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Abstract: Vitamin K is a fat-soluble vitamin that is indispensable for the activation of vitamin
K-dependent proteins (VKDPs) and may be implicated in cardiovascular disease (CVD). Vascular
calcification is intimately associated with CV events and mortality and is a chronic inflammatory
process in which activated macrophages promote osteoblastic differentiation of vascular smooth
muscle cells (VSMCs) through the production of proinflammatory cytokines such as IL-1β, IL-6,
TNF-α, and oncostatin M (OSM) in both intimal and medial layers of arterial walls. This process
may be mainly mediated through NF-κB signaling pathway. Vitamin K has been demonstrated
to exert anti-inflammatory effects through antagonizing NF-κB signaling in both in vitro and
in vivo studies, suggesting that vitamin K may prevent vascular calcification via anti-inflammatory
mechanisms. Matrix Gla protein (MGP) is a major inhibitor of soft tissue calcification and contributes
to preventing both intimal and medial vascular calcification. Vitamin K may also inhibit progression
of vascular calcification by enhancing the activity of MGP through facilitating its γ-carboxylation.
In support of this hypothesis, the procalcific effects of warfarin, an antagonist of vitamin K, on arterial
calcification have been demonstrated in several clinical studies. Among the inactive MGP forms,
dephospho-uncarboxylated MGP (dp-ucMGP) may be regarded as the most useful biomarker of not
only vitamin K deficiency, but also vascular calcification and CVD. There have been several studies
showing the association of circulating levels of dp-ucMGP with vitamin K intake, vascular calcification,
mortality, and CVD. However, additional larger prospective studies including randomized controlled
trials are necessary to confirm the beneficial effects of vitamin K supplementation on CV health.
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1. Introduction

Vitamin K is a fat-soluble vitamin that is composed of a 2-methyl-1,4-naphthoquinone ring and a
side chain at the 3-carbon position varying in length and degree of saturation [1]. Vitamin K naturally
occurs in two forms: vitamin K1 (phylloquinone) and vitamin K2 (menaquinones (MKs)). Vitamin K1
is predominantly found in green leafy vegetables and plant oils such as soybean, canola, and olive,
whereas vitamin K2 is present in small amounts in fermented foods, milk products, meat, and cheese.
Vitamin K2 is the most potent form and has a longer half-life compared with vitamin K1 [2]. Moreover,
MK-4 is the most prevalent form of vitamin K in human and animal tissues and can be formed from
menadione through the action of UbiA prenyltranferase domain-containing protein 1 (UBIAD1) [3].

The most important function of vitamin K is to serve as a cofactor in the synthesis of vitamin
K-dependent coagulation factors II, VII, IX, and X in the liver [4,5]. Activation of vitamin K-dependent
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proteins (VKDPs) is mediated through the conversion of glutamic acid (Glu) residue of their molecules
to γ-carboxyglutamic acid (Gla) by the action of γ-glutamyl carboxylase (GGCX). This process proceeds
by the oxidation of vitamin K hydroquinone (KH2) to vitamin K epoxide (KO) in the vitamin K cycle.
KO is reduced to KH2 by vitamin K epoxide reductase (VKOR). Vitamin K antagonists such as warfarin
exert their anti-coagulative effects by inhibiting VKOR activities.

Two natural anticoagulants, protein C and protein S, are the vitamin K-dependent plasma proteins
that regulate blood coagulation by inhibiting activated factors Va and VIIIa (FVa and FVIIIa) [6].
In addition to its anticoagulant activity, activated protein C (APC) exhibits anti-inflammatory and
anti-apoptotic effects by its binding to endothelial cell protein C receptor (EPCR), leading to activation of
protease-activated receptor 1 (PAR1) [7]. Protein S functions as a cofactor for APC in the degradation of
FVa and FVIIIa. Protein S also exerts anti-inflammatory effect through its binding to the Tyro3/Axl/Mer
(TAM) family of receptor tyrosine kinases [8].

