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Abstract: Accurate estimation of energy expenditure in a breastfeeding woman is crucial for
maintaining the proper nutritional status of the woman and healthy development of the infant.
The current literature does not contain data regarding resting energy expenditure (REE) in
breastfeeding women. Using mathematical equations is the most common method of REE assessment.
However, due to changes in metabolism and body composition during pregnancy and lactation,
the mathematical equations used among the general population may not apply. The aim of this
study was to evaluate the resting energy expenditure of exclusively breastfeeding women by using
body composition analysis–estimated REE (eREE) and to provide the most appropriate predictive
equations–predicted REE (pREE) based on anthropometric parameters to estimate it. This was a
pilot study with 40 exclusively breastfeeding women. Height and weight were measured and body
composition analysis was performed. We predicted REE using fourteen self-selected equations,
based on anthropometric parameters and/or age, and/or sex. The median eREE was 1515.0 ± 68.4 kcal
(95% Cl, 1477–1582 kcal) and the pREE ranged from 1149.7 kcal (95% Cl, 1088.7–1215.0) by
Bernstein et al., to 1576.8 kcal (95% Cl, 1479.9–1683.4), by Müller et al. Significant differences
between eREE and all pREE were observed (p < 0.001, except Korth et al. equations). The Müller et al.
equation was the most accurate with the smallest individual variation. All predictive equations
showed low agreement, and in most cases, the results were underestimated. These findings indicate
the need for further studies to propose more suitable methods to determine the energy requirements
for breastfeeding women.

Keywords: resting energy expenditure; predictive equations; breastfeeding; body composition;
bioelectrical impedance analysis

1. Introduction

Calorie intake corresponding to energy needs is necessary to maintain a healthy body weight,
and in the case of young organisms also for their proper growth and development [1]. Breastfeeding is
a period during which an adequate supply of energy and nutrients is particularly important. This is
because women during pregnancy and in the postpartum period are particularly vulnerable to the
occurrence of food deficiencies [2]. During this time, excessive weight gain often appears, which in
the future may be associated with health problems as consequences of overweight and obesity [3].
An adequate consumption of energy and nutrients during lactation determines the proper nutrition
status of a woman, facilitates weight control [4] and to some extent, affects the composition of the milk
produced, which is important for proper development of the infant [5]. Therefore, in clinical practice,
the most accurate assessment of energy demand possible during this period of life is crucial.
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Resting energy expenditure (REE) is the energy expenditure of an individual who is not fasting and
is the number of calories required for a 24 h period by the body during a non-active period. REE is the
largest component (up to 70%) of total energy demand and can be measured using indirect calorimetry.
Indirect calorimetry is a method that allows one to measure the basic energy expenditure based on the
composition of the inhaled and exhaled air. Therefore, it lets one evaluate the actual energy cost of
metabolic reactions taking place in the body. The use of indirect calorimetry is also possible in critically ill
or mechanically ventilated patients, and allows for precise REE measurement and adjustment of energy
supply to demand changing during illness, which is important for improving treatment outcomes. Indirect
calorimetry is the gold standard for measuring REE and for guiding nutritional recommendations and
support. However, several factors (e.g., agitation, fever, high positive end expiratory pressure—PEEP > 10
and high fraction of inspired oxygen—FiO2 > 80%) may limit the accuracy and/or the workability of
the measurements [6]. Furthermore, there are some medical conditions that will exclude a subject from
having the indirect calorimetry test conducted (e.g., suffering from claustrophobia, nausea, vomiting or
lack of tolerance towards a face mask). Other limitations for performing indirect calorimetry in clinical
practice are: equipment and maintenance costs, lack of trained staff, difficulties in interpreting the results
and lack of time to carry out the measurements [7]. Therefore, indirect calorimetry is not available in
many situations, and REE is often estimated using predictive equations [8]. However, there are some
doubts as to whether the mathematical formulas developed for the general population can be used for
lactating women. It must be stressed that women in the first few months after delivery have a higher
percentage of body fat [9], which in turn is a factor directly affecting the amount of REE [8]. There is also
some evidence that during lactation there may be a slight increase in basic energy requirements compared
to the period before pregnancy. However, these data are not conclusive [10].

