Vitamins in Alzheimer’s Disease—Review of the Latest Reports
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. B Vitamins
3.2. Antioxidant Vitamins
3.2.1. Vitamin A
3.2.2. Vitamin C and E
3.2.3. Vitamin D
3.2.4. Other Factors
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kalaria, R.N.; Maestre, G.E.; Arizaga, R.; Friedland, R.P.; Galasko, D.; Hall, K.; Luchsinger, J.A.; Ogunniyi, A.; Perry, E.K.; Potocnik, F.; et al. Alzheimer’s disease and vascular dementia in developing countries: Prevalence, management, and risk factors. Lancet Neurol. 2008, 7, 812–826. [Google Scholar] [CrossRef] [Green Version]
- Gaweł, M.; Potulska-Chomik, A. Choroby neurodegeneracyjne: Choroba Alzheimera i Parkinsona [in Polish, Neurodegenerative diseases: Alzheimer’s and Parkinson’s disease]. Post. Nauk Med. 2015, 28, 468–475. [Google Scholar]
- Alzheimer’s Association. 2014 Alzheimer’s disease facts and figures. Alzheimer Dement. 2014, 10, e47–e92. [Google Scholar] [CrossRef] [Green Version]
- Bird, T.D. Alzheimer Disease Overview. 2018. Available online: https://www.ncbi.nlm.nih.gov/books/NBK1161/ (accessed on 14 February 2020).
- Kim, Y.-J.; Kim, S.H.; Park, Y.; Park, J.; Lee, J.H.; Kim, B.C.; Song, W.K. miR-16-5p is upregulated by amyloid β deposition in Alzheimer’s disease models and induces neuronal cell apoptosis through direct targeting and suppression of BCL-2. Exp. Gerontol. 2020, 136, 110954. [Google Scholar] [CrossRef]
- Cummings, J.L.; Isaacson, R.S.; Schmitt, F.A.; Velting, D.M. A practical algorithm for managing Alzheimer’s disease: What, when, and why? Ann. Clin. Transl. Neurol. 2015, 2, 307–323. [Google Scholar] [CrossRef]
- Athanasopoulos, D.; Karagiannis, G.; Tsolaki, M. Recent Findings in Alzheimer Disease and Nutrition Focusing on Epigenetics. Adv. Nutr. 2016, 7, 917–927. [Google Scholar] [CrossRef]
- Atri, A. The Alzheimer’s Disease Clinical Spectrum. Med. Clin. N. Am. 2019, 103, 263–293. [Google Scholar] [CrossRef]
- Martyniuk-Gaca, A.; Papuć, E.; Tynecka-Turowska, M.; Rejdak, K. Choroba Alzheimera i jej rzadkie warianty oraz implikacje dla jakości życia. (In Polish: Alzheimer’s disease, its rare variants and implications for quality of life). Dobrostan a Stan Zdrowia 2016, 10, 127–138. [Google Scholar]
- Brunton, L.L.; Lazo, J.S.; Parker, K.L.W. Goodman and Gilman’s the Pharmacological, 1st ed.; red. Polish edition Buczko; McGraw-Hill Professional Czelej: Lublin, Poland, 2007. [Google Scholar]
- Talbot, K.; Wang, H.-Y.; Kazi, H.; Han, L.-Y.; Bakshi, K.P.; Stucky, A.; Fuino, R.L.; Kawaguchi, K.R.; Samoyedny, A.J.; Wilson, R.S.; et al. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J. Clin. Investig. 2012, 122, 1316–1338. [Google Scholar] [CrossRef] [Green Version]
- Vinciguerra, F.; Graziano, M.; Hagnäs, M.; Frittitta, L.; Tumminia, A. Influence of the Mediterranean and Ketogenic Diets on Cognitive Status and Decline: A Narrative Review. Nutrients 2020, 12, 1019. [Google Scholar] [CrossRef] [Green Version]
- Robinson, N.; Grabowski, P.; Rehman, I. Alzheimer’s disease pathogenesis: Is there a role for folate? Mech. Ageing Dev. 2018, 174, 86–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, P.J.; Blumenthal, J. Dietary Factors and Cognitive Decline. J. Prev. Alzheimer Dis. 2016, 3, 53–64. [Google Scholar]
- Mohajeri, M.H.; Troesch, B.; Weber, P. Inadequate supply of vitamins and DHA in the elderly: Implications for brain aging and Alzheimer-type dementia. Nutrients 2015, 31, 261–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Jager, C.A.; Oulhaj, A.; Jacoby, R.; Refsum, H.; Smith, A.D. Cognitive and clinical outcomes of homocysteine-lowering B-vitamin treatment in mild cognitive impairment: A randomized controlled trial. Int. J. Geriatr. Psychiatry 2011, 27, 592–600. [Google Scholar] [CrossRef]