Other extra-hepatic VKDPs such as matrix Gla protein (MGP), osteocalcin, and Gas6, and Gla-rich
protein (GRP) have been identified. Osteocalcin (also called bone Gla protein) is mainly secreted by
osteoblasts and facilitates the deposition of calcium into bone matrix [9,10]. Matrix Gla protein (MGP)
is predominantly produced by chondrocytes and vascular smooth muscle cells and functions as a
potent calcification inhibitor within the arterial walls [10,11]. Growth arrest-specific 6 (Gas6) is known
to be a ligand for the TAM family of receptor tyrosine kinases and prevents endothelial cells and
vascular smooth muscle cells (VSMCs) from undergoing apoptosis and inhibits vascular calcification
through its anti-apoptotic effect on VSMCs [10,12]. Gla-rich protein (GRP) was identified in sturgeon
cartilage as a novel VKDP containing many Gla residues in the molecule (16 Gla residues among 74
amino acids) and may serve as an inhibitor of vascular calcification [10,13].

Vitamin K has been shown to function as an anti-inflammatory factor, independent of its activity as
a cofactor for GGCX. Vitamin K status was inversely associated with circulating inflammatory markers
such as IL-6 and C-reactive protein (CRP) [14]. Vitamin K attenuated lipopolysaccharide (LPS)-induced
inflammatory responses by blocking nuclear factor κB (NF-κB) signal transduction [15–17].

Cardiovascular disease (CVD) is the leading cause of morbidity and mortality all over the world.
Vascular calcification is a striking feature of chronic inflammatory diseases such as atherosclerosis,
type 2 diabetes, and chronic kidney disease (CKD) and is associated with increased risk of adverse
CV events [18–21]. Vitamin K has been proposed to show a protective effect against CVD through the
action of VKDPs such as MGP to inhibit vascular calcification [22,23]. Furthermore, anti-inflammatory
effects of vitamin K may be involved in preventing progression of atherosclerotic plaque calcification.
In this review, we will describe the inhibitory roles of vitamin K and MGP in vascular calcification and
the clinical significance of inactive MGP (dephospho-uncarboxylated MGP: dp-ucMGP) as a novel
biomarker of vascular calcification and CVD.

2. Vascular Calcification and CVD

Vascular calcification is a hallmark of atherosclerosis especially in coronary arteries. Particularly
in patients with diabetes mellitus and CKD, coronary artery calcification (CAC) is strikingly accelerated
and predicts future CV events and all-cause mortality [19,24].

Morphologically, two types of vascular calcification have been described. Intimal calcification
usually develops in accordance with progression of atherosclerosis and may cause coronary ischemic
events. On the other hand, medial calcification is independent of atherosclerosis and predominantly
develops along elastic fibers. Consequently, medial calcification promotes arterial stiffness and increases
pulse pressure as well as systolic blood pressure, resulting in left ventricular hypertrophy, diastolic
dysfunction, and heart failure [25].

VSMCs play a pivotal role in vascular calcification. Under procalcifying conditions, VSMCs
undergo osteoblastic differentiation and express Runx2, the master transcription factor for osteogenesis
along with other bone-related proteins such as alkaline phosphatase (ALP) and bone sialoprotein II
(BSP-II) [26]. These transdifferentiated osteoblast-like cells generate matrix vesicles and exosomes
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that initiate the mineralization process and deposit bone-like matrix within the arterial wall. These
processes are promoted by loss of calcification inhibitors, oxidative stress, endoplasmic reticulum
stress, apoptosis, and DNA damage response signaling [26].

3. Inflammation and Vascular Calcification

Vascular calcification is an inflammation-mediated process where macrophages promote
osteoblastic differentiation and mineralization of VSMCs via secreting proinflammatory cytokines
such as interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α), and oncostatin M (OSM) [27–30].
In intimal vascular calcification, plaque inflammation evoked by infiltrated macrophages precedes
active calcification [31,32], while an increased number of CD68-positive macrophages are localized in
the vascular wall associated with medial calcification in CKD [33,34]. Moreover, it has been suggested
that pro-inflammatory cytokines such as TNF-α may play an important role in the development of
medial calcification associated with diabetes and CKD [35].

It has been shown that NF-κB activation by TNF-α and LPS promotes osteogenic differentiation
of human adipose tissue-derived mesenchymal stromal/stem cells [36,37]. Moreover, TNF-α also
enhanced osteogenic differentiation of both human bone marrow-derived mesenchymal stem cells and
human dental pulp stem cells through activation of NF-κB signaling pathway [38,39]. Furthermore,
NF-κB signaling stimulated by various stimuli such as high glucose, high phosphate, and oxidative
stress as well as proinflammatory cytokines has also been involved in osteogenic differentiation of
VSMCs [40–44]. Therefore, NF-κB signaling play a pivotal role in osteogenic differentiation of not only
mesenchymal stem cells, but also VSMCs.

