Effects of Periodic Religious Fasting for Decades on Nutrient Intakes and the Blood Biochemical Profile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Description of COC Fasting
2.3. Anthropometric Characteristics
2.4. Nutrient Intakes
2.5. Biochemical Parameters
2.6. Ethical Approval
2.7. Statistical Analysis
3. Results
3.1. Characteristics of Participants
3.2. Dietary Intakes
3.3. Biochemical Profile
3.4. Correlations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodopaios, N.E.; Mougios, V.; Konstantinidou, A.; Iosifidis, S.; Koulouri, A.A.; Vasara, E.; Papadopoulou, S.K.; Skepastianos, P.; Dermitzakis, E.; Hassapidou, M.; et al. Effect of periodic abstinence from dairy products for approximately half of the year on bone health in adults following the Christian Orthodox Church fasting rules for decades. Arch. Osteoporos. 2019, 14, 68. [Google Scholar] [CrossRef] [PubMed]
- Rodopaios, N.E.; Mougios, V.; Koulouri, A.A.; Vasara, E.; Papadopoulou, S.K.; Skepastianos, P.; Dermitzakis, E.; Hassapidou, M.; Kafatos, A.G. Bone status of young adults with periodic avoidance of dairy products since childhood. Eur. J. Pediatrics 2020, 179, 645–651. [Google Scholar] [CrossRef] [PubMed]
- Rodopaios, N.E.; Manolarakis, G.E.; Koulouri, A.A.; Vasara, E.; Papadopoulou, S.K.; Skepastianos, P.; Dermitzakis, E.; Hassapidou, M.; Linardakis, M.K.; Kafatos, A.G. The significant effect on musculoskeletal metabolism and bone density of the Eastern Mediterranean Christian Orthodox Church fasting. Eur. J. Clin. Nutr. 2020, 74, 1736–1742. [Google Scholar] [CrossRef] [PubMed]
- Rodopaios, N.E.; Petridou, A.; Mougios, V.; Koulouri, A.-A.; Vasara, E.; Papadopoulou, S.K.; Skepastianos, P.; Hassapidou, M.; Kafatos, A.G. Vitamin D status, vitamin D intake, and sunlight exposure in adults adhering or not to periodic religious fasting for decades. Int. J. Food Sci. Nutr. 2021, 72, 989–996. [Google Scholar] [CrossRef] [PubMed]
- Rodopaios, N.E.; Mougios, V.; Koulouri, A.A.; Vasara, E.; Papadopoulou, S.K.; Skepastianos, P.; Hassapidou, M.; Kafatos, A.G. Dietary protein intake from different animal and plant sources plays a minor role in the bone health of adults with or without intermittent fasting for decades. Int. J. Food Sci. Nutr. 2021, 72, 704–712. [Google Scholar] [CrossRef] [PubMed]
- Nutrient Recommendations: Dietary Reference Intakes (DRI). Available online: https://ods.od.nih.gov/HealthInformation/Dietary_Reference_Intakes.aspx (accessed on 10 October 2021).
- Mozaffarian, D.; Ludwig, D.S. The 2015 US dietary guidelines: Lifting the ban on total dietary fat. JAMA—J. Am. Med. Assoc. 2015, 313, 2421–2422. [Google Scholar] [CrossRef] [PubMed]
- Dietary Guidelines Advisory Committee. Scientific Report of the 2015 Dietary Guidelines Advisory Committee: Advisory Report to the Secretary of Health and Human Services and the Secretary of Agriculture. U.S. Department of Agriculture, Agricultural Research Service, Washington, DC: 2015. Available online: https://health.gov/our-work/nutrition-physical-activity/dietary-guidelines/previous-dietary-guidelines/2015/advisory-report (accessed on 10 October 2021).
- Kabasakalis, A.; Kalitsis, K.; Tsalis, G.; Mougios, V. Imbalanced nutrition of top-level swimmers. Int. J. Sports Med. 2007, 28, 780–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papadopoulou, S.K.; Barboukis, V.; Dalkiranis, A.; Hassapidou, M.; Petridou, A.; Mougios, V. Validation of a questionnaire assessing food frequency and nutritional intake in Greek adolescents. Int. J. Food Sci. Nutr. 2008, 59, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Basilakis, A.; Kiprouli, K.; Mantzouranis, S.; Konstantinidis, T.; Dionisopoulou, M.; Hackl, J.M.; Balogh, D. Nutritional study in Greek-Orthodox monasteries—Effect of a 40-day religious fasting. Aktuel. Ernahrungsmed. 2002, 27, 250–255. [Google Scholar] [CrossRef]
- Wu, A. Tietz Clinical Guide to Laboratory Tests; Saunders Imprint of Elsevier: Philadelphia, PA, USA, 2016; ISBN 9781437719871. [Google Scholar]
- U.S. Department of Agriculture FoodData Central. Available online: https://fdc.nal.usda.gov/ (accessed on 1 November 2021).