- Chen, H.; Liu, S.; Ji, L.; Wu, T.; Ji, Y.; Zhou, Y.; Zheng, M.; Zhang, M.; Xu, W.; Huang, G. Folic Acid Supplementation Mitigates Alzheimer’s Disease by Reducing Inflammation: A Randomized Controlled Trial. Mediat. Inflamm. 2016, 2016, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kwok, T.; Wu, Y.; Lee, J.; Lee, R.; Yung, C.Y.; Choi, G.; Lee, V.; Harrison, J.; Lam, L.C.W.; Mok, V.C.T. A randomized placebo-controlled trial of using B vitamins to prevent cognitive decline in older mild cognitive impairment patients. Clin. Nutr. 2020, 39, 2399–2405. [Google Scholar] [CrossRef] [Green Version]
- Van der Zwaluw, N.L.; Dhonukshe-Rutten, R.A.M.; van Wijngaarden, J.P.; Brouwer-Brolsma, E.M.; van de Rest, O.; Veld, P.H.I.T.; Enneman, A.W.; van Dijk, S.C.; Ham, A.C.; Swart, K.M.; et al. Results of 2-year vitamin B treatment on cognitive performance: Secondary data from an RCT. Neurology 2014, 83, 2158–2166. [Google Scholar] [CrossRef]
- Oulhaj, A.; Jernerén, F.; Refsum, H.; Smith, A.D.; De Jager, C.A. Omega-3 Fatty Acid Status Enhances the Prevention of Cognitive Decline by B Vitamins in Mild Cognitive Impairment. J. Alzheimer Dis. 2016, 50, 547–557. [Google Scholar] [CrossRef] [Green Version]
- Meng, H.; Li, Y.; Zhang, W.; Zhao, Y.; Niu, X.-Y.; Guo, J. The relationship between cognitive impairment and homocysteine in a B12 and folate deficient population in China. Medicine 2019, 98, e17970. [Google Scholar] [CrossRef]
- Ulusu, N.N.; Yilmaz, G.; Erbayraktar, Z.; Evlice, A.T.; Aras, S.; Yener, G.; Avcı, A. A Turkish 3-center study evaluation of serum folic acid and vitamin B12 levels in Alzheimer disease. Turk. J. Med. Sci. 2015, 45, 1159–1166. [Google Scholar] [CrossRef]
- An, Y.; Feng, L.; Zhang, X.; Wang, Y.; Wang, Y.; Tao, L.; Qin, Z.; Xiao, R. Dietary intakes and biomarker patterns of folate, vitamin B6, and vitamin B12 can be associated with cognitive impairment by hypermethylation of redox-related genes NUDT15 and TXNRD1. Clin. Epigenetics 2019, 11, 139. [Google Scholar] [CrossRef] [Green Version]
- Jarosz, M. Normy Żywienia dla Populacji Polski; Instytut Żywności i Żywienia: Warsaw, Poland, 2017; (In Polish: Nutrition standards for the Polish population). [Google Scholar]
- Cosín-Tomàs, M.; Senserrich, J.; Arumí-Planas, M.; Alquézar, C.; Pallàs, M.; Martín-Requero, Á.; Suñol, C.; Kaliman, P.; Sanfeliu, C. Role of Resveratrol and Selenium on Oxidative Stress and Expression of Antioxidant and Anti-Aging Genes in Immortalized Lymphocytes from Alzheimer’s Disease Patients. Nutrients 2019, 11, 1764. [Google Scholar] [CrossRef] [Green Version]
- Eswaminathan, A.; Jicha, G.A. Nutrition and prevention of Alzheimer’s dementia. Front. Aging Neurosci. 2014, 6, 282. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, S.L.; Vellas, B.; Elemans, S.; Luchsinger, J.; Kamphuis, P.; Yaffe, K.; Sijben, J.W.C.; Groenendijk, M.; Stijnen, T. Plasma nutrient status of patients with Alzheimer’s disease: Systematic review and meta-analysis. Alzheimer Dement. 2013, 10, 485–502. [Google Scholar] [CrossRef] [Green Version]
- Wołoszynowska-Fraser, M.U.; Kouchmeshky, A.; McCaffery, P. Vitamin A and Retinoic Acid in Cognition and Cognitive Disease. Annu. Rev. Nutr. 2020, 40, 247–272. [Google Scholar] [CrossRef]
- Sodhi, R.K.; Singh, N. Retinoids as potential targets for Alzheimer’s disease. Pharmacol. Biochem. Behav. 2014, 120, 117–123. [Google Scholar] [CrossRef]