Since the most used equation, the Harris–Benedict equation in 1918 [11], nearly 200 published
REE formulas have been published dealing with various conditions [12], and the body composition
is relevant to assessing the validity of REE equations, which mainly depends on gender, age and
weight [13].

In healthy subjects, fat free mass (FFM) is the most important determinant of REE and total daily
energy expenditure (TEE) [14]. Wayer et al. [15] reported that FFM explained 72% of the variance in
TEE and 66% of the variance in REE. Some studies have found that fat mass (FM) is an independent
predictor of energy expenditure (EE) [15–17]. None of them have investigated the relationship between
body composition and EE in breastfeeding women.

Bioelectrical impedance analysis (BIA) is a method that estimates the corporal compartments,
including the quantity of liquid in the intracellular and extracellular spaces. BIA measurements are
taken by injecting a small alternating current into the body. There are two main electrical properties
that characterize body tissues, resistance and capacitance. Cell membranes conducting an electrical
current behave similar to capacitors. Due to their ionic nature, body fluids are good conductors,
while fat cells are not. Bone is also considered a non-conductor under typical BIA conditions. The lean
mass is highly conductive due to the great quantity of water and electrolytes that it contains; therefore,
it has low resistance. On the contrary, the fat mass, skin and bones are components of low conductivity,
and therefore, of high resistance [18]. Assessment of REE using electrical bioimpedance is based
on mathematical formulas that consider measured body composition parameters. This method is
associated with lower costs than indirect calorimetry; its implementation is quick and simple; and the
equipment is relatively light and easy to transport. However, certain rules must be followed to receive
the correct results. Before proceeding to the measurement it is required to avoid food and drinks with
caffeine for 4 h, intense physical activity for 12 h and diuretics for 6 h. [19]. Other factors that may
distort the measurement results are severe obesity; water and electrolyte disturbances; and incorrect
placement of the electrodes [20]. There are also contraindications regarding performing this test; e.g.,
pregnancy and the presence of a pacemaker [21].

Despite the fact that the bioelectrical impedance method is not considered as a gold standard in
the assessment of resting energy expenditure, it can be applied in clinical practice [22]. Because this
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method uses information about FFM, which is more responsible for the amount of resting energy
expenditure than body mass itself, it seems to be more useful than mathematical formulas based on
anthropometric parameters [23].

The purpose of the present pilot study was to assess which of the available mathematic equations
(pREE) best reflect the value of REE estimated by the method of electrical bioimpedance (eREE) in
breastfeeding women, and thus which of them can be used to assess energy demand in this group.

2. Materials and Methods

2.1. Subjects and Data Collection

The study was carried out on breastfeeding women (n = 40) in their first month postpartum
(3–4 weeks) in a maternity department in Warsaw. The inclusion criteria were: age ≥ 18 years,
full-term delivery (gestational age ≥ 37 weeks) and exclusive breastfeeding. Exclusion criteria included:
pre-existing chronic or gestational diseases and any contraindications that apply to body composition
analysis (epilepsy, metal implants, pacemaker, defibrillator, stents, implanted devices which emit
electronic signals). Body weight and height were measured using measurement station and column
scales Seca 799 (±0.1 kg/cm). Body mass index (BMI) was calculated as the ratio between the body weight
and the height squared (kg/m2). Interpretation of these results followed the international classification
proposed by the World Health Organization (WHO): <18.5 kg/m2, underweight; 18.5–24.9 kg/m2,
normal weight; 25.0–29.9 kg/m2, overweight; ≥30.0 kg/m2, obese [24]. The Ethics Committee of the
Medical University of Warsaw (KB/172/115) approved the study protocol, and all the participating
women gave written informed consent.