- Fulgoni, V.L.; Keast, D.R.; Bailey, R.L.; Dwyer, J. Foods, Fortificants, and Supplements: Where do Americans get their nutrients? J. Nutr. 2011, 141, 1847–1854. [Google Scholar] [CrossRef] [PubMed]
- Papanikolaou, Y.; Fulgoni, V.L.I. The Role of Fortified and Enriched Refined Grains in the US Dietary Pattern: A NHANES 2009–2016 Modeling Analysis to Examine Nutrient Adequacy. Front. Nutr. 2021, 8, 655464. [Google Scholar] [CrossRef] [PubMed]
- Waem, R.V.R.; Cumming, R.G.; Blyth, F.; Naganathan, V.; Allman-Farinelli, M.; Le Couteur, D.; Simpson, S.J.; Kendig, H.; Hirani, V. Adequacy of nutritional intake among older men living in Sydney, Australia: Findings from the Concord Health and Ageing in Men Project (CHAMP). Br. J. Nutr. 2015, 114, 812–821. [Google Scholar] [CrossRef] [Green Version]
- Carr, A.C.; Lykkesfeldt, J. Discrepancies in global vitamin C recommendations: A review of RDA criteria and underlying health perspectives. Crit. Rev. Food Sci. Nutr. 2021, 61, 742–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO. Dietary Assessment: A Resource Guide to Method Selection and Application in Low Resource Settings; FAO: Rome, Italy, 2018; ISBN 9789251306352. [Google Scholar]
- EFSA Panel on Dietetic Products, N. and A. (NDA). Scientific opinion on dietary reference values for energy. EFSA J. 2013, 11, 3005. [CrossRef] [Green Version]
- Haap, M.; Heller, E.; Thamer, C.; Tschritter, O.; Stefan, N.; Fritsche, A. Association of serum phosphate levels with glucose tolerance, insulin sensitivity and insulin secretion in non-diabetic subjects. Eur. J. Clin. Nutr. 2006, 60, 734–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraser, G.E.; Jaceldo-Siegl, K.; Henning, S.M.; Fan, J.; Knutsen, S.F.; Haddad, E.H.; Sabaté, J.; Lawrence Beeson, W.; Bennett, H. Biomarkers of dietary intake are correlated with corresponding measures from repeated dietary recalls and food-frequency questionnaires in the Adventist Health Study-2. J. Nutr. 2016, 146, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Kolobarić, N.; Centner, M.G.; Šušnjara, P.; Matić, A.; Drenjančević, I. Anthropometric and biochemical parameters in relation to dietary habits as early indicator of cardiovascular impairment in young adult cohort. Int. J. Environ. Res. Public Health 2020, 17, 9208. [Google Scholar] [CrossRef] [PubMed]
- Monge-Rojas, R.; Barrantes, M.; Holst, I.; Nuñez-Rivas, H.; Alfaro, T.; Rodríguez, S.; Cunningham, L.; Cambronero, P.; Salazar, L.; Herrmann, F.H. Biochemical indicators of nutritional status and dietary intake in Costa Rican Cabécar Indian adolescents. Food Nutr. Bull. 2005, 26, 3–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Macronutrient | Fasters (n = 200) | Non-Fasters (n = 200) | p |
---|---|---|---|
Carbohydrate (g) | 156.8 (124.6–180.7) | 155.2 (119.9–194.3) | 0.994 |
Sugar (g) | 44.4 (29.2–61.6) | 51.4 (29.3–65.5) | 0.217 |