- Shahar, S.; Lee, L.K.; Rajab, N.; Lim, C.L.; Harun, N.A.; Noh, M.F.N.M.; Then, S.-M.; Jamal, R. Association between vitamin A, vitamin E and apolipoprotein E status with mild cognitive impairment among elderly people in low-cost residential areas. Nutr. Neurosci. 2013, 16, 6–12. [Google Scholar] [CrossRef]
- Yuan, C.; Fondell, E.; Ascherio, A.; Okereke, O.I.; Grodstein, F.; Hofman, A.; Willett, W.C. Long-Term Intake of Dietary Carotenoids Is Positively Associated with Late-Life Subjective Cognitive Function in a Prospective Study in US Women. J. Nutr. 2020, 150, 1871–1879. [Google Scholar] [CrossRef]
- Péneau, S.; Galan, P.; Jeandel, C.; Ferry, M.; Andreeva, V.; Hercberg, S.; Kesse-Guyot, E.; The SUVI. MAX 2 Research Group. Fruit and vegetable intake and cognitive function in the SU.VI.MAX 2 prospective study. Am. J. Clin. Nutr. 2011, 94, 1295–1303. [Google Scholar] [CrossRef]
- Lane, M.A.; Bailey, S.J. Role of retinoid signalling in the adult brain. Prog. Neurobiol. 2005, 75, 275–293. [Google Scholar] [CrossRef]
- Mecocci, P.; Polidori, M.C. Antioxidant clinical trials in mild cognitive impairment and Alzheimer’s disease. Biochim. Biophys. Acta Mol. Basis Dis. 2012, 1822, 631–638. [Google Scholar] [CrossRef]
- Von Arnim, C.A.F.; Herbolsheimer, F.; Nikolaus, T.; Peter, R.; Biesalski, H.K.; Ludolph, A.C.; Riepe, M.; Nagel, G.; The ActiFE Ulm Study Group. Dietary Antioxidants and Dementia in a Population-Based Case-Control Study among Older People in South Germany. J. Alzheimer Dis. 2012, 31, 717–724. [Google Scholar] [CrossRef] [Green Version]
- Monacelli, F.; Acquarone, F.M.E.; Giannotti, C.; Borghi, R.; Nencioni, A. Vitamin C, Aging and Alzheimer’s Disease. Nutrients 2017, 9, 670. [Google Scholar] [CrossRef] [Green Version]
- Choudhry, F.; Howlett, D.R.; Richardson, J.C.; Francis, P.T.; Williams, R.J. Pro-oxidant diet enhances β/γ secretase-mediated APP processing in APP/PS1 transgenic mice. Neurobiol. Aging 2012, 33, 960–968. [Google Scholar] [CrossRef]
- Dysken, M.W.; Sano, M.; Asthana, S.; Vertrees, J.E.; Pallaki, M.; Llorente, M.; Love, S.; Schellenberg, G.D.; McCarten, J.R.; Malphurs, J.; et al. Effect of Vitamin E and Memantine on Functional Decline in Alzheimer Disease. JAMA 2014, 311, 33–44. [Google Scholar] [CrossRef]
- Kryscio, R.; Abner, E.L.; Caban-Holt, A.; Lovell, M.; Goodman, P.; Darke, A.K.; Yee, M.; Crowley, J.; Schmitt, F.A. Association of Antioxidant Supplement Use and Dementia in the Prevention of Alzheimer’s Disease by Vitamin E and Selenium Trial (PREADViSE). JAMA Neurol. 2017, 74, 567–573. [Google Scholar] [CrossRef]
- Alavi_Naeini, A.; Elmadfa, I.; Djazayery, A.; Barekatain, M.; Ghazvini, M.R.A.; Djalali, M.; Feizi, A. The effect of antioxidant vitamins E and C on cognitive performance of the elderly with mild cognitive impairment in Isfahan, Iran: A double-blind, randomized, placebo-controlled trial. Eur. J. Nutr. 2013, 53, 1255–1262. [Google Scholar] [CrossRef]
- De Leeuw, F.A.; Honer, W.G.; Schneider, J.A.; Morris, M.C. Brain γ-Tocopherol levels are associated with presynaptic protein levels in elderly human midfrontal cortex. J. Alzheimer Dis. 2020, 77, 619–627. [Google Scholar] [CrossRef]
- Mangialasche, F.; Xu, W.; Kivipelto, M.; Costanzi, E.; Ercolani, S.; Pigliautile, M.; Cecchetti, R.; Baglioni, M.; Simmons, A.; Soininen, H.; et al. Tocopherols and tocotrienols plasma levels are associated with cognitive impairment. Neurobiol. Aging 2012, 33, 2282–2290. [Google Scholar] [CrossRef]
- Agarwal, P.; Holland, T.M.; Wang, Y.; Holtzman, D.M.; Morris, M.C. Association of Strawberries and Anthocyanidin Intake with Alzheimer’s Dementia Risk. Nutrients 2019, 11, 3060. [Google Scholar] [CrossRef] [Green Version]