2.2. Bioelectrical Impedance Analysis

Whole body impedance (wrist to ankle) of women was measured using the Maltron BioScan
920-II multi-frequency bioelectrical impedance analyzer according to manufacturer’s instructions.
Total body electrical impedance alternated with four different frequencies, 5, 50, 100 and 200 kHz.
The subjects were measured in supine position, on a non-conductive surface, taking rest for about 3 min.
Before placing the electrodes, the sites were cleaned using isopropyl alcohol, limiting the possible
errors and to ensure the adherence. The whole-body impedance vector components, resistance (R) and
reactance (Xc), were measured at the same time. On this basis, body fat, other components and REE
were calculated. Before taking BIA measurements, the women were instructed according to Heyward
and Stolarczyk (1996) [25] by the following guidelines: no heavy exercise 12 h before the test; no large
meals or intake of caffeinated products 4 h before the test; consumption of liquids limited to 1% of
body weight, or two 8 oz glasses of water, 2 h before the test.

2.3. Resting Energy Expenditure (REE) Predictive Equations

The predictive equations for resting energy expenditure (REE) used in our study were
obtained by screening previous publications and are summarized in Table 1: Harris Benedict [11],
Bernstein et al. [26], Owen et al. [27], Mifflin et al. [28], Schofield [29], FAO/WHO (including only
weight, as well as weight and height) [30], Institute of Medicine [31], Müller et al. [32], Korth et al. [23],
De Lorenzo et al. [33], Lazzer et al. [34], Henry [35] and Huang et al. [36]. We selected REE predictive
equations dedicated to adults, based on the following criteria: body weight, height, sex and age.
The REE was predicted for each equation separately with the actual body weight and height at the
time of body composition measurements.
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Table 1. Resting energy expenditure (REE) predictive equations.

Equations Factors Used for Calculation REE Predictive Equations (kcal/d)

Harris Benedict Sex, W (kg), H (cm), age (y) W × 9.5634 + H × 1.8496 − age × 4.6756 + 655.0955

Bernstein et al. Sex, W (kg), H (cm), age (y) 7.48 ×W − 0.42 × H − 3 × age + 844

Owen et al. Sex, W (kg) W × 7.18 + 795

Mifflin et al. Sex, W (kg), H (cm), age (y) 9.99 ×W + 6.2 × H − 4.92 × age − 161

Schofield Sex, W (kg), H (m), age (y) Age 18–30 y: (0.057 ×W + 1.148 × H + 0.411) × 239
Age 31–60 y: (0.034 ×W + 0.006 × H + 3.53) × 239

FAO 1/WHO 2 W (kg) Age 18–30 y: 16.7 ×W + 496
Age 31–60 y: 8.7 ×W + 829

FAO/WHO W (kg), H (m) Age 18–30 y: 13.3 ×W + 334 × H + 35
Age 31–60 y: 8.7 ×W − 25 × H + 865

IOM 3 W (kg), H (m), age (y) 247 − 2.637 × age + 401 × H (m) + 8.6 ×W

Müller et al. Sex, W (kg), age (y) (0.047 ×W + 0.01452 × age + 3.21) × 239

Korth et al. Sex, W (kg), H (cm), age (y) (41.4 ×W + 35 × H − 19.1 × age − 1731.2)/4.186

De Lorenzo et al. Sex, W (kg), H (cm), age (y) (46.322 ×W + 15.744 × H − 16.66 × age + 944)/4.186

Lazzer et al. Sex, W (kg), H (m), age (y) (0.042 ×W + 3.619 × H − 2.678) × 239

Henry Sex, W (kg), age (y) Age 18–30 y: (0.0546 ×W + 2.33) × 239
Age 31–60 y: (0.0407 ×W + 2.9) × 239

Huang et al. Sex, W (kg), H (cm), age (y) 10.158 ×W + 3993 × H − 1.44 × age + 60.655

W—weight; H—height; 1 FAO—Food Agriculture Organization; 2 WHO—World Health Organization; 3 Institute
of Medicine.