4. Anti-Inflammatory Effects of Vitamin K

Anti-inflammatory action of vitamin K has been shown in several in vitro and in vivo studies.
MK-4 suppressed LPS-induced expression of inflammatory cytokines such as IL-6 in macrophage-like
cells and MG-6 mouse microglia-derived cells through the inhibition of NF-κB signaling pathway [16,45].
Pretreatment with MK-7 inhibited the production of TNF-α after the toll-like receptor (TLR) activation
in human monocyte-derived macrophages [17]. LPS-induced production of IL-6 in human fibroblasts is
intensively inhibited by naphthoquinone compounds [46]. In an in vivo study utilizing rats, vitamin
K1 supplementation suppresses the inflammation induced by LPS as evidenced by plasma levels of
transaminases and hepatic mRNA levels of macrophage migration inhibitory factor [15]. Vitamin K1
also attenuates streptozotocin-induced diabetes in rats by reducing free radical stress and suppressing
NF-κB activation [47]. Clinical studies have showed that vitamin K status is negatively associated with
circulating levels of inflammatory markers. Plasma K1 levels were inversely associated with IL-6 and
C-reactive protein (CRP) in a cross-sectional study conducted with 379 healthy men and women [48].
However, no significant changes of the levels of inflammatory biomarkers were observed in the 3-year
follow-up of patients supplemented with vitamin K1 [48]. In another cross-sectional analysis of the
Framingham Offspring Study (n = 1381), plasma levels of phylloquinone (vitamin K1) and its intake
were inversely associated with overall circulating markers of inflammation, including CD40 ligand
and IL-6 [14]. Higher serum phylloquinone levels were associated with several serum inflammatory
markers such as IL-6, soluble intercellular adhesion molecule-1 (ICAM-1), and CRP in a cross-sectional
study conducted with 662 community-dwelling adults from the Multi-Ethnic Study of Atherosclerosis
(MESA) [49]. Therefore, it is likely that vitamin K may prevent inflammatory vascular diseases including
atherosclerosis and vascular calcification through its anti-inflammatory actions on vascular cells.

5. Matrix Gla Protein and other VKDPs in Vascular Calcification

Matrix Gla protein (MGP) is an 84-amino acid VKDP that is secreted by chondrocytes and
VSMCs and is expressed in not only bone, but also the heart, vessels, kidneys, and cartilage. MGP
contains five glutamic acid residues and three serine residues and this molecule is activated through
two post-translational modifications as follows: vitamin K-dependent carboxylation of glutamate
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and serine phosphorylation [50]. After these maturation steps, activated MGP serves as a potent
calcification inhibitor.

Mice lacking MGP developed extensive arterial calcification and die within six to eight weeks
due to rupture of the aorta [51]. Histological analyses clarified extensive calcification along with
elastic fibers and the presence of chondrocyte-like cells in the media. Interestingly, restoration of MGP
expression in VSMCs rescued the arterial calcification phenotype in MGP-deficient mice, while raising
circulating levels of MGP through overexpression of MGP transgene in the liver did not affect vascular
calcification, suggesting that only expression of MGP in VSMCs can inhibit vascular calcification [52].
MGP expression in VSMCs was inversely regulated by the development of VSMC calcification [53].
In humans, mutations in the gene encoding MGP causes Keutel syndrome, a rare autosomal recessive
disorder characterized by severe calcification of soft tissues [54,55]. The possible mechanisms have been
suggested for the inhibitory actions of MGP on calcification. Firstly, MGP binds hydroxyapatite crystals
thereby inhibiting crystal growth [56]. Secondly, MGP has the capacity to bind bone morphogenetic
protein-2 (BMP-2) and to attenuate its activity [57,58]. BMP-2 promotes transdifferentiation of VSMCs
into osteoblast-like cells. MGP has been shown to be localized in not only calcified atherosclerotic
plaques, but also medial calcified lesions [59–63]. Thus, MGP has been recognized as a major inhibitor
of both intimal and medial vascular calcification.