- Bowman, G.L. Ascorbic acid, cognitive function, and Alzheimer’s disease: A current review and future direction. BioFactors 2012, 38, 114–122. [Google Scholar] [CrossRef] [Green Version]
- Dursun, E.; Gezen-Ak, D. Vitamin D basis of Alzheimer’s disease: From genetics to biomarkers. Hormones 2018, 18, 7–15. [Google Scholar] [CrossRef]
- Rossom, R.C.; Espeland, M.A.; Manson, J.E.; Dysken, M.W.; Johnson, K.C.; Lane, R.S.; Leblanc, E.S.; Lederle, F.A.; Masaki, K.H.; Margolis, K.L. Calcium and vitamin D supplementation and cognitive impairment in the women’s health initiative. J. Am. Geriatr. Soc. 2012, 60, 2197–2205. [Google Scholar] [CrossRef]
- Shih, E.; Lee, W.; Hsu, J.; Wang, S.; Fuh, J.-L. Effect of vitamin D on cognitive function and white matter hyperintensity in patients with mild Alzheimer’s disease. Geriatr. Gerontol. Int. 2019, 20, 52–58. [Google Scholar] [CrossRef]
- Aguilar-Navarro, S.G.; Mimenza-Alvarado, A.J.; Jiménez-Castillo, G.A.; Bracho-Vela, L.A.; Yeverino-Castro, S.G.; Ávila-Funes, J.A. Association of Vitamin D with Mild Cognitive Impairment and Alzheimer’s Dementia in Older Mexican Adults. Rev. Investig. Clin. 2019, 71, 381–386. [Google Scholar] [CrossRef] [Green Version]
- Llewellyn, D.J. Vitamin D and Risk of Cognitive Decline in Elderly Persons. Arch. Intern. Med. 2010, 170, 1135–1141. [Google Scholar] [CrossRef]
- Lee, D.H.; Chon, J.; Kim, Y.; Seo, Y.K.; Park, E.J.; Won, C.W.; Soh, Y. Association between vitamin D deficiency and cognitive function in the elderly Korean population. Medicine 2020, 99, e19293. [Google Scholar] [CrossRef]
- Duchaine, C.S.; Talbot, D.; Nafti, M.; Giguère, Y.; Dodin, S.; Tourigny, A.; Carmichael, P.-H.; Laurin, D. Vitamin D status, cognitive decline and incident dementia: The Canadian Study of Health and Aging. Can. J. Public Health 2020, 111, 312–321. [Google Scholar] [CrossRef]
- De Leeuw, F.A.; Van Der Flier, W.M.; Tijms, B.M.; Scheltens, P.; Mendes, V.M.; Manadas, B.; Bierau, J.; Van Wijk, N.; Heuvel, E.G.V.D.; Mohajeri, M.H.; et al. Specific Nutritional Biomarker Profiles in Mild Cognitive Impairment and Subjective Cognitive Decline Are Associated with Clinical Progression: The NUDAD Project. J. Am. Med. Dir. Assoc. 2020, 21, 1513.e1–1513.e17. [Google Scholar] [CrossRef]
- Annweiler, C. Vitamin D in dementia prevention. Ann. N. Y. Acad. Sci. 2016, 1367, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Przybelski, R.; Agrawal, S.; Krueger, D.; Engelke, J.A.; Walbrun, F.; Binkley, N. Rapid correction of low vitamin D status in nursing home residents. Osteoporos. Int. 2008, 19, 1621–1628. [Google Scholar] [CrossRef]
- Annweiler, C.; Fantino, B.; Parot-Schinkel, E.; Thiery, S.; Gautier, J.; Beauchet, O. Alzheimer’s disease input of vitamin D with mEmantine assay (AD-IDEA trial): Study protocol for a randomized controlled trial. Trials 2011, 12, 230. [Google Scholar] [CrossRef] [Green Version]
- Shen, L.; Ji, H.-F. Associations between Homocysteine, Folic Acid, Vitamin B12 and Alzheimer’s Disease: Insights from Meta-Analyses. J. Alzheimer Dis. 2015, 46, 777–790. [Google Scholar] [CrossRef]
- Zhang, H.; Hardie, L.J.; Bawajeeh, A.O.; Cade, J. Meat Consumption, Cognitive Function and Disorders: A Systematic Review with Narrative Synthesis and Meta-Analysis. Nutrients 2020, 12, 1528. [Google Scholar] [CrossRef]
- Limongi, F.; Siviero, P.; Bozanic, A.; Noale, M.; Veronese, N.; Maggi, S. The Effect of Adherence to the Mediterranean Diet on Late-Life Cognitive Disorders: A Systematic Review. J. Am. Med. Dir. Assoc. 2020, 21, 1402–1409. [Google Scholar] [CrossRef]