2.4. Statistical Analysis

Results are presented as means ± standard deviations, medians and interquartile ranges.
The difference between the estimated and predicted REE (∆REE) is expressed as an absolute value
(kcal/day, mean bias) and percentage (%, relative bias) [37]. Relative bias (%) was calculated as follows:
(∆REE mean bias)/REE estimated × 100. A measurement was considered inaccurate when the relative bias
was greater than ±10% of the estimated REE, and the number of subjects with an inaccurate prediction
was calculated [38]. Pearson’s correlation analysis was performed to evaluate correlations between
weight and body composition parameters. Correlation between pREE and eREE was estimated
with Spearman correlation coefficient. A Bland–Altman plot analysis was conducted to examine the
agreement between the measured and estimated REE. The paired t test was used to examine the mean
difference between the estimated and predicted REE. All analyses were performed using Statistica
12PL, Tulusa, USA, and IBM Statistics 21 New York, NY, USA. A p-value below 0.05 was adopted as
statistically significant.

3. Results

3.1. Subjects’ Characteristics and Body Composition Parameters

For this study we assessed 41 exclusively breastfeeding women. After data consistency analysis,
we excluded those with an eREE < 500 kcal (n = 1), resulting in a final sample of 40 participants.
The descriptive characteristics of the study population are shown in Table 2. BMI values ranged from
16.46 to 32.11 kg/m2 and age ranged from 24 to 43 years. Regarding nutritional status, assessed with
BMI, it was found that 67.5% (n = 27) of the sample had normal body mass, 20% (n = 8) was overweight,
7.5% (n = 3) was underweight and 5% (n = 2) was obese. We observed a statistically significant positive
correlation between body weight and percentage of fat mass (r = 0.92; p = 0.000), and a negative
correlation with the percentage of total body water (r = −0.84; p = 0.000).
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Table 2. Subjects’ anthropometric data and body composition measures.

Mean ± SD Median (Interquartile Range)

Age (years) 32.1 (6.2) 31.0 (30.0–35.0)

Height (cm) 166.6 (6.6) 166.5 (162.0–172.5)

Pre-pregnancy weight 61.4 (10.8) 58.0 (53.8–69.0)

Pre-pregnancy body mass index (kg/m2) 22.1 (3.3) 21.1 (19.5–23.7)

Weight gain during pregnancy 14.5 (4.6) 14.0 (11.5–16.5)

Weight at first month postpartum (kg) 64.5 (12.2) 62.3 (54.8–70.9)

Body mass index at first month postpartum (kg/m2) 23.0 (3.6) 22.7 (20.4–24.8)

Fat mass–FM (kg) 19.8 (10.3) 17.9 (11.3–23.0)

Fat mass–FM (%) 28.2 (8.4) 28.5 (20.6–33.0)

Fat free mass–FFM (kg) 45.4 (3.9) 45.7 (43.0–48.4)

Fat free mass–FFM (%) 71.8 (8.4) 71.5 (67.0–79.4)

Total body water–TBW (L) 32.4 (3.8) 31.2 (29.4–35.2)

Total body water–TBW (%) 51.2 (5.1) 50.3 (47.0–55.3)

Extracellular water–ECW (L) 15.0 (1.9) 14.7 (13.8–16.3)

Extracellular water–ECW (%) 46.3 (2.7) 46.4 (45.4–48.0)

Intracellular water–ICW (L) 17.4 (2.3) 16.8 (16.0–18.9)

Intracellular water–ICW (%) 53.7 (2.7) 53.6 (52.0–54.7)

ECW/ICW 0.87 (0.09) 0.87 (0.83–0.92)

Body cell mass BCM (kg) 23.9 (2.9) 23.6 (22.3–25.9)

Extracellular mass–ECM (kg) 21.5 (1.9) 21.4 (20.1–23.3)

