Supplementary Material

Publication	Country	Rural/Urban	Sample Sizes	Mean Age	Gender	Sample Characteristics	Clinical Assessments
					tenarian Studies		
			SCTN: 24	SCTN: 106.2 (SD=1.4; range 105-109) LL: 100.4	SCTN: 6M:18F	SCTN: 7 in nursing homes, 19 severely disabled, 5 affected by cancer in the past, 3 with cancer at the time of assessment; on variety of medications; BMI for 13 participants: 23.2 (SD=4.2)	
Biagi et al.,	Italy	Urban	LL: 15	(SD=1.4; range 99-104)	LL: 1M:14F	SCTN and LL: Physical and cognitive health status matched the majority of Italian	None reported
2016	Italy	Urban	YO: 15	YO: 72.5 (SD=3.7; range	YO: 8M:7F	centenarians	None reported
			ADT: 15	65-75)	ADT: 7M:8F	YO: from the same regions as SCTN; no info on BMI	
				ADT: 30.5 (SD=7.9; range 22-48)		ADT: recruited from the same regions as SCTN; healthy; medication-free; followed Mediterranean diet; no info on BMI	
Drago et al., 2012	Italy	Urban	CTN: 14 ADT: 10	CTN: not reported (range 100-104) ADT: not reported (range 24-57)	CTN: not reported ADT: not reported	CTN: recruited from nursing homes; no history of chronic inflammatory bowel diseases or metabolic diseases; no antibiotics or probiotics one month before sampling period; no info on BMI ADT: no history of chronic inflammatory bowel diseases or metabolic diseases; no antibiotics or probiotics one month before sampling period; no info on BMI	None reported
Kim et al.,	Republic of	Rural	LL: 30 YO: 17	LL: 98.9 (SD=3.4; range 95-108) YO: 73.6	LL: 3M:27F YO: 10M:7F	LL: 20 community-dwelling; 10 in rehabilitation hospitals; all from longevity villages; no systemic antibiotic use within one month prior to sampling; no info on BMI	None reported
2019 South Korea	South Kofea		ADT: 9	(SD=3.6; range 67-79)	ADT: 6M:3F	YO: community-dwelling; recruited from same regions (urbanized towns or longevity villages); no info on BMI	

Table S1. Sample and clinical characteristics of reviewed studies

				ADT: 34.3 (SD=6.5; range 26-43)		ADT: community-dwelling; recruited from same regions (urbanized towns or longevity villages); no info on BMI	
Kong et al., 2016	China	Urban	LL: 67 ADT: 101	LL: 93.3 (SD=3.1; range 90-102) ADT: 62.0 (SD=14.1; range: 24-83)	LL: 26M:41F ADT: 52M:44F	LL: community-dwelling; no info on BMI ADT: recruited from the same regions as LL; no info on BMI	None reported
Rampelli et al., 2013	Italy	Urban	LL: 3 YO: 5 ADT: 1	LL: 100.7 (SD=not reported; range 99-102) YO: 66.4 (SD=not reported; range 59-75) ADT: 38	LL: not reported YO: not reported ADT: not reported	LL: recruited from region in Northern Italy; no info on BMI YO: recruited from the same regions as LL; 3 were offspring of LL; no info on BMI ADT: recruited from same region as LL; no info on BMI All subjects were overlapping with Biagi et al., 2016.	None reported
Tuikhar et al., 2019	India	Rural	LL: 30 ADT internal: 30 ADT external: 30	LL: 99.9 (SD=3.55; range 97-110) ADT internal: 35.8 (SD=6.3; range 28-47) ADT external: 34.8 (SD=7.9; range 22-50)	LL: 15M:15F ADT internal: 12M:18F ADT external: 15M:15F	LL: Chandel and Senapati districts of Manipur state (high centenarian prevalence); no antibiotic treatment within 6 months prior of sampling; no info on BMI ADT internal: recruited from same regions as LL; no antibiotic treatment within 6 months prior of sampling; no info on BMI ADT external: recruited from different regions from LL with low centenarian prevalence (Meitei community of Imphal West district); no antibiotic treatment within 6 months prior of sampling; no info on BMI	None reported
Wu et al., 2019	Italy	Rural	LL: 19 YO: 23	LL: 101.8 (SD=2.0; range 99-107)	LL: 6M:13F YO: 10M:13F	LL: no history of chronic medical conditions; no antimicrobial medication 1 year prior to sampling; BMI: 23.5 (SD=2.8)	None reported

			ADT: 17	YO: 77.2 (SD=6.7; range 68-88)	ADT: 7M:10F	YO: no history of chronic medical conditions; no antimicrobial medication 1 year prior to sampling; BMI: 25.9 (SD=5.2)	
				ADT: 25.5 (SD=4.0; range 21-33)		ADT: no history of chronic medical conditions; no antimicrobial medication 1 year prior to sampling; BMI: 22.8 (SD=5.5)	
			LL: 21	LL: 73.2 (SD=12.7; range 50-95)	LL: 10M:11F	LL: no antibiotic use 6 months prior to sampling; no hx of gastrointestinal diseases; from Gaotian longevity villages; no info on BMI	
Yu et al., 2015	China	Rural	CK: 28	CK: 50 (SD=not reported; range not reported)	CK: Not reported	CK: control group; no antibiotic use 6 months prior to sampling; no hx of gastrointestinal diseases; no long-living record in their families; no info on BMI	None reported
				Li	ifespan Studies		
Claesson et al. 2012	Ireland	Urban	YO: 178 ADT: 13	YO: 78 (SD=8; 64-102) ADT: 36 (SD=6; range 28-46)	YO: not reported ADT: not reported	 YO: 83 community-dwelling; 20 day-hospital; 15 short-term rehabilitation hospital care; 60 long-term care facilities; no hx of alcohol abuse or advanced organic disease; no antibiotic treatments or participation in investigational drug evaluation within 30 days prior to sampling; no info on BMI ADT: control group; no info on matching; no antibiotic treatment within 30 days prior to sampling; no info on BMI 	Diet (FFQ, MNA)
Hippe et al., 2011	Austria	Urban	YO: 15 ADT vegetarians: 15 ADT omnivores: 17	YO: 86 (SD=8; range not reported) ADT vegetarians: 26 (SD=5; range not reported) ADT omnivores: 24 (SD=2.5; range not reported)	YO: not reported ADT vegetarians: not reported ADT omnivores: not reported	YO: institutionalized; BMI: 21.8 (SD=5.1), ADT vegetarians: BMI 21.0 (SD=2.7) ADT omnivores: BMI 22.7 (SD= 3.4)	None reported

				NHYO: not reported (range 68-73)		NHYO: diagnosed with CDAD at the time of sampling; no info on BMI	
			NHYO: 4 YO: 5	YO: not reported (range 67-88)	NHYOL: not reported YO: not reported	YO: no history of gastrointestinal disease; no antibiotic use within 2 months prior to sampling	
Hopkins et al. 2002	United Kingdom	Urban	ADT: 7	ADT: not reported (range 21-34)	ADT: not reported	ADT: no history of gastrointestinal disease; no antibiotic use within 2 months prior to sampling	None reported
			CHD: 10	CHD: not reported (range 16 months-7)	CHD: not reported	CHD: no history of gastrointestinal disease; no antibiotic use within 2 months prior to sampling	
Jeffery et al., 2016	Ireland	Urban	YO: 371 ADT: 13	YO: 78 (SD=8; range 64-102) ADT: 36 (SD=6; range 28-46)	YO: not reported ADT: not	YO: 179 community-dwelling, 44 day- hospital, 41 in short-term rehabilitation care,107 in long-term care facilities; no hx of: alcohol abuse, participation in drug intervention, advanced organic disease; no info on BMI	None reported
				Tange 20-40)	reported	ADT: no antibiotic treatment within 30 days prior to sampling; no info on BMI	
			Age Groups 100: 5	100: 101.6 (SD=1.8; range: 100 and up)	100: 0M:5F 90: 4M:15F		
			90: 19 80: 51	90: 94.2 (SD=2.7; range	90: 410:13F 80: 17M:34F		
Kato et al., Japa 2017 Japa	Japan	Urban	70: 31	80: 83.2	70: 12M:19F 60: 14M:28F	All subjects were community-dwelling	None reported
			60: 42 50: 29	(SD=2.4; range 80-89)	50: 13M:16F		
			40: 37	70: 75.5 (SD=2.9; range 70-79)	40: 13M:24F 30: 54M:60F		
			30: 114				