- Grammatikopoulou, M.G.; Goulis, D.G.; Gkiouras, K.; Theodoridis, X.; Gkouskou, K.K.; Evangeliou, A.; Dardiotis, E.; Bogdanos, D.P. To Keto or Not to Keto? A Systematic Review of Randomized Controlled Trials Assessing the Effects of Ketogenic Therapy on Alzheimer Disease. Adv. Nutr. 2020, 073. [Google Scholar] [CrossRef]
- Liu, Y.H.; Gao, X.; Na, M.; Kris-Etherton, P.; Mitchell, D.C.; Jensen, G.L. Dietary pattern, diet quality, and dementia: A systematic review and meta-analysis of prospective cohort studies. J. Alzheimer Dis. 2020, 78, 151–158. [Google Scholar] [CrossRef]
- Samadi, M.; Moradi, S.; Moradinazar, M.; Mostafai, R.; Pasdar, Y. Dietary pattern in relation to the risk of Alzheimer’s disease: A systematic review. Neurol. Sci. 2019, 40, 2031–2043. [Google Scholar] [CrossRef]
- Kheirouri, S.; Alizadeh, M. Dietary Inflammatory Potential and the Risk of Neurodegenerative Diseases in Adults. Epidemiol. Rev. 2019, 41, 109–120. [Google Scholar] [CrossRef]
- Moreira, S.C.; Jansen, A.K.; Silva, F.M. Dietary interventions and cognition of Alzheimer’s disease patients: A systematic review of randomized controlled trial. Dement. Neuropsychol. 2020, 14, 258–282. [Google Scholar] [CrossRef]
- Gkotzamanis, V.; Panagiotakos, D. Dietary interventions and cognition: A systematic review of clinical trials. Psychiatriki 2020, 31, 248–256. [Google Scholar] [CrossRef]
- Haider, S.; Schwarzinger, A.; Stefanac, S.; Soysal, P.; Smith, L.; Veronese, N.; Dorner, T.E.; Grabovac, I. Nutrientsal supplements for neuropsychiatric symptoms in people with dementia: A systematic review and meta-analysis. Int. J. Geriatr. Psychiatry 2020, 35, 1285–1291. [Google Scholar] [CrossRef]
- Zhang, C.; Luo, J.; Yuan, C.; Ding, D. Vitamin B12, B6, or folate and cognitive function in community-dwelling older adults: A systematic review and meta-analysis. J. Alzheimer Dis. 2020, 77, 791–794. [Google Scholar] [CrossRef]
- Clarke, R.; Bennett, D.; Parish, S.; Lewington, S.; Skeaff, M.; Eussen, S.J.P.M.; Lewerin, C.; Stott, D.J.; Armitage, J.; Hankey, G.J.; et al. Effects of homocysteine lowering with B vitamins on cognitive aging: Meta-analysis of 11 trials with cognitive data on 22,000 individuals. Am. J. Clin. Nutr. 2014, 100, 657–666. [Google Scholar] [CrossRef] [Green Version]
- Li, F.-J.; Shen, L.; Ji, H.-F. Dietary Intakes of Vitamin E, Vitamin C, and β-Carotene and Risk of Alzheimer’s Disease: A Meta-Analysis. J. Alzheimer Dis. 2012, 31, 253–258. [Google Scholar] [CrossRef]
- Chai, B.; Gao, F.; Wu, R.; Dong, T.; Gu, C.; Lin, Q.; Zhang, Y. Vitamin D deficiency as a risk factor for dementia and Alzheimer’s disease: An updated meta-analysis. BMC Neurol. 2019, 19, 284. [Google Scholar] [CrossRef]
- Yang, K.; Chen, J.; Li, X.; Zhou, Y. Vitamin D concentration and risk of Alzheimer disease. Medicine 2019, 98, e16804. [Google Scholar] [CrossRef]
- Jayedi, A.; Rashidy-Pour, A.; Shab-Bidar, S. Vitamin D status and risk of dementia and Alzheimer’s disease: A meta-analysis of dose-response. Nutr. Neurosci. 2018, 22, 750–759. [Google Scholar] [CrossRef]
- Ashley, S.; Bradburn, S.; Murgatroyd, C. A meta-analysis of peripheral tocopherol levels in age-related cognitive decline and Alzheimer’s disease. Nutr. Neurosci. 2019, 1–15. [Google Scholar] [CrossRef]
- Dong, Y.; Chen, X.; Liu, Y.; Shu, Y.; Chen, T.; Xu, L.; Li, M.; Guan, X. Do low-serum vitamin E levels increase the risk of Alzheimer disease in older people? Evidence from a meta-analysis of case-control studies. Int. J. Geriatr. Psychiatry 2017, 33, e257–e263. [Google Scholar] [CrossRef]
- PROMISS Nutrients for Healthy Ageing. Available online: www.promiss-vu.eu (accessed on 7 November 2020).