Protein mass–PM (kg) 9.0 (1.4) 9.0 (8.5–9.9)

Muscles (kg) 19.9 (1.9) 19.8 (18.8–21.4)

Minerals (kg) 3.8 (0.6) 3.7 (3.5–4.1)

Total body potassium–TBK (g) 106.4 (12.0) 104.6 (98.7–114.8)

Total body calcium–TBCa (g) 892.3 (87.2) 879 (836.5–953)

Glycogen (g) 415.7 (38.1) 418.5 (391.0–444.0)

Dry weight (kg) 63.6 (12.2) 61.2 (53.5–69.9)

Body volume (L) 62.3 (13.1) 59.8 (51.5–69.5)

3.2. Estimated and Predicted Resting Energy Expenditure (REE)

The median eREE was 1515.0 ± 68.4 kcal (95% Cl, 1477–1582 kcal) and the median pREE ranged
from 1149.7 kcal (95% Cl, 1088.7–1215.0) by Bernstein et al., to 1576.8 kcal (95% Cl, 1479.9–1683.4) by
Müller et al. Using the Wilcoxon test, we observed significant differences between eREE and all pREE.
For all formulas except Korth et al., p < 0.001. The detailed results of characterization and the results of
correlation between eREE and pREE are described in Table 3. All equations showed significant results
for the Spearman correlation. The correlations observed were classified as strong, and the best results
were obtained by Miffilin et al. (r = 0.872; p < 0.001) and Korth et al. (r = 0.870; p < 0.001).

Table 4 shows the absolute difference between the predicted and estimated REE in each equation.
The mean estimated bias was smaller in the equations by Korth et al. and Müller et al. than in
other equations (<|67 kcal/day|). The range of the 95% limits of agreement (LoA) was smaller in the
equations by IOM and Harris–Benedict et al. than in other equations (95% confidence interval of LoA,
<330 kcal/day), although all equations showed wide LoA. The Müller et al. equation was the most
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accurate with the smallest individual variation. The relative bias is shown in Figure 1. Three equations
were characterized by a prediction within ±10% of the measured REE in ≥80% of subjects: Müller et al.,
Harris–Benedict and Korth et al. (Figure 2).

Table 3. Characterization of the eREE and pREE.

Method Energy Expenditure (kcal/day)

Median 95% Cl Spearman Correlation Coefficient

BIA 1 1515.0 ± 68.4 1477.0–1582.0 -

Harris–Benedict 1441.0 ± 131.2 1361.5–1551.1 0.854 *

Bernstein et al. 1149.7 ± 92.0 1088.7–1215.0 0.818 *

Owen et al. 1236.6 ± 90.2 1179.1–1303.7 0.797 *

Mifflin et al. 1344.9 ± 150.3 1230.1–1476.9 0.872 *

Schofield 1366.2 ±159.7 1276.8–1495.3 0.820 *

FAO/WHO 2 1381.5 ± 162.8 1290.0–1516.1 0.791 *

FAO/WHO 3 1383.8 ±159.7 1294.2–1518.1 0.825 *

IOM 1375.0 ± 123.1 1280.7–1480.3 0.866 *

Müller et al. 1576.8 ± 143.8 1479.9–1683.4 0.748 *

Korth et al. 1461.8 ± 159.7 1339.5–1601.1 0.870 *

De Lorenzo et al. 1423.2 ± 152.5 1316.1–1552.6 0.858 *

Lazzer et al. 1423.8 ± 163.1 1298.3–1576.5 0.850 *

Henry 1328.0 ± 149.7 1248.5–1461.7 0.793 *

Huang et al. 1309.9 ± 142.2 1208.1–1427.4 0.841 *
1 Bioelectrical impedance analysis; 2 including only weight; 3 including weight and height; r < 0.30 weak
linear correlation; r = 0.31–0.59 moderate linear correlation; * p < 0.05; r = 0.60–0.89 strong linear correlation;
r = 0.90–1.00 highly strong linear correlation [39].
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Figure 1. Percent bias of equations for the predicted REE compared with estimated REE
(mean ± standard deviation).