As mentioned in the previous section, VKDPs other than MGP may also function as inhibitors
of vascular calcification. Gas6 exerts its inhibitory effect on vascular calcification through its binding
to the Axl receptor. Interaction between Gas6 and Axl activates the PI3K/Akt pathway resulting in
stimulation of cell survival pathway [64]. Therefore, apoptosis-mediated VSMC calcification can be
inhibited by the Gas6/Axl-PI3K/Akt pathway activated by statin and vitamin K2 [65,66]. GRP also
function as an inhibitor of vascular calcification. GRP is immunohistochemically localized at the
site of mineral deposition in human aorta and aortic valve tissues [67]. The gene expression of GRP
is also significantly upregulated in calcified aortic valve tissues compared with non-calcified aortic
valve tissues [68]. VSMCs derived from GRP-deficient mice exhibit an increased capacity of in vitro
calcification and expression of osteogenic markers such as Runx2, ALP, and OCN [68]. Protein C and
protein S deficiency may be involved in the pathogenesis of calcific uremic arteriolopathy (also known
as calciphylaxis) characterized by skin ulcer and tissue necrosis [69].

6. Vitamin K and CAC

CAC is closely related to the overall plaque burden of coronary artery atherosclerosis. Higher
CAC score is associated with a greater risk of adverse CV events and all-cause mortality [70–72].
A preventive role for vitamin K against CAC progression has been proposed through the inhibitory
action of MGP on mineral deposition within the arterial wall [22,73]. Once MGP is activated through
vitamin K-dependent γ-carboxylation and subsequent serine phosphorylation, it potently suppresses
arterial calcification [50]. Anti-inflammatory effects of vitamin K, independent of γ-carboxylation, may
also contribute to the inhibition of CAC as mentioned above.

6.1. Vitamin K Status and CAC

There have been several observational studies assessing the relationship between vitamin K status
and CAC. Vitamin K status has been assessed by vitamin K intake, circulating levels of phylloquinone
(PK) or menaquinone (MK), and measuring uncarboxylated fractions of certain VKDPs such as
MGP [2,74]. In an observational study among U.S. military personnel at low CVD risk, phylloquinone
intake was not associated with CAC [75]. In a case-cohort study conducted on MESA subjects, low
levels of serum vitamin K1 were significantly associated with CAC progression in patients treated with
antihypertensive drugs [76]. In a cross-sectional study of 564 post-menopausal women to examine
the association of PK and MK intake with CAC, PK intake was not associated with CAC [RR (95%
CI):1.17 (0.96–1,42); the highest versus lowest quartile], while MK intake was associated with reduced
CAC [RR (95% CI):0.80 (0.65–0.98); the highest versus lowest quartile] [77]. In an observational study
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to investigate the association of CAC and circulating levels of PK, MK-4, and MK-7, there was no
significant correlation of CAC with plasma levels of PK, MK-4, and MK-7 [78]. In another cross-sectional
study among 40 hemodialysis (HD) patients, circulating uc-MGP levels as a vitamin K status marker
were inversely associated with the severity of CAC [79].

6.2. Vitamin K Supplementation and CAC

There are a few studies examining the effect of vitamin K supplementation on coronary artery
calcification. A 3-year prospective randomized controlled trial (RCT) revealed that PK supplementation
significantly reduced CAC progression compared to control supplementation in a subgroup of
participants who were≥ 85% adherent to the intervention [80]. In another RCT including 42 nondialyzed
patients with CKD stages 3–5 for 270 days, the increase of common carotid intima-media thickness
(CCA-IMT) was significantly lower in the supplementation group with MK-7 at a dose of 90 µg together
with 10 µg of cholecalciferol (vitamin D) (K + D group) compared with the D group [81]. The increase of
CAC was slightly lower in the K + D group than in the D group, but the difference was not significant [81].
In a single arm study of 26 patients supplemented with 45 mg MK-4 for 1 year, the annual increase
of CAC was 14%, but brachial ankle pulse wave velocity was not significantly changed [82]. In a
recent RCT among 68 patients with type 2 diabetes and CVD for 6 months, MK-7 supplementation
(360 µg/day) did not significantly change calcification mass score of both femoral arteries compared
with placebo treatment [83]. RCTs designed to assess the effect of PK and MK-7 on CAC in HD patients
are ongoing [84–86].