				60: 64.2	20: 16M:26F		
			20: 42		20: 101/1201		
			20:42	(SD=2.9; range			
			10 10	60-69)	10: 7M:3F		
			10: 10	F0 F0 F			
				50: 53.5	4: 7M:10F		
			4:17	(SD=2.7; range			
				50-59)	3: 10M:11F		
			3: 21				
				40: 43.7	2: 7M:5F		
			2:12	(SD=3.1; range			
				40-49)	1: 9M:7F		
			1:16				
				30: 34.3			
				(SD=2.5; range			
				30-39)			
				20: 25.8			
				(SD=2.7; range			
				20-29)			
				10: 14.1			
				(SD=3.6; range			
				10-19)			
				4: 5.9 (SD=1.8;			
				range 4-9)			
				Tunge 19)			
				3: 2.4 (SD=0.6;			
				range Weaned-			
				3 years old)			
				o years oray			
				2:0.8 (SD=0.4;			
				Weaning)			
				wearing)			
				1:0.3 (SD=0.1;			
				preweaning)			
				preweating)			
					LL: 0M:6F		
			LL: 6	LL: not		LL: healthy; no info on BMI	
				reported	YO: 0M:17F	EL. Reality, no mito on Divit	
Kushugulova	Kazakhstan	Not	YO: 17	(range 90 and	10.0101.171	YO: healthy; no info on BMI	None reported
et al., 2015	nazaniistail	reported		(lange 90 and up)	ADT: 0M:6F	10. nearing, no muo on bivit	
			ADT: 6	up		ADT: healthy; no info on BMI	
						The first function of the first firs	

				YO: not reported (range 50-70) ADT: not reported (range 30-44)			
Le Roy et al., 2015	Estonia	Urban	YO: 33 ADT: 16	YO: not reported (range 65-81) ADT: not reported (range 20-48)	YO: not reported ADT: not reported	YO: generally healthy; followed a standard Western-type diet; no info on BMI ADT: healthy; followed a standard Western- type diet; no info on BMI	None reported
			Age Groups 100: 6 90: 19 80: 48	100: 101.3 (SD=1.8; range: 100 and up) 90: 94.2 (SD=2.7; range 90-99)	100: 0M:6F 90: 4M:15F 80: 16M:32F 70: 5M:10F		
			70: 15 60: 28 50: 25	80: 83.3 (SD=2.4; range 80-89)	60: 11M:17F 50: 12M:13F		
Odamaki et al., 2016	Japan	Not reported	40: 34 30: 88	70: 76.8 (SD=2.1; range 70-79)	40: 13M:21F 30: 45M:43F	All participants were community-dwelling; no info on BMI	None reported
			20: 40	60: 63 (SD=2.7; range 60-69)	20: 16M:24F 10: 7M:3F		
			10: 10 4: 14	50: 53.3 (SD=2.6; range 50-59)	4: 6M:8F		
			3: 18	40: 43.8	3: 10M:8F		
			2: 12	(SD=3.1; range 40-49)	2: 6M:6F 1: 7M:7F		
			1:14				

				30: 33.9 (SD=2.3; range			
				(3D-2.3, Talige 30-39)			
				20: 25.9			
				(SD=2.7; range 20-29)			
				10: 14.1 (SD=3.6; range			
				(3D-3.6, Tange 10-19)			
				4: 6.1 (SD=1.9; range 4-9)			
				3: 2.4 (SD=0.6;			
				range Weaned- 3 years old)			
				2: 0.8 (SD=0.4; Weaning)			
				1: 0.3 (SD=0.1; preweaning)			
			Age Groups 100: 6	100: 101.3 (SD=1.8; range:	100: 0M:6F		
			90: 19	100 and up)	90: 4M:15F		
			90: 19	90: 94.2	80: 17M:34F		
			80: 51	(SD=2.7; range			
			70: 31	90-99)	70: 12M:19F		
			70:31	80: 83.2	60: 14M:28F	All subjects were community-dwelling; no	
Odamaki et	Japan	Urban	60: 42	(SD=2.4; range	00.110.201	info on BMI	None reported
al., 2018				80-89)	50: 14M:20F		•
			50: 34				
			40.27	70: 75.5	40: 14M:23F		
			40: 37	(SD=2.9; range 70-79)	30: 56M:61F		
			30: 117	70-79)	50, 501 0 11		
				60: 64.2	20: 14M:28F		
			20: 42	(SD=2.9; range			
				60-69)	10: 7M:3F		

			10: 10				
			10110	50: 53.7	4: 7M:10F		
			4:17	(SD=2.8; range			
				50-59)	3: 11M:11F		
			3: 22	,			
				40: 43.4	2: 8M:4F		
			2: 12	(SD=3.1; range			
				40-49)	1: 7M:6F		
			1:13				
				30: 34.3			
				(SD=2.6; range			
				30-39)			
				,			
				20: 25.8			
				(SD=2.6; range			
				20-29)			
				,			
				10: 14.1			
				(SD=3.6; range			
				10-19)			
				,			
				4: 5.9 (SD=1.8;			
				range 4-9)			
				3: 2.4 (SD=0.6;			
				range Weaned-			
				3 years old)			
				2:0.8 (SD=0.4;			
				Weaning)			
				1:0.3 (SD=0.1;			
				preweaning)			
				LL Bama: 92			
				(SD not		LL Bama: from Bama (longevity region);	
				reported;	LL Bama:	healthy; no antibiotic use within 1 month	
			LL Bama: 8	range 80-99)	3M:5F	prior to sampling; no info on BMI	Dietary information (FFQ
Pan et al.,	China	Rural					23 and China Food
2016	w		LL Nanning:	LL Nanning:	LL Nanning:	LL Nanning: from Nanning (not considered a	Composition)
			8	82.8 (SD not	4M:4F	longevity region); healthy; no antibiotic use	
				reported;		within 1 month prior to sampling; no info on	
				range 80-99)		BMI	