The correlation between eREE and pREE using the Bland-Altman method is shown in Figure 3.
All the equations presented high dispersion of the points in the graph, which means that, according to
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Bland-Altman method, all the equations presented low consistency with the body composition analysis
in our study group of breastfeeding women. That which showed less dispersion was Owen et al.Nutrients 2018, 10, x FOR PEER REVIEW  7 of 14 
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each prediction equation. FAO/WHO1—only weight. FAO/WHO2—including weight and height.
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Table 4. Means and standard deviations (SD) of mean differences of the estimated and predicted REE.

∆REE 3 kcal/Day SD ∆REE 1 + 1.96 SD ∆REE 1
−1.96 SD Range of LoA 4

Harris–Benedict 67.54 *** 84.10 −97.30 232.37 329.67

Bernstein et. al. 364.54 *** 57.56 251.73 477.35 729.08

Owen et al. 271.13 *** 58.41 156.64 385.62 542.25

Mifflin et al. 164.86 *** 96.70 −24.68 354.40 379.08

Schofield 131.91 *** 111.66 −86.93 350.76 437.70

FAO/WHO 1 117.23 *** 116.84 −111.77 346.23 458.00

FAO/WHO 2 116.40 *** 111.38 −101.90 334.69 436.59

IOM 140.86 *** 74.27 −4.71 286.43 291.14

Müller et al. −66.43 ** 104.99 −272.22 139.36 411.58

Korth et al. 51.37 * 104.49 −153.42 256.17 409.58

De Lorenzo et al. 86.88 *** 101.95 −112.94 286.70 399.65
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Table 4. Cont.

∆REE 3 kcal/Day SD ∆REE 1 + 1.96 SD ∆REE 1
−1.96 SD Range of LoA 4

Lazzer et al. 82.51 *** 110.23 −133.55 298.57 432.11

Henry 168.60 *** 105.29 −37.76 374.97 412.73

Huang et al. 203.76 *** 93.32 20.85 386.67 407.52
1 Including only weight; 2 including weight and height; 3 ∆REE—mean difference between estimated and predicted
REE; 4 LoA—limit of agreement. Paired t test was performed to examine the mean difference between estimated
and predicted REE. * p < 0.05; ** p < 0.001; *** p < 0.00.

4. Discussion

The present study compared REE estimated by BIA with REE estimated from selected predictive
equations, based on anthropometric measurements and/or sex and/or age. Many studies have focused
on the effects of clinical conditions on the REE; to the best of our knowledge, however, no studies have
addressed the validity of predictive equations for exclusively breastfeeding women. Proper supply of
energy and nutrients during lactation is crucial, both for a woman and her child. First of all, it prevents
a woman’s nutritional deficiencies and their health consequences, and it also allows her to return to
pre-pregnancy weight in a safe and healthy way. Nutrition of a nursing woman can also affect the
composition of milk and the lactation process itself, which is crucial for proper infant development.
Meanwhile, many studies confirm that the intake of energy and nutrients by breastfeeding women
usually does not meet the general recommendations in this group [40–43]. The low accuracy of
prediction equations for evaluating REE in exclusively breastfeeding women implies greater difficulty
in establishing the proper nutritional interventions for this population. It should be stressed that the
various changes that occur in a woman’s body after childbirth make her energy requirement very
specific. Therefore, it is essential to know the most reliable method to estimate it [44].

