementation of these molecules on chronic diseases.

7. Inositol Supplementation in NAFLD

Compared to relatively vast preclinical and clinical research on other diseases, such as GDM,
PCOS, and diabetes, only limited and introductory evidence is available on INS supplementation in
NAFLD. Nevertheless, potentially relevant effects of INS in reducing liver fatty acids accumulation
were enlightened by some preclinical studies in diet-induced nonalcoholic fatty liver animal models.
Lipids accumulation and NAFLD, as shown in genetic and animal models [54], could activate unfolded
protein response (UPR). This is a mechanism to avoid the accumulation of unfolding of proteins in
the endoplasmic reticulum (ER) through the triggering of three distinct signal transduction pathways
mediated by inositol requiring (IRE) 1α, PKR-like ER kinase (PERK), and activating transcription
factor (ATF) 6α. These mechanisms are activated during ER stress and they promote insulin resistance
and obesity in animal models. UPR also acts on numerous inflammatory pathways, including NFkB,
increasing liver damage and apoptosis [55,56].

Studies on supplementation in animal models so far encompass MI, phytic acid, a six-polyphosphate
form of INS, and Pinitol, a monomethylated form of DCI.

The supplementation of all these INS forms reduced liver TG, CE, and free fatty acid content [39–42,45].
Hepatic content of phospholipids was lowered by Pinitol, too [41]. Similarly, hamsters fed with a
high-calorie, high-CE diet showed a reduced accumulation of white adipose tissue when supplemented
with Pinitol. Pinitol reduced hepatic TG and CE, reduced plasmatic total CE and LDL, and increased
HDL [43].

Hepatic activity of fatty acid synthesis enzymes was reduced by MI, phytic acid, and Pinitol [39,40].
Myoinositol reduced the expression of genes encoding enzymes for fatty acid synthesis [45].
Also, MI reduced the fructose-induced, carbohydrate-responsive element-binding protein, an important
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lipogenesis transcription factor, binding to genes involved in fatty acid synthesis, though not reaching
statistical significance [45].

Pinitol supplementation lessened the decline in hepatic levels of vitamin E, vitamin C, and reduced
glutathione and reverted the reduction in the activity of enzymatic antioxidants like catalase, superoxide
dismutase, glutathione peroxidase, and glutathione-S-transferase [44].

These experiments were conducted in different animal models including rats fed with high-glucose,
high-fructose or high fructose with supplementation with MI diets [45]; rats fed with high-sucrose
compared to corn starch diets [40,44]; streptozotocin-induced diabetic rats [41,44] where Pinitol
also exerted an anti-hyperglycemic effect. Pinitol also reduced serum TNF-α, ALT, and AST in
D-galactosamine-induced hepatic toxicity in high-fat fed rats [42].

Liver histopathology showed a diminished lipid accumulation in pinitol-treated hamsters,
whereas the untreated group developed a fatty liver with significantly larger adipocytes [43].
Likewise, pinitol normalized liver ultrastructure changes caused by streptozotocin-induced diabetes
in rats, which caused periportal fibrosis, hepatocyte and blood vessels distortion, microvesicular
vacuolization, lipid accumulation, and mitochondria and glycogen reduction compared to untreated
controls [44].

These observations, albeit mainly in diabetes animal models, suggest the possibility to explore
the role of INS in clinical studies involving NAFLD patients, especially considering that NASH is an
important cause of disease progression in the NAFLD spectrum [57].

Recently, a double-blind, placebo-controlled, randomized clinical trial (RCT) was performed to
evaluate the effects of two different doses of pinitol in 90 patients with NAFLD who were not taking
medications and dietary supplements. After 12 weeks of treatment, no significant between-group
differences in liver fat reduction were observed. However, there was a significant reduction in liver fat
in the low dose pinitol, possibly due to the significantly lower baseline liver fat content in the high-dose
group. Pinitol treatment reduced AST levels compared to placebo. The ALT and GGT levels were
non-different between groups. Non-significant differences were observed in the lipid profile between
groups, unless a small nonsignificant reduction in total CE and LDL was observed. These findings were
accompanied by the increased of urinary malondialdehyde (a marker of lipid oxidation) in the placebo
group compared to pinitol arms. The levels of glutathione peroxidase (an enzyme involved in oxidative
damage reduction) increased in both pinitol arms and decreased in placebo. The authors reported no
significant adverse events. In the same RCT, after a high-fat formula administration, pinitol reduced
postprandial TG blood levels compared to the placebo [46]. These observations, despite being limited
by a small sample size and a relatively short observation period, are encouraging to further evaluate
INS supplementation efficacy and safety in NAFLD in larger RCTs.

8. Discussion

We here report the first literature review on the role of INS in NAFLD, evaluating preclinical and
clinical evidences. Despite the shortage of quality of evidence and the need for additional clinical trials,
the beneficial role of INS supplementation in NAFLD may be presumed.

One of the mechanisms proposed for the underlying positive effects of INS supplements is based
on the hypothesis that the increased availability of INS could intensify the insulin pathway through an
enhanced signaling mediated by IPGs [14,58]. Furthermore, INS could have a protective role against
oxidative stress generated by cell metabolism [59]. Also, a positive effect on cytoskeleton regulation in
cystic ovaries interacting with steroidogenesis has been observed [59]. Therefore, multiple theories
explaining INS action in metabolic diseases have been proposed. However, as stated by Robert H.
Mitchell, independently from the specific effect of INS, it appears clear that supplementation ensures
a large availability of INS to supply central cell processes that rely on abundant INS-containing cell
components [60].

Despite no specific study regarding the role of INS in NAFLD-associated HCC existing,
some interesting evidence on INS and HCC has been published. A tissue chromatography-mass
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spectrometry (GCMS) metabolomic analysis has shown a downregulation in INS levels in HCC liver
tissues compared with non-HCC livers [61]. This is the result of a tumor-induced enhanced aerobic
glycolysis due to the metabolic remodeling resulting from the perturbation in the PI3K–AKT–mTOR
pathway. Furthermore, another study on hepatocyte-specificTrim24-null mutant mouse model
(spontaneously developing HCC), has explored the role myo-inositoltrispyrophosphate as an anticancer
drug. The group of animals implemented with myo-inositoltrispyrophosphate showed no differences
in terms of tumor growth except a two month improvement in overall survival [62]. Numerous studies
have reported the potential of inositols as anti-tumor compounds [63], and this could be confirmed
also in NAFLD-associated HCC, but further studies are needed.

Despite many clinical trials evaluating the efficacy of INS in different settings, poor quality
evidence is available on the safety of INS. A meta-analysis evaluating the safety and efficacy of
inositol supplementation in preterm infants for the prevention of the prematurity retinopathy showed
no effect on the study outcomes but an increase in mortality in babies younger than 32 weeks [64].
Furthermore, studies evaluating safety reported short-term outcomes; thus, long-term follow-up
studies should be considered to obtain a better safety evaluation.
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