Dietary fiber (g) | 19.0 (15.6–25.4) | 19.5 (14.0–25.3) | 0.949 |
Fat (g) | 76.8 (62.0–98.6) | 85.9 (68.3–103.5) | 0.009 |
Saturated fatty acids (g) | 20.0 (13.7–26.6) | 22.4 (18.3–31.0) | <0.001 |
Monounsaturated fatty acids (g) | 40.8 (30.7–51.3) | 43.8 (33.1–54.4) | 0.159 |
Polyunsaturated fatty acids (g) | 8.2 (6.8–10.8) | 9.3 (7.0–12.2) | 0.019 |
ω3 Fatty acids (g) | 0.5 (0.4–0.8) | 0.6 (0.4–0.8) | 0.456 |
ω6 Fatty acids (g) | 4.8 (3.0–6.5) | 4.5 (2.9–7.2) | 0.888 |
trans-Fatty acids (g) | 0.4 (0.3–0.9) | 0.5 (0.3–0.9) | 0.545 |
Cholesterol (mg) | 129.3 (83.1–193.1) | 158.8 (115.2–219.5) | <0.001 |
Protein (g) | 47.5 (40.9–62.5) | 56.5 (44.7–69.1) | <0.001 |
Protein (g/kg body mass) | 0.70 (0.51–0.87) | 0.76 (0.63–0.96) | 0.002 |
Vitamin | Fasters (n = 200) | Non-Fasters (n = 200) | p |
---|---|---|---|
Vitamin A (RE) | 286 (184–491) | 344 (211–623) | 0.008 |
Vitamin A (% RDA) | 38.0 (24.0–62.5) | 46.0 (27.3–82.8) | 0.007 |
Vitamin B1 (mg) | 1.02 (0.78–1.37) | 1.14 (0.84–1.55) | 0.048 |
Vitamin B1 (% RDA) | 91.0 (71.0–121.0) | 101.5 (76.0–133.0) | 0.040 |
Vitamin B2 (mg) | 1.01 (0.75–1.38) | 1.23 (0.90–1.72) | <0.001 |
Vitamin B2 (% RDA) | 87.0 (62.3–118.8) | 107.0 (78.0–148.5) | <0.001 |
Niacin (mg) | 8.36 (5.18–12.04) | 8.98 (6.18–12.94) | 0.093 |
Niacin (% RDA) | 56.0 (36.0–83.0) | 61.5 (43.3–86.0) | 0.081 |
Vitamin B6 (mg) | 1.10 (0.88–1.46) | 1.35 (0.96–1.76) | <0.001 |
Vitamin B6 (% RDA) | 78.0 (63.0–103.0) | 94.0 (66.0–120.8) | <0.001 |
Vitamin B12 (µg) | 2.01 (0.87–2.97) | 2.45 (1.31–4.04) | <0.001 |
Vitamin B12 (% RDA) | 83.5 (36.0–124.0) | 103.0 (55.0–168.0) | <0.001 |
Vitamin C (mg) | 109.5 (58.3–178.3) | 99.5 (56.1–146.5) | 0.098 |
Vitamin C (% RDA) | 138.0 (77.0–224.5) | 117.0 (71.3–191.8) | 0.074 |
Vitamin D (µg) | 1.25 (0.45–2.73) | 1.74 (0.59–3.18) | 0.026 |
Vitamin D (% RDA) | 8.0 (3.0–18.0) | 12.0 (4.0–21.0) | 0.017 |
Vitamin E (mg) | 5.91 (3.88–7.30) | 5.71 (3.58–8.68) | 0.312 |
Vitamin E (% RDA) | 39.5 (26.0–49.0) | 38.0 (24.0–57.8) | 0.315 |
Folate (µg) | 169 (117–219) | 195 (138–267) | <0.001 |
Folate (% RDA) | 42.0 (29.0–55.0) | 48.5 (34.3–66.8) | <0.001 |
Pantothenate (mg) | 1.96 (1.37–2.61) | 2.20 (1.62–3.26) | 0.003 |
Pantothenate (% AI) | 39.5 (27.3–52.0) | 44.0 (32.3–65.0) | 0.003 |
Element | Fasters (n = 200) | Non-Fasters (n = 200) | p |
---|---|---|---|
Na (mg) | 1450 (1051–1948) | 1655 (1204–2180) | 0.006 |
Na (% AI) | 96.5 (70.0–130.0) | 110.5 (80.0–145.8) | 0.006 |
K (mg) | 1837 (1524–2217) | 1835 (1407–2296) | 0.932 |
K (% AI) | 62.0 (52.0-78.0) | 63.0 (48.0–81.8) | 0.781 |
Ca (mg) | 531.7 (349.9–761.3) | 658.5 (455.0–884.0) | <0.001 |
Ca (% RDA) | 51.0 (33.0–72.0) | 61.5 (43.0–82.8) | <0.001 |
Mg (mg) | 165.5 (127.7–205.8) | 168.4 (126.8–220.6) | 0.395 |
Mg (% RDA) | 47.0 (37.0–60.0) | 50.5 (37.0–61.8) | 0.519 |
Fe (mg) | 9.12 (7.47–11.19) | 9.27 (7.31–12.64) | 0.354 |
Fe (% RDA) | 96.0 (63.0–125.5) | 96.5 (60.0–142.5) | 0.461 |