So far, predictive equations remain the most common REE estimation method. They allow a
rapid calculation of REE using basic anthropometric data (weight and height) and have been validated
among different population groups. Most of these equations have been developed in healthy subjects,
resulting in large errors in case of chronic diseases or different physiological status, such as pregnancy
or lactation despite, the use of the correction factors [6]. Other methods for assessing REE have
been explored and compared to indirect calorimetry in order to find a valid alternative. One of
these methods is BIA, based on body composition analysis. This approach has been shown to be
quite inaccurate in clinical populations compared to indirect calorimetry and cannot be adopted
in critically ill patients [45–47] due to their abnormalities in hydration state and serum electrolyte
concentrations that cause errors in the BIA-derived estimates of FFM and FM [14]. In our population
those abnormalities were excluded, so possible errors were minimized.

The agreement of predictive equations compared to indirect calorimetry is low, and does not
exceed 55%, especially in critically ill patients and those with extreme BMI (BMI < 16 kg/m2 and
BMI > 40 kg/m2) [48,49]. Predictive equations tend to overestimate (e.g., chronic kidney disease [50],
cancer [51]) or underestimate (e.g., chronic obstructive pulmonary disease [52], diabetes type 2 [53]
REE in patients with chronic diseases). Excluding critically ill patients, differences and errors are
mainly due to an excessive or deficient FM, which is less metabolically active than the FFM, and to the
body weight considered for the calculation (current, ideal, or estimated) [45]. Although the nutritional
status of our participants was varied, BMI values ranged only from 16.46 to 32.11 kg/m2.

This study found low agreement of all predictive equations to estimate women’s REE in the
exclusively breastfeeding period, and, in all cases except the Müller et al. equation, the results were
underestimated. This seems to confirm the hypothesis that during lactation a slight increase in REE
may occur [10]. However, among the evaluated formulas, Korth et al., and Müller et al. were the
better predictors of REE for this population (∆REE - 51.37; −66.43 kcal/day, respectively). However,
the Müller et al. equation had the highest level of accuracy at an individual level, and therefore this
may be the best equation for predicting REE of exclusively breastfeeding women in clinical practice.
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According to our knowledge, the only study assessing the compliance of pREE and measured
REE conducted in a similar group seems to be the study performed by de Sousa et al. [44]. The study
involved women in the immediate postpartum period (up to 10 days after delivery). REE was measured
by indirect calorimetry (mREE) and predicted using eight equations. Using the Wilcoxon signed rank
test, the authors found that the best predictor of REE was the Harris–Benedict equation, with lower
difference (p = 0.876), better median of adequacy (99.8%), and better interclass correlation coefficient
(0.289). The Schofield formula was next, with greater percentage of accuracy (33.3%) and lower
opposite agreement. The smallest dispersion in the Bland-Altman test were obtained for the results of
Harris–Benedict and Owen equations, which is consistent with our results. The authors of current
study emphasize that none of the formulas given are sufficiently accurate to be used in this group for
REE assessment. It should again be noted that there is lack of other studies comparing REE estimated
with BIA and pREE. Barak et al. [14] used BIA to predict REE in hospitalized patients receiving nutrition
support. They found that BIA-derived body composition estimates may be used to more accurately
predict the energy requirements than calculations based on mathematical formulas. However, they
emphasized that one of the limitations of their study was the use of a single-frequency (50 kHz) device.
What is more, the authors indicated that the use of multi-frequency bioelectrical impedance, which was
used in our study, would be more accurate and was advised. There are studies assessing the suitability
of mathematical formulas, including data obtained from BIA. However, such formulas do not prove to
be more accurate than those based on anthropometric measurements. Both are characterized by an
accuracy of less than 57% compared to the results obtained with indirect calorimetry [54].

In the study of Pereira et al. [22], whole body calorimetry measurements were performed and pREE
was calculated using mathematical formulas among women three months after delivery and later nine
months after delivery, both lactating and non-lactating. They found that the best equation predicting
REE was the dietary reference intake equation at three months postpartum (−7 kcal,−0.1%; absolute and
percentage bias, respectively), and the Harris–Benedict equation at nine months postpartum (−17 kcal,
−0.5%). At an individual level, the FAO/WHO height and weight equation was the most accurate
at three months postpartum (100% accuracy) and nine months postpartum (98% accuracy), with the
smallest limits of agreement (LoA). However, there are indications that the selection of mathematical
formulas for REE assessment may depend on individual body weight.