Ruiz-Ruiz et al., 2019	Spain	Urban	YO: 10 ADT: 10 CHD: 10	YO: 74.5 (SD=4.2; range 68-81) ADT: 35.4 (SD=6.6; range 27-44) CHD: 3.9 (SD=1.4; range 2-5)	YO: 3M:7F ADT: 5M:5F CHD: 5M:5F	 YO: no history of intestinal organic disorders, chronic diseases; no recent antibiotic treatment; no info on BMI ADT: no history of intestinal organic disorders, chronic diseases; no recent antibiotic treatment; no info on BMI CHD: no history of intestinal organic disorders, chronic diseases; no recent antibiotic treatment; no info on BMI 	None reported
Singh et al., 2019	USA	Rural	YO: 33 NHYO: 32	YO: 75.5 (SD=5.7; range 70-82) NHYO: 72.7 (SD=3.5; range 70-82)	YO: 14M:19F NHYO: 17M:15F	YO: no reported diagnosis of major diseases NHYO: medical hx of CA, CVD, PD, CLD, DM, stroke, or ND	None reported
				Со	gnition Studies		
Anderson et al., 2017	USA	Not reported	YO: 37	YO: 64.6 (SD=7.5; range 50-85)	YO: 10M:27F	YO: community-dwelling; no history of neurological, developmental, or severe psychiatric disorder; no antibiotic or probiotic use within 30 days prior to sampling; no hx of significant gastrointestinal disorder/surgery; no history of alcohol or illicit drug dependence; no history of severe heart, kidney, or liver problems; no info on BMI	Cognitive flexibility (SCWT); Sleep qualit (PSQI)
						YO: ≤1 impaired score; no info on BMI	
Manderino et al., 2017	USA	Urban	YO: 25 NHYO: 18	YO: 64.1 (SD=6.5; range 50-85) NHYO: 64.1 (SD=9.4; range 50-85)	YO: 17M:8F NHYO: 12M:6F	NHYO: Performed ≥1 SD below normative performance on two or more tests; no info on BMI All had no hx of neurological, developmental, or severe psychiatric disorder; no antibiotic or probiotic use within 30 days prior to sampling; no history of significant gastrointestinal disorder or surgery; no history of alcohol or illicit drug dependence;	Cognitive function (NT Global cognitive functi (MMSE); attention function (FAB, TMT-A TMT-B, SCWT); memo (HVLT-R, RCFT); language (FAS)

						no history of severe heart, kidney, or liver problems	
Verdi et al., 2018	United Kingdom	Urban/Rural	YO: 1551	YO: 63 (SD not reported; range 40-89)	YO: 515M:1036F	YO: from TwinsUK British cohort; community-dwelling; no current diagnosis of dementia, BMI: 25.8 (SD=4.7) for 1368 of 1551	Reaction time (DLRT) verbal fluency (Addenbrookes Cogniti Examination III); frailt (Fried phenotype); cognitive function (CANTAB-PAL); menta health (MMSE)
				Inte	rvention Studies		
						YO pectin: given pectin extracted from sugar beet pulp; BMI: 25.5 (SD=2.6)	
An et al., 2019	Netherlands	Urban	YO pectin: 24 YO placebo: 24 ADT pectin: 25 ADT placebo: 27	 YO pectin: 69.5 (SD=3.1; range 65-75) YO placebo: 69.8 (SD=2.4; range 65-75) ADT pectin: 23.4 (SD=4.5; range 18-40) ADT placebo: 22.8 (SD=4.1; range 18-40) 	YO pectin: 15M/9F YO placebo: 12M:12F ADT pectin: 8M/17F ADT placebo: 14M/13F	YO placebo: given maltodextrin; BMI: 26.2 (SD=2.8) ADT pectin: given pectin extracted from sugar beet pulp; BMI: 23.2 (SD=2.7) ADT placebo: given maltodextrin; BMI: 22.6 (SD=2.7) All participants did/were not: have GI diseases, abdominal surgery, use anti- inflammatory drugs, and/or vitamin supplementation within 14 days prior to sampling; use pro-, pre-, or antibiotics in the 90 days prior to the study; pregnant or lactating; smoking; have hx of side effects toward prebiotic supplements; all participants took the supplements twice a day (15g/days)	None reported
Björklund et al., 2011	Finland	Urban	YO synbiotic: 23 YO placebo: 24	YO synbiotic: 71.7 (SD=6.2; range above 65) YO placebo:	YO synbiotic: 5M:19F YO placebo: 7M:16F	YO synbiotic: given synbiotic product comprising of a combination of lactitol and <i>L.</i> <i>acidophilus</i> NCFM group; regular use of NSAID (≥3 times per week); no antibiotic use within one month prior to sampling; no info on BMI	None reported

				range above 65)		YO placebo: given saccharose; regular use of NSAID (≥3 times per week); no critical illness; no antibiotic use within one month prior to sampling; no info on BMI	
Spaiser et al., 2015	USA	Urban	YO probiotic: 16 YO placebo: 16	YO probiotic: not reported YO placebo: not reported YO total: 69.8 (SD=0.7; range 65-80)	YO probiotic: not reported YO placebo: not reported YO total: 10M:22F	All took capsules twice a day. YO probiotic: given capsules containing mixture of <i>Lactobacillus gasseri</i> KS-13, <i>Bifidobacterium bifidum</i> G9-1, <i>Bifidobacterium</i> <i>longum</i> MM2 (1.5 billion viable cells per capsule), potato starch, and silicon dioxide YO placebo: given capsules containing potato starch and silicon dioxide YO total: capsules were taken twice a day; no immune-enhancing dietary supplements, unpasteurized fermented foods, or non-study probiotics; no antibiotic use within 2 months prior to sampling; non-smokers; no gastrointestinal disease; no chemotherapy within a year of sampling; BMI: 28.0 (SD=0.9)	None reported
Valentini et al., 2014	France, Germany, and Italy	Urban	YO with diet and VSL#3 treatment: 31 YO with diet alone: 31	YO total: 70.1 (SD=3.9; range 65-85) Not reported for each treatment arm	YO total: 29M:33F (not reported for each treatment arm)	YO with diet and VSL#3 treatment: given capsules (taken twice daily for 8 weeks) containing 112 billion lyophilized bacteria that included <i>Bifidobacterium infantis</i> DSM 24737, <i>Bifidobacterium longum</i> DSM 24736, <i>Bifidobacterium breve</i> DSM 24732, <i>Lactobacillus acidophilus</i> DSM 24735, <i>Lactobacillus delbrückii</i> ssp. bulgaricus DSM 24734, <i>Lactobacillus paracasei</i> DSM 24733, <i>Lactobacillus plantarum</i> DSM 24730, and <i>Streptococcus thermophilus</i> DSM 2473, microcrystalline cellulose, stearic acid, magnesium stearate, silicon dioxide and coloring agent; followed RISTOMED diet plan for 8 weeks YO with diet alone: followed RISTOMED diet plan for 8 weeks	Inflammation (hsCRP, ESR, WBC, fibrinogen, IL 6, TNF-a, IL-10) No inflammation subgroup defined by hsCRP < 3 mg/l Low-grade inflammatior subgroup defined by hsCRP ≥ 3 mg/l

DM; no current infection and antibiotic treatment, no anti-inflammatory drugs within 4 months prior to sampling; no intake of conventional yoghurt, probiotics, prebiotics and symbiotics or other supposed functional foods within the 3 weeks prior to sampling; BMI for full sample: 26.8 (SD=3.6)

Abbreviations Used: ADT: adult; BMI: body mass index; CA: cancer; CANTAB-PAL: Cambridge Neuropsychological Test Automated Battery-Paired-Associated Learning Test; CDAD: C. difficile-associated diarrhea; CHD: children; CK: control group; CLD: chronic liver disease; CRP: C-reactive protein; CTN: centenarian group; CVD: cardiovascular disease; DLRT: Deary-Liewald Reaction Time; DM: diabetes; ESR: erythrocyte sedimentation rate; F: female; FAB: Frontal Assessment Battery; FAS: Verbal Association Fluency; FFQ: Food Frequency Questionnaire; FMT: fecal microbiota transplantation; G60: ≥60 years; GI: gastrointestinal; hs-CRP: high sensitivity C-reactive protein; HVLT-R: Hopkins Verbal Learning Test – Revised; hx: history; L60: <60 years; LL: long-living, oldest-old adults; M: male; MMSE: Mini-Mental State Examination; MNA: mini nutritional assessment; ND: neurodegenerative disease; NHYO: non-healthy young-old adult; NSAID: nonsteroidal anti-inflammatory drugs; NTB: neuropsychological test battery; PD: pulmonary disease; PSQI: Pittsburgh Sleep Quality Index; RCDI: recurrent Clostridium difficile infection; RCFT: Rey-Osterrieth Complex Figure Task; SCTN: semisupercentenarians; SCWT: Stroop Color Word Test; TMT-A: Trail Making Test A; TMT-B: Trail Making Test B; WBC: white blood cell count; YO: young-old adult