Language Variant/Logopenic Progressive Aphasia (LPA) | Frontal Variant | Visual Variant/Posterior Cortical Atrophy (PCA) | Apraxic Variant |
---|---|---|---|
For at least the first two years, there is only an isolated language deficit of unnoticeable onset, progressive, without previous language disorders, and no other specific causes for the above disturbances. | Pronounced disturbances in behavior and executive functions. These often mimic the behavioral disturbances in frontotemporal dementia. | Initially, visual-spatial disorders dominate without any evident ophthalmic pathology, later psychotic symptoms appear, and in the final stage, there is a dementia syndrome with deep cognitive deficits, disturbing everyday functioning. | Inability or difficulty in performing learned movements, while understanding the command, the willingness to perform it. The lack of impaired motor coordination, and weakened sensation and muscle strength. |
After two years, other cognitive functions deteriorate, although the language deficit dominates and deepens much faster than the other ones. | This is followed by the inability to see more than one object or one element of an object at the same time (simultaneous diagnosis), finger agnosia, page orientation disorders (right/left), and apraxia. |
Vitamins | Type of Study | Number of Participants/Age [Year] | Assessment | Intervention/ Measurements | Duration | Results | References |
---|---|---|---|---|---|---|---|
INTERVENTIONS | |||||||
Vitamins B | randomized controlled trial | 266/≥70 | MMSE, Hopkins Verbal Learning Test, CVLT | 0.8 mg folic acid + 20 mg vitamin B6 + 0.5 mg vitamin B12/day | 2 years | (+) slowing cognitive decline | [16] |
Folic acid | randomized controlled trial | 121/40–90 | MMSE, ADL | 1.25 mg of folic acid + donepezil/day | 6 months | (+) beneficial effects in patients with AD | [17] |
Vitamins B | randomized placebo controlled trial | 279/≥65 | MMSE, NTB, CDR | 500 μg methylcobalamin + 400 μg folic acid or placebo/day | 2 years | (-) lack of reduction of cognitive decline | [18] |
Vitamin B12, folic acid | randomized, placebo-controlled trial | 2919/74.1 ± 6.5 | MMSE and others tests | 400 μg of folic acid + 500 μg of vitamin B12/day | 2 years | (-) lack of reduction of cognitive decline | [19] |
MEASUREMENTS | |||||||
Folic acid, vitamins B6 and B12 | randomized trial | 266/≥70 | CDR | folic acid, vitamins B6 and B12 measurements in serum | 2 years | (+) the effectiveness of vitamin B therapy when omega-3 levels are in the upper normal range | [20] |
B12 | cross-sectional study | 4605 (2396 with AD)/≥55 | China’s validation MMSE | homocysteine and B12 serum levels | 1 measurement | (+) high folate and B12 levels are protective factors | [21] |
Vitamin B12 and folic acid | cross-sectional study | 290/geriatric patients | The authors performed tests | vitamin B12 and folic acid level | 1 measurement | (−) serum folic and vitamin B12 levels are not reliable tests for screening presymptomatic AD | [22] |
CONSUMPTION | |||||||
Vitamins B | cohort study | 2533/50–70 | - | diet intake of vitamin B12, B6 | 2.3 years | (−) low intake of vitamin B12 intensify cognitive decline | [23] |
Vitamins | Study Design | Participants [n]/Age [Year] | Assessment | Intervention/ Measurements | Duration | Results | References |
---|---|---|---|---|---|---|---|
MEASUREMENTS | |||||||
Vitamin A | cross-sectional study | 333/≥60 | MMSE, Dementia Rating Scale, Geriatric Depression Scale, Rey Auditory Verbal Learning | vitamin A serum level | 1 measurement | (+) deficiency increases the risk of MCI | [30] |
CONSUMPTION | |||||||
β-carotene | prospective study | 49,493/average: 48 | SCF, FFQ test | long-term intakes of carotenoids | 22 years | (+) higher consumption of β-carotene is associated with a lower risk of cognitive performance | [31] |