This hypothesis is confirmed by the results of the research of Amaro-Gahete et al. [55],
suggesting the FAO/WHO equation proved to be the most suitable for people with normal body
weight, whereas for overweight and obese people the best were the Livingston and Owen formulae,
respectively. Weijs et al. [38] came to similar conclusions. They found that for women with normal
body mass, the Huang equation was the most accurate. Its effectiveness, however, definitely decreases
with BMI > 45 kg/m2. The most accurate in this group proved to be the Siervo equation, while the
FAO/WHO and Schofield equations should not be applied at BMI > 45 kg/m2. Nevertheless, according to
researchers, the Harris–Benedict and Mifflin equations can still be successfully used in REE assessment
regardless of the BMI value. However, such a relationship does not appear in the Frankenfield et al.
study [49], where among the equations that are the most common in clinical practice for subjects with
normal body weight and with obesity, the Mifflin-St Jeor equation proved to be the most reliable. For all
tested equations (Harris–Benedict, Mifflin, Owen, FAO/WHO) the accuracy decreased as the BMI of
the subjects increased. However, in the case of the Mifflin formula, the decrease was the smallest.
Predicted accuracy for normal body weight was 82%, and for obesity it was 70%. Wilms et al. [56],
who investigated only women with varying degrees of obesity, found that none of the mathematical
formulas used, either based on anthropometric data or based on body composition parameters,
should be used to assess REE in this group. In this study, with increase in mREE, the discrepancies
between pREE and mREE also increased. Predicted accuracy was not greater than 70% for any of the
examined equations, and for Bernstein and Owen formulas it was 7% and 20%, respectively. It was
also noted that the differences between mREE and pREE are not dependent on percentage fat mass.
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It was also observed [22] that REE prediction error and individual accuracy were not improved
with the inclusion of body composition variables, contrary to expected patterns, because FFM is a
major determinant of REE [57]. FFM is comprised of tissues and organs with different metabolic
rates, ranging from 13 kcal/kg for skeletal muscle to 440 kcal/kg for heart and kidneys [58]. Thus,
small differences in organ size can significantly affect REE, which might not be captured when FFM and
FM are used in predictive equations. In our study, we used an analyzer assessing not only FFM and FM
in total, but also other parameters, such as BCM (body cell mass). BCM is the metabolically active cell
mass involved in O2 consumption, CO2 production and energy expenditure; thus, its measurement has
been suggested as a tool for the evaluation of nutritional status. Since BCM is closely related to energy
expenditure, it could also represent a good reference value for the calculation of nutrient needs [59].

The strengths of this study are the use of advanced techniques to assess maternal body composition
in accordance with the recommended protocol [25], which allowed possible errors in body composition
to be minimized. A basic limitation of our study was the lack of indirect calorimetry, which is
considered as the gold standard with which to measure REE. The other limitations of this study
involved convenience sampling, the modest number of participants and their different nutritional
statuses. Further, the observations made in this investigation are specific to our Caucasian populations
and should not be generalized to other ethnic groups. All indicated limitations decreased the
representativeness of the study, and extrapolation of results should be performed with caution.

This study demonstrates a wide variation in accuracy for REE predictive equations in exclusively
breastfeeding women. The highest level of accuracy at an individual level was gained by the Müller et al.
equation; thus, we recommend it for predicting REE of exclusively breastfeeding women in clinical
practice. The equipment for BIA is far less costly and easier to use than an indirect calorimetry machine
and could be easily available to nutrition support personnel (e.g., dietitians) in all healthcare facilities.
Further, investigations of a larger exclusively breastfeeding female populations, and a comparison
with a control group (non-breastfeeding women after delivery) should be undertaken to confirm the
use of multifrequency BIA.
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