Table S2. Microbiome methodology of reviewed studies

Publication	Sequencing / Genetic Analysis	Alpha-Diversity Assessments	Beta-Diversity Assessments	Differential Abundance / Taxonomic Differences Methods	Functional Analysis Methods
Centenarian S	tudies				
Biagi et al., 2016	16S rRNA (V3-V4) Illumina MiSeq (2x300 bp paired- end)	N/A	UniFrac (unweighted)	PCR amplification Co-occurrence network analysis Superimposed genus/family abundance on the PCoA plot to identify spatial correlations between samples and bacterial groups	N/A
Drago et al., 2012	16S rDNA pyrosequencing	N/A	N/A	Colony bacteria counts (total aerobes, total anaerobes, <i>enterobacteriaceae</i> , <i>Enterococcus</i> , <i>Staphylococcus</i> , <i>Lactobacillus</i> , <i>Bifidobacterium</i> , <i>Clostridium</i> , <i>Bacteroides</i> , and yeast) Pulsed field gel electrophoresis	N/A
Kim et al., 2019	165 rRNA (V1-V3) pyrosequencing	Observed OTUs Shannon index	Bray-Curtis	Heatmap analyses Random Forests LEfSe	PICRUSt (KEGG orthology)
Kong et al., 2016	16S rRNA (V4-V5) Illumina MiSeq (2x250 bp paired protocol)	Chao index, Observed OTUs Shannon index	Bray-Curtis Jaccard	Random forests	N/A
Rampelli et al., 2013	Shotgun metagenomic sequencing Illumina (no further details)	Simpson index	Euclidean distance	MetaPhlAn	MetaCV pipeline (KEGG orthology)
Tuikhar et al., 2019	16S rRNA (V4-V5) Illumina MiSeq qPCR	Chao1 Shannon index	Bray-Curtis	qPCR (<i>Prevotellaceae</i>) Random Forests	LC-MS
Wu et al., 2019	Shotgun metagenomic sequencing Illumina HiSeqX10 PE150 platform (average insert size of 350 bp)	Observed OTUs Shannon index	Bray-Curtis	NMDS MetaPhlan2.0	Humann2 (KEGG orthology)
Yu et al., 2015	16S rRNA (V4) Illumina MiSeq (250bp/300bp paired-end) qPCR	Chao1 Observed OTUs Shannon index	UniFrac (unweighted)	qPCR (Bacteroides, Bifidobacterium, Enterococcus, Enterobacteriaceae, Clostridium perfringens, Lactobacillus)	N/A
Developmenta	al Aging Studies	·		·	
Claesson et al. 2012	16S rRNA (V4) 454 Genome Sequencer FLX Titanium platform	Shannon Index Observed OTUs Phylogenetic diversity	UniFrac (weighted and un-weighted) non-UniFrac (Bray- Curtis, Jaccard, Chisq, Chord, Euclidean, Hamming, Lennon, Ochiai, Pearson, Sorenson, Canberra, Hellinger, Manhattan,	PLS-DA	NMR spectroscopy

			Kulczynski, Morisita, Soergel)		
Hippe et al., 2011	16S rRNA genes and metabolic genes qPCR	N/A	N/A	qPCR (<i>Clostridium</i> clusters IV and XIVa) Melt curves analyses	Quantification by qPCR
Hopkins et al. 2002	16S rRNA	N/A	N/A	Viable count (total facultative anaerobes, total anaerobes, bifidobacteria, enterococci, C. dificile, enterobacteria, Clostridium perjkzgens, lactobacilli, Bacteroides, Porphyromonas, Prevotella)	CFA analysis
Jeffery et al., 2016	16S rRNA (V4) 454 Genome Sequencer FLX Titanium platform	Chao1 Shannon Index Simpson Phylogenetic diversity	UniFrac	N/A	N/A
Kato et al., 2017	16S rDNA qPCR	N/A	N/A	qPCR (B. adolescentis group, B. animalis ssp. Lactis, B. bifidum, B. breve, B. catenulatum group, B. dentium B. gallinarum group, B. longum group, B. longum ssp. longum, B. minimum, B. mongoliense) Melt curves analyses	N/A
Kushugulova et al., 2015	16S rDNA 3730 XL DNA Analyzer	N/A	N/A	Not reported	Not reported
Le Roy et al., 2015	16S 23S rRNA intergenic spacer region qPCR	N/A	N/A	N/A	NMR-based metabonomics, O- PLS, model was derived from ¹ H-NMR spectra of fecal waters
Odamaki et al., 2016	16S rRNA (V3-V4) Illumina MiSeq qPCR	Chao1 Observed OTUs Shannon index Phylogenetic distance whole tree	UniFrac (weighted and un-weighted)	LefSe qPCR (Bacteroides uniformis, Bifidobacterium longum, Blautia producta, Escherichia coli, Parabacteroides distasonis)	PICRUSt (KEGG orthology)
Odamaki et al., 2018	16S rRNA (V3-V4) Illumina MiSeq Strain-specific PCR	N/A	N/A	Calculated detection rate of gene families Strain-Specific PCR (<i>B. longum</i> subsp. <i>Longum</i>)	Comparative genomics (GF defined by Markov Cluster Algorithm)
Pan et al., 2016	16S rRNA (V2-V3) Vector NTI software, Clustal X PCR-DGGE	Shannon-Wiener (only for diversity of genus <i>Lactobacillus</i>)	N/A	DGGE fingerprinting	N/A
Ruiz-Ruiz et al., 2019	N/A	Margalef microbial richness Pielou's evenness Shannon index	N/A	N/A	LC-MS
Singh et al., 2019	16S rRNA (V1-V3) Illumina MiSeq (2x300 bp)	Chao1 Shannon Index	Bray-Curtis	DESeq2 1.12.3	N/A
Cognition Stud	lies		I		<u> </u>
Anderson et al., 2017	16S rRNA 454 FLX Titanium based strategy	N/A	N/A	Not reported	N/A

Manderino et al., 2017	16S rRNA 454 FLX Titanium based strategy.	N/A	N/A	Not reported	N/A
Verdi et al., 2018 Intervention St	16S rRNA Illumina MiSeq (2x250 bp paired- end)	Chao1 Phylogenetic diversity Observed OTUs Shannon Index	N/A	Not reported	N/A
An et al., 2015	16S rDNA (V5-V6) Illumina HiSeq2500 (2×150 bp)	Faith's phylogenetic diversity Inverse Simpson	Unifrac (weighted and unweighted)	Qubit dsDNA BR Assay Kit with Qubit Fluorometer	Gas chromatography coupled with a flame ionization detector
Björklund et al., 2011	qPCR, non-selective DNA-based method, percent guanine-plus cytosine (%G+C) profiling	N/A	N/A	qPCR (Atopobium, Bacteroides–Prevotella– Porphyromonas group, Lactobacillus, B. coccoides–E. rectale group, Clostridium cluster XIVab, F. prausnitzii and related strains) G+C content regression analysis	N/A
Spaiser et al., 2015	16S rRNA pyrosequencing qPCR	Chao 1 Observed OTUs	UniFrac	qPCR (<i>Bifidobacteria</i> , lactic acid bacteria, <i>Escherichia coli</i>)	N/A
Valentini et al., 2014	16S rDNA gene-targeted qPCR ABI model 373A DNA sequencer	N/A	N/A	16S rDNA gene-targeted qPCR (Clostridium cluster IV, bifidobacteria)	N/A