6.3. Vitamin K Antagonists and CAC

Vitamin K antagonists (VKAs) including coumarins (warfarin, acenocoumarol, and phenprocoumon,
etc.) and indandiones (fluindione, etc.) are oral anticoagulants utilized for the treatment of
thromboembolic diseases [87]. VKAs exert their anticoagulant effect by interfering with vitamin
K cycle [88]. VKAs inhibit the action of VKOR to deplete the reduced (hydroquinone) form of vitamin
K, thereby suppressing hepatic γ-carboxylation of VKDPs such as coagulation factors II, VII, IX,
and X. In addition to the inhibitory effect on coagulation factors in the liver, warfarin also affects
peripheral γ-carboxylation of VKDPs including MGP in vascular tissues [4]. Blocking γ-carboxylation
of MGP in VSMCs by warfarin has been shown to contribute to its inhibitory effect on VSMC
calcification [89]. Experimental studies using animal models have demonstrated that warfarin induces
arterial calcification. In a rat model, warfarin caused acute medial calcification of major arteries and
markedly increased the expression levels of MGP mRNA and protein in calcified arteries and decreased
serum levels of MGP [90]. ApoE-deficient mice treated with warfarin developed atherosclerotic plaque
calcification associated with features of plaque vulnerability [91]. Moreover, high doses of vitamin K
reversed warfarin-induced medial vascular calcification in rats [92].

There are several clinical studies investigating the pro-calcific effect of warfarin on arterial
calcification. In a cross-sectional study including 133 VKA users and 133 age, gender and the
Framingham Risk Score (FRS) matched non-VKA users, the mean coronary calcification score (Agatston
score) and the fraction of calcified coronary plaques significantly increased according increasing the
duration of drug use in VKA users compared with non-VKA users [91]. In another cross-sectional study
of 236 patients, use of VKA was significantly associated with the presence of ascending and descending
aorta calcification compared with no anticoagulation treatment [93]. In a retrospective matched cohort
study, a higher prevalence of lower extremity arterial calcification was found in patients receiving
warfarin compared with those with no treatment [94]. The prevalence of breast arterial calcification
was greater in women currently or in the past treated with warfarin compared with those without
warfarin treatment [95]. The long-term effect of VKA use on coronary artery calcification has been
investigated in 43 patients receiving VKA with metallic prosthetic valves and 65 control patients. CAC
score assessed by CT was significantly higher in long-term VKA users compared with the control
group [96]. In serial coronary intravascular ultrasound (IVUS) examinations performed during an
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18- to 24-month period, a post hoc analysis of 8 prospective trials revealed that warfarin therapy
was associated with progressive coronary plaque calcification independent of changes in atheroma
volume [97].

7. dp-ucMGP as a Marker of Vitamin K Status

Active MGP is formed through sequential post-translational modification processes [50]. While
carboxylation affords the capacity to bind calcium ions, phosphorylation may facilitate the cellular
secretion process of MGP. After translation in the endoplasmic reticulum, MGP is firstly carboxylated by
the action of GGCX requiring vitamin K as a cofactor, forming dephospho-carboxylated MGP (dp-cMGP).
Next, a Golgi casein kinase phosphorylates dp-cMGP to p-cMGP (phosphorylated-carboxylated MGP),
thereby facilitating secretion. p-cMGP is secreted into the extracellular space where it acts as an inhibitor
of tissue calcification. Inactive dp-ucMGP is also released from cells into the bloodstream. Subsequently,
three forms of MGP, that is, dp-ucMGP, dp-cMGP, and p-cMGP are present in the circulation. Vitamin K
deficiency may impair the activity of MGP. Among these three conformations, dp-ucMGP is recognized
as the best single biomarker of vitamin K deficiency [98]. In the general population, circulating levels
of dp-ucMGP increase with age and with deterioration of renal function [50].