β-carotene | randomized double-blind, placebo-controlled study | 2533/45–60 | semantic and phonemic fluency tests, executive function | six 24-h dietary records | 13 years | (−) consumption of fruit rich in β-carotene did not decrease the risk of developing cognitive impairment | [32] |
Vitamins | Study Design | Participants [n]/Age [Year] | Assessment | Intervention/Measurements | Duration | Results | References |
---|---|---|---|---|---|---|---|
INTERVENTIONS | |||||||
E | randomized controlled trial | 613 with AD/ 78.8 ± 7.1 | MMSE | 2000 IU/day of α-tocopherol + 20 mg/day of memantine | 2.27 years | (+) slowing functional decline | [38] |
E | randomized controlled trial cohort study | 7540/>60 | MIS, TICS-m, NYU Paragraph Delayed Recall | 400 IU of vitamin E/day and/or 200 μg of selenium/day | 6 years | (−) supplementation does not prevent AD | [39] |
C and E | randomized controlled trial | 256/60–75 | MMSE | 300 mg of vitamin E + 400 mg of vitamin C/day | 1 year | (−) supplementation does not prevent cognitive decline | [40] |
MEASUREMENTS | |||||||
E | cross-sectional study | 113/88.5 ± 6.0 | MMSE | α- and γ-tocopherol brain levels | 3 years | (+) vitamin E facilitates maintenance a presynaptic proteins level | [41] |
E | cross-sectional study | 716/>65 | MMSE | tocopherols and total vitamin E levels | 1 measurement | (+) lower levels of total tocopherols, total tocotrienols, and total vitamin E are associated with an increased likelihood of developing AD | [42] |
CONSUMPTION | |||||||
C and E | double-blind, placebo-controlled | 2533/45–60 | verbal memory (RI-48 cued recall, semantic, and phonemic fluency tests) and executive function (trail-making and forward and backward digit span tests) | intake of fruit and vegetable intake (24-h dietary records) | 13 years | (+) improvement of verbal memory | [32] |
C | prospective, longitudinal cohort study | 925/58–98 | FFQ | intake of strawberries (vitamin C) | 6.7 years | (+) possible reduction of AD | [43] |
Vitamin | Study Design | Participants [n]/Age [Year] | Assessment | Intervention/ Measurement | Duration | Results | Reference |
---|---|---|---|---|---|---|---|
INTERVENTION | |||||||
D | randomized double-blinded placebo-controlled trial | 4144/>65 | WHIMS, MMSE | 1000 mg of calcium carbonate + 400 IU of vitamin D(3) | 8 years | (−) no association between treatment and incident cognitive impairment | [46] |
MEASUREMENTS | |||||||
D | cross-sectional study | 146/79.1 ± 7.0 | MMSE | 25(OH)D serum level | 1 measurement | (+) higher serum 25(OH)D level are associated with MMSE score | [47] |
D | cross-sectional study | 208/79 ± 1 | MMSE, CDR | serum 25-hidroxyvitamin D (25(OH)D) levels | 1 year | (+) low vitamin D are associated with cognitive decline | [48] |
D | randomized controlled trial | 1154/79.7 ± 8.4 | MMSE | serum levels of 25(OH)D | 8 years | (+) low levels are associated with cognitive decline | [49] |
D | cohort study | 2990/76.5 ± 3.9 | MMSE-KC, Test Digit Span | 25(OH)D serum level | 2 years | (−) no relationship between vitamin D levels and cognition | [50] |
D | cohort study | 661/≥65 | 3MS | Plasma 25-hydroxyvitamin D | 10 years | (+) higher 25(OH)D concentrations increase risk of dementia and AD in women | [51] |
D | retrospective, longitudinal cohort study | 299/61 ± 10, 66 ± 8 | MMSE | 28 nutritional biomarkers in blood and 5 in cerebrospinal fluid, including 1.25(OH)2 | 2–5 years | (+) high vitamin D is associated with cognitive decline | [52] |
Factors | Type of Analysis | Results | Year | References |
---|---|---|---|---|
VITAMINS | ||||
Vitamins B6, B12, and folate | systematic review and meta-analysis: 8 cross-sectional, 13 longitudinal | No link between the concentration of vitamin B in the blood and the risk of cognitive disorders. | 2020 | [66] |