Abbreviations Used: BLAST: Basic Local Alignment Search Tool; CFA: cellular fatty acid; DDGE: denaturing gradient gel electrophoresis; KEGG: Kyoto Encyclopedia of Genes and Genomes; LC-MS: liquid chromatography and mass spectrometry analysis; LEfSe: linear discriminant analysis coupled with effect size measurements; NMDS: nonmetric multidimensional scaling; NMR: nuclear magnetic resonance; O-PLS: orthogonal projection to latent structure; OTU: operational taxonomic unit; PCR: polymerase chain reaction; PCoA: principal coordinates analysis; PLS-DA: partial least squares regression; qPCR: quantitative polymerase chain reaction/real-time polymerase chain reaction; rDNA: ribosomal deoxyribonucleic acid; rRNA: ribosomal ribonucleic acid; V: variable region of 16S rRNA

Table S3A. Results of studies of the gut microbiome in long-lived individuals

Authors	Alpha-Diversity (α)	Beta diversity (β)	Taxonomic Composition	Functional Potential and Metabolites
Biagi et al., 2016	N/A	Different between all possible comparisons of age groups (SCTN, LL, YO, ADT), except between SCTN and CTN (unweighted UniFrac)	Changes with aging (SCTN, LL, YO, ADT):Family: \downarrow Bacteroidaceae, \downarrow Lachnospiraceae, \downarrow Ruminococcaceae, \uparrow Synergistaceae, and \uparrow Christensenellaceae with aging; *cumulativerelative abundance, no inferential statistics providedGenera: \downarrow Coprococcus, \downarrow Roseburia, \downarrow Faecalibacterium, \downarrow Bacteroides, \uparrow Oscillospira, \uparrow Odoribacter, \uparrow Butyricimonas, \uparrow Eggerthella, \uparrow Akkermansia, \uparrow Anaerotruncus, \uparrow Bilophila, \uparrow Bifidobacterium (\downarrow YOand LL, compared to ADT, and \uparrow SCTN); *no inferential statisticsprovided	N/A
Drago et al., 2012	N/A	N/A	CTN vs. ADT: Family/Genera: CTN ↓ Enterobacteriaceae, ↓ Bifidobacteria, ↓ Bacteroides Species: CTN ↑ Bifidobacterium longum, ↑ Clostridia sensu stricto	N/A
Kim et al., 2019	LL vs. YO vs. ADT: No difference across groups (Shannon, observed OTUs) Longevity villages vs. Urbanized towns: No difference between groups (Shannon, observed OTUs) LL: CM vs. RH: No difference between groups (Shannon, observed OTUs)	LL vs. YO vs. ADT: Did not report Longevity villages vs. Urban towns: Different between groups in PCoA (Bray-Curtis); *no inferential statistics reported LL: CM vs. RH: Did not report	LL vs. YO vs. ADT:Phylum: LL \uparrow Verrucomicrobia, compared to YO, and \uparrow Verrucomicrobia, \uparrow Proteobacteria, \uparrow Actinobacteria, compared toADT; YO \downarrow Bacteroidetes and \uparrow Proteobacteria, compared to ADTFamily/Genera: LL \downarrow Faecalibacterium, \downarrow Prevotella, \uparrow Escherichia, \uparrow Akkermansia, \uparrow Clostridium, \uparrow Collinsella, \uparrow Streptococcus, \uparrow uncultured Christensenellaceae, compared to YO and ADTLongevity villages vs. Urban towns:Phyla: Longevity villages \downarrow Bacteroidetes, \uparrow Firmicutes, comparedto urban townsFamily/Genera: Longevity villages \downarrow uncultured Lachnospiraceae, \uparrow Intestinibacter, \uparrow Romboutsia, \uparrow Turicibacter, \uparrow Eubacterium_g5, \uparrow Blautia, \downarrow Lachnospira, \downarrow Roseburia, \downarrow Bacteroides, compared toADT in longevity villages and urban towns; longevity villages \uparrow Lactobacillus, compared to YO/ADT in urban towns; LL \downarrow Dialister,compared to ADT in urban townsLi: CM vs. RH:Phyla: Community-dwelling \uparrow Firmicutes, \uparrow Tenericutes \downarrow Bacteroidetes, \downarrow Proteobacteria, \downarrow Actinobacteria, \downarrow Verrucomicrobia; *proportions, no inferential statistics providedGenera: Community-dwelling \uparrow Faecalibacterium, \uparrow Intestinibacter, \uparrow Eubacterium_g23, \uparrow Lactobacillus, \uparrow unclassifiedLacnospiraceae, \uparrow Dialister, \uparrow Blautia, \uparrow Eubacterium_g5, \uparrow	 LL vs. YO vs. ADT: KEGG Level 1: LL and ADT ↑ pathways related to metabolism, compared to YO; ↓ pathways related to genetic information processing in LL, then YO, then ADT; LL and YO ↑ pathways related to environmental information processing, compared to ADT. KEGG Level 3: 26 metabolic pathways different between groups; of these, LL ↑ phosphatidylinositol signaling system, compared to YO and ADT; LL and ADT ↑ glycosphingolipid biosynthesis, compared to YO, and LL ↑ N-glycan biosynthesis, compared to YO and ADT LL: CM vs. RH: KEGG Level 3: carbohydrate metabolism different between groups (direction not specified).

			Agathobacter, ↑ Holdemanella, ↑ Lachnospira, ↑ Roseburia, ↑ Alloprevotella, compared to rehabilitation hospital	
Kong et al., 2016	LL ↑ observed OTUs, ↑ Chao, ↑ Shannon, compared to ADT; findings validated an independent (Italian) cohort. In RF models, Chao and observed OTUs among top predictors distinguishing LL vs. ADT.	Did not assess between LL vs. ADT; different between Italian and Chinese LL cohorts (Bray- Curtis, Jaccard)	LL vs. ADT: Family/Genera: LL ↑ Ruminococcaceae, ↑ Christensenellaceae, ↑ Clostridium cluster XIVa, ↑ Akkermansia	N/A
Rampelli et al., 2013	N/A	Different between LL and different from YO (Euclidean distance)	LL vs. YO Genera: LL ↑ Escherichia, and ↑ Ruminococcus, compared to YO; YO ↑ Faecalibacterium, ↑ Eubacterium, and ↑ Bifidobacterium, compared to LL	Diversity Findings for KOs: α: No differences between LL and YO for KEGG pathways (Simpson index) β: LL different from YO and ADT for KEGG pathways (Euclidean distance) Differential ranking of KEGG pathways related to aging: Aging (LL, YO) associated with ↑ metabolism of aromatic amino acids (tryptophan and phenylalanine), metabolism of amino acids (tyrosine, valine and lysine); ADT profile associated with ↑ metabolism of amino acids (histidine) and carbohydrates (glucose, galactose), pyruvate, and butanoate, and ↑ SCFA production.
Tuikhar et al., 2019	LL ↑ Chao1, compared ADT (both in the same village and external groups); no difference in Shannon index <i>Ruminococcaceae</i> family- specific α-diversity: LL ↑ Chao1 and Shannon index, compared to ADT	Different between LL and ADT (Bray-Curtis)	LL vs. ADT (combined datasets: Indian, Italian, Japanese and Chinese): Family/Genera: LL \downarrow Prevotellaceae, \uparrow Eggerthella, \uparrow Rikenellaceae, \uparrow Alistipes, \uparrow Porphyromonadaceae, \uparrow Parabacteroides, \uparrow Porphyromonas, \uparrow Odoribacter, \uparrow Butyricimonas, \uparrow Alicyclobacillaceae, \uparrow Alicyclobacillus, \uparrow Clostridiaceae, \uparrow Finegoldia, \downarrow Ruminococcaceae, \downarrow Faecalibacterium, \uparrow Anaerotruncus, \uparrow Enterobacteriaceae, \uparrow Desulfovibrionaceae, \uparrow Desulfovibrio, \uparrow Synergistaceae, \uparrow Pyramidobacter, \uparrow Verrucomicrobiaceae, \uparrow Akkermansia and \uparrow Clostridiales Family XI Incertae Sedis, compared to ADT Species: LL \uparrow Alistipes shahii, \uparrow Porphyromonas uenonis, \uparrow Odoribacter splanchnicus, \uparrow Parabacteroides goldsteinii, \uparrow Alicyclobacillus acidoterrestris, \uparrow Finegoldia magna, \uparrow Clostridium aminobutyricum, \uparrow Clostridium p_enrichment_culture_clone_7_25, \uparrow Clostridium sp_Kas107_1, \uparrow Clostridium hathewayi, \uparrow Eubacterium siraeum, \uparrow Faecalibacterium prausnitzii, \uparrow Clostridium methylpentosum, \uparrow Anaerotruncus colihominis, \uparrow Escherichia albertii, \uparrow Pyramidobacter piscolens, \uparrow Akkermansia muciniphila, compared to ADT	109 out of 871 metabolites significantly different between LL and ADT. Diversity Findings for metabolites: β: LL different from ADT (Bray-Curtis) Differential abundance of metabolites in LL vs. ADT (Indian dataset): LL ↑ DL-3-Aminoisobutyric acid, ↑ N- Ethylglycine, ↑ gamma-Aminobutyric acid (GABA), ↑ Imidazoleacetic acid, ↑ Niridazole, ↑ Furcic acid, ↑ Dihydroxyphthalic acid, ↑ Nitridazole, ↑ Triacetin, ↑ Goralatide, compared to ADT internal and external; ↓ cyclohexanecarboxylic acid, compared to ADT internal; ↓ 13-cis,16-cis-Docosadienoic acid, compared to ADT external