There are several studies to investigate whether vitamin K supplementation could decrease plasma
levels of dp-ucMGP and subsequently reduce the risk of CV events. In a randomized, double-blind,
placebo-controlled trial of 60 participants from the general population for 12 weeks, plasma levels
of dp-ucMGP were dose-dependently decreased in the 180 µg and 360 µg menaquinone-7 (MK-7)
supplementation groups by 31% and 46%, respectively, whereas dp-ucMGP levels remained unchanged
in the placebo group [99]. In another double-blind, placebo-controlled trial of 244 healthy postmenopausal
women for 3 years, MK-7 supplementation reduced dp-ucMGP levels by 50% in comparison with the
placebo group [100]. A prospective, randomized, single-blind intervention study conducted with 200
chronic HD patients for 8 weeks showed that MK-7 supplementation dose-dependently decreased
dp-ucMGP levels in the groups with 360, 720, 1080 µg thrice weekly by 17, 33, and 46%, respectively [101].
These data suggest that MK-7 supplementation may reduce the circulating levels of dp-ucMGP through
enhancement of MGP activation. Therefore, it is likely that vitamin K2 intake might be beneficial for
prevention of future CV events.

8. dp-ucMGP as a Novel Marker of VC

The association between blood levels of MGP including its inactive forms and vascular calcification
has been investigated in various populations [102–109]. In a prospective cohort study of 571 women
aged 57.3 years, plasma levels of dp-ucMGP were borderline significantly associated with the presence
of CAC [106]. A cross-sectional study conducted with 198 type 2 diabetes mellitus (DM) patients with
normal or slightly impaired kidney function revealed that circulating dp-ucMGP was independently
associated with below-knee arterial calcification score [107]. Plasma levels of dp-ucMGP were positively
associated with the aortic calcification score in a cohort consisting of 107 patients with CKD stages
2–5 [108]. An observational cohort study of 136 hemodialysis (HD) patients indicated that plasma
levels of dp-ucMGP were significantly associated with the vascular calcification score [109]. These
studies on various populations, including healthy subjects and patients with high risks of CV, suggest
that plasma dp-ucMGP may be a useful marker of VC.

9. The Association of dp-ucMGP with CV Events and Mortality

Vascular calcification is independently associated with an increased risk of CV events and
mortality [110–116]. Since there are accumulating evidence suggesting that plasma dp-ucMGP is a
useful marker of VC, several investigators have explored the possible association of dp-ucMGP with
CV events and mortality in various populations. In a study among 577 older adults of the Longitudinal
Aging Study Amsterdam study (LASA) with no history of previous CVD, there was a more than 2-fold
higher risk of CVD in the highest tertile of dp-ucMGP group (HR: 2.69, 95% CI: 1.09–6.62) compared



Nutrients 2020, 12, 583 7 of 13

with the lowest tertile after a follow-up period of 5.6 years [111]. In a Flemish population study of 2318
participants, higher concentrations of dp-ucMGP were an independent predictor of total, non-cancer,
CV mortality after a follow-up period of 14.1 years [115]. In a prospective cohort study consisting of
518 type 2 DM patients, high dp-ucMGP levels were associated with increased risk for CVD, especially
with peripheral artery disease (PAD) and heart failure after a follow-up of 11.2 years [110]. In a
prospective cohort study conducted with 799 patients with history of myocardial infarction, stroke, or
coronary artery disease, there was a higher risk of all-cause and CV mortality in the highest quartile of
dp-ucMGP (HR 1.89, 95% CI: 1.32–2.72 and HR 1.88, 95% CI: 1.22–2.90, respectively) [116]. These data
suggest that plasma dp-ucMGP may be a novel biomarker for CV events and mortality.

10. Conclusion

Vascular calcification is an inflammation-mediated process in which activated transdifferentiation
of VSMCs into osteoblastic cells was induced by the action of cytokines such as TNF-α and OSM
secreted from macrophages infiltrated in intimal and medial tissues of arterial wall. Vitamin K may
prevent vascular calcification through an anti-inflammatory mechanism as well as promotion of
γ-carboxylation of MGP. The preventive role of active MGP in vascular calcification has been proven
by several clinical studies demonstrating the procalcific effect of warfarin, a vitamin K antagonist in
arteries. Various clinical studies have revealed that higher vitamin K intake may reduce the risk of
vascular calcification and CVD and higher plasma concentrations of dp-ucMGP may predict future
risk of death or CV events. High-quality prospective cohort studies and RCTs are still required to
establish the role of vitamin K in CV health.
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