Vitamins B | meta-analysis: 11 large studies | Lowering homocysteine levels through vitamin B supplementation does not improve cognitive function. | 2016 | [67] |
Folic acid, vitamin B12 | meta-analysis: 68 studies | High homocysteine levels and low levels of folic acid and vitamin B12 increase the risk of AD. | 2015 | [56] |
Vitamins C, E, and β-carotene | meta-analysis: 7 studies | Consumption of vitamins E, C, and β-carotene reduces the risk of AD. Vitamin E is the strongest predictor. | 2012 | [68] |
Vitamin D | meta-analysis: 12 prospective cohort studies, 4 cross-sectional studies | Vitamin D deficiency increases the risk of dementia and AD. | 2019 | [69] |
Vitamin D | meta-analysis: 6 prospective cohort studies | Serum vitamin D deficiency is associated with the risk of AD. | 2019 | [70] |
Vitamin D | meta-analysis: 7 prospective cohort studies, 1 retrospective cohort study | Higher levels of 25(OH)D reduce the risk of AD. | 2019 | [71] |
Vitamin E | meta-analysis: 31 observational studies and clinical trial | Lower α-tocopherol levels increase the risk of AD and MCI. | 2019 | [72] |
Vitamin E | meta-analysis: 17 studies | Lower vitamin E levels are associated with the risk of AD. | 2018 | [73] |
OTHER NUTRITIONAL FACTORS | ||||
Fatty acids, foods rich in polyphenols | systematic review: 10 randomized clinical trials | Fatty acids and products rich in flavonoid are a protective factor in the development of dementia | 2020 | [64] |
Ketogenic diet | systematic review: 10 randomized clinical trials | MCT and other ketogenic therapies improve cognition | 2020 | [59] |
Meat consumption | systematic review and meta-analysis (PRISMA): 10 studies | No association between meat consumption and cognitive impairment | 2020 | [57] |
Mediterranean diet | systematic review: 7 randomized clinical trials, 38 longitudinal studies | The diet is a protective factor to cognitive decline | 2020 | [58] |
Nutritional formulas, fatty acid, ginseng, inositol, probiotics | systematic review: 32 randomized clinical trials | Interventions protect or delay the progression of cognitive decline | 2020 | [63] |
Supplementation (vitamins B, vitamins E, omega-3 fatty acids, nutritional formulas) | systematic review and meta-analyses (PRISMA): 4 randomized clinical trials | No significant link between supplementation and cognitive function | 2020 | [65] |
Traditional, healthy diet | systematic review and meta-analysis: 12 studies | Healthy diet reduces the risk of dementia | 2020 | [60] |
Pro-inflammatory diet | systematic review and meta-analysis (PRISMA): 10 randomized clinical trials | Inflammatory diet is associated with cognitive decline | 2019 | [62] |
Traditional, healthy diet and high-fat, high-glycemic diet | systematic reviews and meta-analyses (PRISMA): 26 studies | Healthy diet protects against the development of AD, unhealthy diet increases neurodegeneration | 2019 | [61] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mielech, A.; Puścion-Jakubik, A.; Markiewicz-Żukowska, R.; Socha, K. Vitamins in Alzheimer’s Disease—Review of the Latest Reports. Nutrients 2020, 12, 3458. https://doi.org/10.3390/nu12113458
Mielech A, Puścion-Jakubik A, Markiewicz-Żukowska R, Socha K. Vitamins in Alzheimer’s Disease—Review of the Latest Reports. Nutrients. 2020; 12(11):3458. https://doi.org/10.3390/nu12113458
Chicago/Turabian StyleMielech, Anita, Anna Puścion-Jakubik, Renata Markiewicz-Żukowska, and Katarzyna Socha. 2020. "Vitamins in Alzheimer’s Disease—Review of the Latest Reports" Nutrients 12, no. 11: 3458. https://doi.org/10.3390/nu12113458
APA StyleMielech, A., Puścion-Jakubik, A., Markiewicz-Żukowska, R., & Socha, K. (2020). Vitamins in Alzheimer’s Disease—Review of the Latest Reports. Nutrients, 12(11), 3458. https://doi.org/10.3390/nu12113458