			LL vs. ADT (Indian dataset): Family/Genera: LL \uparrow Rikenellaceae, \uparrow Alistipes, \uparrow Holdemania, \uparrow Fusobacteriaceae, \uparrow Fusobacterium, \uparrow Proteus, \downarrow Prevotellaceae, \downarrow Prevotella, compared to ADT Species: LL \uparrow Bacteroides caccae, \uparrow Clostridium hiranonis, \uparrow Clostridium sp_MLG480, \uparrow Fusobacterium mortiferum, \uparrow Clostridium bifermentans, \uparrow Clostridium innocuum, \downarrow Prevotella copri, compared to ADT Indian vs. Other datasets (Italian, Japanese and Chinese): Family: Indian \uparrow Erysipelotrichaceae, \uparrow Enterobacteriaceae, \uparrow Lactobacillaceae, \uparrow Leuconostocaceae, \uparrow Actinomycetaceae, \uparrow Corynebacteriaceae, \downarrow Rikenellaceae, \downarrow Bacteroidaceae, \downarrow Porphyromonadaceae, \downarrow Bifidobacteriaceae, compared to other three countries	
Wu et al., 2019	No difference across age groups (LL, YO, ADT) (Shannon index, observed OTUs); "core microbiota" (present in >50% samples) of LL ↑ species richness, compared to YO and ADT	LL different from YO and ADT (Bray-Curtis)	LL vs. YO vs. ADT: Phyla: LL ↑ Proteobacteria, compared to YO and ADT; LL ↓ Firmicutes and ↓ Firmicutes/Bacteroidetes ratio, compared to YO Genera: LL ↓ Faecalibacterium, ↓ Ruminococcus, ↓ Corprococcus, ↓ Dorea, ↑ Methanobrevibacter, compared to YO and ADT Species: LL ↓ Faecalibacterium prausnitzi, ↓ Eubacterium rectale, ↑ Bifidobacterium adolescentis, ↓ Ruminococcus sp_5_1_39BFAA, ↓ Dorea longicatena, ↑ Methanobrevibacter smithii, compared to YO and ADT	115 out of 463 gene pathways significantly different among age groups Diversity Findings for KOs: α : LL \uparrow Shannon and \uparrow observed KOs, compared to YO and ADT; no difference between YO and ADT β : LL different from YO and ADT (Bray- Curtis); no difference between YO and ADT Differential abundance of KOs in LL vs. YO vs. ADT: LL \uparrow pathways related to central metabolism (glycolysis, pentose phosphate pathways, and tricarboxylic acid cycle), \uparrow anaerobic respiration, \uparrow aerobic respiration, \uparrow metabolism of and fermentation to SCFAs (propanoate and acetate), \downarrow amino acid biosynthesis pathways (e.g., L-lysine-, L- isoleucine- and L-methionine), \uparrow aromatic compounds (e.g., L-phenylalanine metabolism and chorismite biosynthesis), \downarrow pathways related to carbohydrate degradation, \uparrow vitamin B2 and K2 synthesis pathways, \uparrow KOs related to phosphotransferase system, F420, and coenzyme M, compared to YO and ADT; LL and YO \downarrow vitamin B1 synthesis pathways, compared to ADT
Yu et al., 2015	LL ↑ Chao1 and Shannon index, compared to CK; *only mean,	Different between CK and LL (unweighted UniFrac)	LL vs. CK:	N/A

SD values reported; no	Phylum: LL ↓ Firmicutes, ↑ Bacteroidetes, ↑ Proteobacteria, ↑	
inferential statistics provided	Verrucomicrobia, ↑ Spirochaetes, ↑ Synergistetes, ↑ Thermi	
	Genera: \uparrow <i>Escherichia</i> , \uparrow <i>Phascolarctobacterium</i> , \uparrow <i>Parabacteroides</i> , \uparrow	
	Desulfovibrio, ↑ Syntrophomonas, ↑ Novosphingobium, ↓	
	Faecalibacterium	

Abbreviations Used: ADT: adult; CK: control group; CM: community-dwelling older adults; CTN: centenarian group; KEGG: Kyoto Encyclopedia of Genes and Genomes; KO: Kyoto Encyclopedia of Genes and Genomes; KO: Kyoto Encyclopedia of Genes and Genomes; KD: store adults; OTU: operational taxonomic unit; PCoA: principal component analysis to reduce dimension of variables; RF: random forest; SCTN: semi-supercentenarians; RH: rehabilitation hospital older adults; SD: standard deviation; YO: young-old adult

Table S3B. Results of studies of the gut microbiome across the lifespan

Authors	Alpha-Diversity (α)	Beta diversity (β)	Taxonomic Composition	Functional Potential and Metabolites
Claesson	YO (CM vs. DH vs. RH vs. LS):	Different between CM and LS	CM vs. DH vs. RH vs. LS:	CM vs. RH vs. LS:
et al. 2012	CM ↑ microbial diversity	(unweighted and weighted	Phyla: LS ↑ Bacteroidetes, compared to CM; CM ↑ Firmicutes,	CM ↑ total predicted gene counts, compared
	(Number unique OTUs,	UniFrac); no difference between	compared to LS	to RH, LS
	Shannon index, Phylogenetic	CM and ADT		
	diversity) and health food		Family/Genera: CM ↑ Coprococcus, ↑ Roseburia, ↑ Lachnospiraceae,	Co-inertia analysis of the microbiota and
	diversity, compared LS; CM ↑		compared to LS; LS \uparrow <i>Parabacteroides</i> , \uparrow <i>Eubacterium</i> , \uparrow	metabolome:
	microbial diversity (Number		Anaerotruncus, ↑ Lactonifactor, ↑ Coprobacillus, compared to CM	CM and RH ↑ acetate, ↑ propionate, ↑ valerate,
	unique OTUs, Shannon index,			compared to LS
	Phylogenetic diversity),		YO vs. ADT	
	compared to DH; CM ↑		Genus: YO↓Ruminococcus,↓Blautia,↑Escherichia/Shigella,	CM vs. LS:
	microbial diversity (Number		compared to ADT	NMR identification of chemical shifts of
	unique OTUs, Phylogenetic			metabolites: CM \uparrow butyrate, \uparrow glutarate, \downarrow
	diversity) and health food			glycine, \downarrow glucose, \downarrow lipid, relative to LS
	diversity, compared to RH; RH			
	↑ microbial diversity (Number			Gene counts for enzymes:
	unique OTUs) and health food			CM \uparrow butyrate, \uparrow acetate, \uparrow propionate,
	diversity, compared to LS			compared to LS; RH ↑ butyrate, ↑ acetate,
				compared to LS
	Dietary groups: DG1 (low			
	fat/high fiber) vs. DG2			Average sequencing coverage for enzymes:
	(moderate fat/high fiber) vs.			CM ↑ butyrate, ↑ acetate, ↑ propionate,
	DG3 (moderate fat/low fiber)			compared to LS; RH ↑ butyrate, compared to
	vs. G4 ('high fat/low fiber):			LS
	Participants with DG1 ↑			
	microbial diversity (Number			
	unique OTUs, Shannon index,			
	Phylogenetic diversity) and			
	health food diversity, compared			
	to DG2, DG3, DG4; DG2 ↑			
	microbial diversity (number			
	unique OTUs, Phylogenetic			
	diversity) and health food			
	diversity, compared to DG3,			
	DG4; DG2 ↑ microbial diversity			
	(Number unique OTUs,			
	Shannon index, Phylogenetic			
	diversity, health food diversity),			
	compared to DG3			
Linna at	N/A	N/A	YO vs. ADT omnivores vs. ADT vegetarians:	YO vs. ADT omnivores vs. ADT vegetarians:
Hippe et al., 2011	1N/A	N/A	Genus: YO \downarrow <i>Clostridium cluster XIVa,</i> compared to ADT omnivores	YO ↓ butyryl-CoA:acetate CoA-transferase
ai., 2011			and ADT vegetarians	gene, compared to ADT; ↑ ADT vegetarians,
				compared ADT omnivores.
				compared AD1 onunvores.

			Species: (Melt curve analysis) YO \downarrow Eubacterium hallii / Anaerostipes coli, \downarrow E. rectale/Roseburia spp., \downarrow F. prausnitzii melt peaks, compared to ADT omnivores and ADT vegetarians	
Hopkins et al. 2002	N/A	N/A	Healthy (YO vs. ADT vs. CHD) vs. elderly Clostridium difficile- associated diarrhea (NHYO): Genus: NHYO ↓ Bacteroides, compared to CHD, ADT and YO; NHYO ↑ lactobacillus, ↑ clostridia, compared to ADT and YO; YO, NHYO ↓ Bifidobacteria, compared to CHD, ADT. Family: ADT ↓ Enterobacteria, compared to CHD, NHYO	NHYO ↑ Saturated straight chain (20:0), ↑ Unsaturated straight chain (20:1 cis ll), ↓ Saturated straight chain (12:0, 15:0) and absence of the branched chain (15:O ante and 15:O iso fatty acids); ADT ↑ branched chain CFA, compared to all other groups; ↑ dimethyl acyl (18.1 cisl1 DMA, 14.0 DMA), compared to CHD and NHYO; ↑ 15:0 ante DMA, compared to other groups; CHD did not have dimethyl acyl (18:0 DMA), unsaturated straight chain (16:1 cis9), compared to other groups.
Jeffery et al., 2016	 ↑ stable-microbiota CM, compared to unstable* CM (Shannon diversity); ↑ LS, compared to unstable* LS (Shannon diversity, Chao 1, phylogenetic diversity); ↑ stable-CM, compared to LS (Shannon diversity, Phylogenetic diversity, Simpson diversity) *Participants in highest quartile of absolute distance between time point T0 (baseline) and T3 (3 months) are denoted as unstable 	LS vs. CM: Different between LS and CM (unweighted UniFrac); DH vs. RH vs. LS vs. CM: DH and RH had microbiota clusters in between LS and CM (unweighted UniFrac) ADT vs. CM: No difference between ADT and CM (unweighted UniFrac)	N/A	N/A
Kato et al., 2017	N/A	N/A	Pre-weaning to 100 plus years Species: <i>B. longum</i> detected in all groups; Elderly \uparrow <i>B. dentium</i> , \downarrow <i>B. catenulatum</i> ; Adult \uparrow <i>B. adolescentis</i> , \downarrow <i>B. breve</i> , \uparrow <i>B. gallinarum</i> , \uparrow <i>B. catenulatum</i> ; Infant \uparrow <i>B. breve</i> , \downarrow <i>B. adolescentis</i>	N/A
Kushugul ova et al., 2015	N/A	N/A	LL vs. YO vs. ADT Phylum: ADT ↑ Bacteroidetes; YO ↑ Firmicutes; LL ↑ Tenericutes, compared to other groups; *no inferential statistics provided Species: LL ↓ butyrate-producing and mucin-degrading species, compared with YO, ADT; *no inferential statistics provided	N/A
Le Roy et al., 2015	N/A	N/A	YO vs. ADT YO \uparrow <i>L. paracasei</i> , \uparrow <i>L. plantarum</i> , \downarrow <i>L. salivarius</i> , and \downarrow <i>L. helveticus</i> , compared to ADT	Correlation between <i>Lactobacillus</i> and metabolites: ↑ <i>Lactobacillus</i> sp. was associated with ↑ SCFAs: acetate, propionate and butyrate, ↑

Odamaki	↑ with age (Chao1, number of	Variation in data due to age	Composition across all ages (0 to 100+):	 lactic acid, ↑ amino acid: (tyrosine, phenylalanine, leucine, isoleucine, valine and lysine); <i>L. helveticus</i> was associated with ↑ butyrate, ↑ lactate, ↑ glucose No difference between ADT and YO in H-NMR metabolic profiles Infant/Elderly vs. Adult enriched clusters:
et al., 2016	observed species, Shannon index, phylogenetic distance whole tree)	(UniFrac distances, both weighted and un-weighted analyses); no differences in gender (UniFrac distances, both weighted and un-weighted analyses)	Phyla: With ↑ Age, ↓ Actinobacteria, ↑ Bacteroidetes, ↑ Proteobacteria	Pre-weaned infants ↓ xylose transporter Infant/Elderly ↑ drug transporters
Odamaki et al., 2018	N/A	N/A	Across age groups (pre-weaning to 100+ age) Species: Blautia wexlerae, Streptococcus salivarius, Bifidobacterium longum; *no inferential statistics provided, detected >50% of participants across age groups	Negative correlation between ORF and age: \downarrow Number of ORF of <i>B. longum</i> subsp. <i>longum</i> strains with \uparrow in the age of participants Younger vs. Older (GF enriched in <i>B. longum</i> subsp. <i>longum</i> strains) Older (GF:11) \downarrow GF involved in carbohydrate transport and metabolism, compared to infants (GF:22); Adults \uparrow GF involved defense mechanisms, transcription and replication, recombination and repair, compared other groups. 169 GF enriched in <i>B. Longum</i> subsp. <i>longum</i> strains in younger participants vs. 55 GF enriched in older participants; younger participants \uparrow sialidase-encoding cluster, \uparrow an α arabinofuranosidase gene cluster, \uparrow pNAC3 (a 10 kb plasmid) homologue, \uparrow capsule biosynthesis related genes and a Type VII secretion system, \uparrow some prophage regions found in the AH1206 episome; infants enriched in sialidase clusters; older \uparrow extracellular α -L-arabinofuranosidases, putative multidrug-family ABC transporter (associated two-component system), a genetic cluster (Hsp20-family heat shock chaperone), \uparrow prophage regions
Pan et al., 2016	No difference between YO Nanning and YO Bama subjects (only for diversity of genus <i>Lactobacillus;</i> Shannon-Wiener)	N/A	Representative Lactobacillus species in YO: W. confusa, L. mucosae, L. crispatus, L. salivarius, and L. delbrueckii YO Bama vs. YO Nanning:	N/A

			Species: Bama \uparrow <i>W. confusa</i> , \uparrow <i>L. salivarius</i> , \downarrow <i>L. mucosae</i> , compared to Nanning Correlations with diet: Dietary fibers intake \uparrow <i>W. confusa</i> , \uparrow <i>L. salivarius</i> , \downarrow <i>L. mucosae</i> , \downarrow <i>L. crispatus</i> ; fat intake \downarrow <i>L. salivarius</i> , \uparrow <i>L. mucosae</i> ; protein intake \uparrow <i>L. mucosae</i> ; carbohydrate \downarrow <i>L. mucosae</i>	
Ruiz-Ruiz et al., 2019	N/A	N/A	N/A	Diversity Findings for metabolites: α : YO \uparrow compared to CHD, ADT (microbial richness, Pielou's evenness, Shannon index) YO vs. ADT vs. CHD: YO \downarrow tryptophan and indole production with \uparrow age; YO \downarrow TnaA, \downarrow TrpB, \downarrow tryptophan, \downarrow indole, compared to CHD, ADT
Singh et al., 2019	No difference between YO and NHYO (Shannon, Chao1)	No difference between YO and NHYO (Bray-Curtis)	YO vs. NHYO: Family/Genus: YO ↑ Akkermansia, ↑ Erysipelotrichaceae UCG-003, ↑ Bacteroides, ↓ Streptococcus, ↓ Lactobacillus, ↑ Lachnospiraceae (UCG- 005) ¹ , ↓ Escherichia ¹ /Shigella ¹ , ↑ Cardiobacterium, ↑ Neisseria, ↑ Comamonas, ↑ Capnocytophaga, ↓ Bifidobacterium, ↑ Filifactor, ↑ Fusobacterium, ↑ Propionibacterium, ↑ Haemophilus, ↑ Corynebacterium, ↓ Rothia, ↑ Porphyromonas, ↑ Ruminococcaceae UCG-014, ↑ Prevotella 2, ↑ Peptoclostridium, compared to NHYO; *no inferential statistics provided	N/A

Abbreviations Used: ADT: adult; CFA: cellular fatty acid; CHD: children; CM: community-dwelling older adults; DH: day-hospital older adults; DG: dietary group; DMA: dimethyl acid; GF: gene family; LL: long-living, oldest-old adults; LS: long-stay older adults; NHYO: non-healthy younger-old adult; NMR: nuclear magnetic resonance; ORF: open reading frame; OTU: operational taxonomic unit; RH: rehabilitation hospital older adults; SCFA: short chain fatty acid; TnaA; tryptophanase; TrpB: tryptophan synthase; YO: young-old adult

Authors	Alpha-Diversity (α)	Beta diversity (β)	Taxonomic Composition	Functional Potential and Metabolites
Anderson et al., 2017	N/A	N/A	Associations with cognition and sleep: Verrucomicrobia and Lentisphaerae: ↑ sleep quality. Verrucomicrobia: ↑ word reading, processing speed Lentisphaerae: ↑ cognitive flexibility; non-significant after accounting for sleep	N/A
Manderino et al., 2017	N/A	N/A	NHYO vs. YO: YO↓ Bacteroidetes,↓ Proteobacteria,↑ Firmicutes,↑ Verrucomicrobia, compared to NHYO Associations with cognition: Phylum:↑ Verrucomicrobia showed↑ verbal learning,↑ visual scanning,↑ cognitive set-shifting,↑ cognitive flexibility (word reading),↑ cognitive flexibility (color naming);↑ Firmicutes showed↑ spatial perception and visual memory ↑ memory;↑ Bacteroidetes correlated to↓ spatial perception and visual memory,↓ memory;↑ Proteobacteria correlated to↓ verbal Recognition/Discrimination,↓ FAB,↓ FAS	N/A
Verdi et al., 2018	Associations with cognition: ↑ Chao1, phylogenetic diversity, and observed OTU associated with ↓ reaction time and ↓ verbal fluency; the latter was no longer significant after accounting for frailty	N/A	Associations with cognition: Order: ↑ Burkholderiales associated with ↓ reaction time Class: ↑ Betaproteobacteria associated with ↓ reaction time	N/A

Table S3C. Results of studies investigating the relationship of the gut microbiome to cognition in older adults

Abbreviations Used: FAB: Frontal Assessment Battery; FAS: Verbal Association Fluency; NHYO: non-healthy younger-old adult; OTU: operational taxonomic unit; YO: young-old adult

Table S3D: Results of studies investigating interventions targeting the microbiome in older adults

Authors	Alpha-Diversity (α)	Beta diversity (β)	Taxonomic Composition	Functional Potential and Metabolites
An et al., 2019	YO vs. ADT (Baseline): No difference between ADT and YO at baseline (inverse Simpson's index and phylogenetic diversity) Pre- vs. Post-Pectin Supplementation): No difference (Faith's PD, inverse Simpson) in both ADT and YO	 YO vs. ADT (Baseline): Difference between ADT and YO (unweighted UniFrac); no significance difference between ADT and YO (weighted UniFrac) Placebo vs. Pectin Supplementation (Baseline): No significant difference (weighted and unweighted UniFrac) Pre- vs. Post-Pectin Supplementation: No significant difference (weighted and unweighted UniFrac). Pre- vs. Post-Pectin Supplementation: No significant difference (weighted and unweighted UniFrac). Smaller intra- individual (within person) change, compared to Inter- individual (across people) (weighted UniFrac and unweighted UniFrac) 	YO vs. ADT (Baseline): YO ↑ Enterorhabdus, ↑ Ruminiclostridium 6, ↑ uncultured genus within the family Coriobacteriaceae, ↑ Mogibacterium, ↑ Lachnospiraceae (UCG-008), compared to ADT YO vs. ADT (Post Pectin Supplementation): YO ↑ Enterorhabdus, ↑ uncultured genus within the family Coriobacteriaceae, ↑ Mogibacterium, ↑ Lachnospiraceae UCG-008) Pre- vs. Post-Pectin Supplementation: No change in taxonomic composition.	YO vs. ADT (Baseline): No significant differences in BCFA or SCFA Pre- vs. Post-Pectin Supplementation: No significant differences in BCFA or SCFA (acetic acid, propionic acid, butyric acid, valeric acid, isobutyric acid, isovaleric acid) in YO or ADT
Björklund et al., 2011	N/A	N/A	Placebo vs. Synbiotic: Genera: Synbiotic ↑ Bifidobacterium, ↑ L. acidophilus NCFM, compared to placebo; both (synbiotic and placebo) ↓ Clostridium cluster XIVab, ↓ Blautia coccoides– Eubacterium rectale	N/A
Spaiser et al., 2015	Placebo vs. Probiotic: No difference between placebo and probiotic groups (Chao1, observed OTUs)	Placebo vs. Probiotic: No difference between placebo and probiotic groups (UniFrac)	Placebo vs. Probiotic: Genus: Probiotic ↑ Bifidobacteria and ↑ lactic acid bacteria, compared to placebo Species: Probiotic ↓ Escherichia coli and ↑ Faecalibacterium prausnitzii, compared to placebo	N/A
Valentini et al., 2014	N/A	N/A	Diet only vs. Diet+VSL#3 treatment (Low-grade Inflammation Group): Diet+VSL#3 ↑ Bifidobacterium Pre- and Post-Diet+VSL#3 treatment: No change in Clostridium cluster IV, Bifidobacterium	N/A

	spp.	

Abbreviations Used: ADT: adult; BCFA: branched chain fatty acids; FMT: fecal microbiota transplantation; OTU: operational taxonomic unit; PD: phylogenetic diversity; SCFA: short chain fatty acids; YO: young-old adult