Cu (mg) | 0.61 (0.44–0.79) | 0.65 (0.43–0.86) | 0.298 |
Cu (% RDA) | 67.5 (49.0–88.0) | 72.0 (48.3–95.5) | 0.298 |
Zn (mg) | 5.77 (4.00–7.95) | 7.32 (5.29–9.44) | <0.001 |
Zn (% RDA) | 64.0 (45.3–85.0) | 80.0 (60.0–111.0) | <0.001 |
Mn (mg) | 1.04 (0.69–1.68) | 1.07 (0.73–1.64) | 0.610 |
Mn (% AI) | 52.0 (35.3–86.8) | 56.5 (36.3–83.5) | 0.688 |
P (mg) | 727.3 (586.9–920.0) | 840.1 (651.3–1097.3) | <0.001 |
P (% RDA) | 104.0 (84.0–131.5) | 120.0 (93.0–156.5) | <0.001 |
Se (µg) | 41.02 (26.68–63.42) | 43.44 (29.72–64.45) | 0.354 |
Se (% RDA) | 74.5 (48.3–115.0) | 79.0 (54.0–117.5) | 0.361 |
Parameter | Fasters (n = 200) | Non-Fasters (n = 200) | p |
---|---|---|---|
Glucose (mg/dL) | 81 (73–89) | 85 (77–93) | 0.004 |
Triglycerides (mg/dL) | 103 (73–160) | 109 (83–191) | 0.157 |
Total cholesterol (mg/dL) | 186 (154–215) | 188 (160–229) | 0.117 |
HDL-cholesterol (mg/dL) | 53 (42–6) | 53 (44–66) | 0.540 |
LDL-cholesterol (mg/dL) | 101 (73–142) | 96 (77–137) | 0.941 |
Urea (mg/dL) | 277 (217–337) | 307 (247–37) | 0.001 |
Creatinine (mg/dL) | 0.91 (0.83–1.03) | 0.94 (0.83–1.06) | 0.102 |
Uric acid (mg/dL) | 4.3 (3.5–5.3) | 4.5 (3.7–5.5) | 0.343 |
γ-Glutamyltransferase (U/L) | 16 (12–23) | 15 (12–22) | 0.759 |
Insulin (µIU/m) | 3.1 (1.3–5.6) | 2.1 (1.2–4.2) | 0.007 |
Folate (ng/mL) | 2.3 (0.9–4.5) | 1.4 (0.9–3.1) | 0.004 |
Vitamin B12 (pg/mL) | 287 (221–373) | 315 (249–3979) | 0.022 |
Calcium (mg/dL) | 9.7 (9.4–10.1) | 9.7 (9.5–10.0) | 0.824 |
Magnesium (mg/dL) | 1.88 (1.76–2.01) | 1.80 (1.63–1.94) | <0.001 |
Iron (µg/dL) | 98 (71–121) | 91 (67–120) | 0.251 |
Phosphate (mg/dL) | 4.6 (3.6–6.4) | 5.7 (4.5–6.7) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petridou, A.; Rodopaios, N.E.; Mougios, V.; Koulouri, A.-A.; Vasara, E.; Papadopoulou, S.K.; Skepastianos, P.; Hassapidou, M.; Kafatos, A. Effects of Periodic Religious Fasting for Decades on Nutrient Intakes and the Blood Biochemical Profile. Nutrients 2021, 13, 3963. https://doi.org/10.3390/nu13113963
Petridou A, Rodopaios NE, Mougios V, Koulouri A-A, Vasara E, Papadopoulou SK, Skepastianos P, Hassapidou M, Kafatos A. Effects of Periodic Religious Fasting for Decades on Nutrient Intakes and the Blood Biochemical Profile. Nutrients. 2021; 13(11):3963. https://doi.org/10.3390/nu13113963
Chicago/Turabian StylePetridou, Anatoli, Nikolaos E. Rodopaios, Vassilis Mougios, Alexandra-Aikaterini Koulouri, Eleni Vasara, Sousana K. Papadopoulou, Petros Skepastianos, Maria Hassapidou, and Anthony Kafatos. 2021. "Effects of Periodic Religious Fasting for Decades on Nutrient Intakes and the Blood Biochemical Profile" Nutrients 13, no. 11: 3963. https://doi.org/10.3390/nu13113963
APA StylePetridou, A., Rodopaios, N. E., Mougios, V., Koulouri, A. -A., Vasara, E., Papadopoulou, S. K., Skepastianos, P., Hassapidou, M., & Kafatos, A. (2021). Effects of Periodic Religious Fasting for Decades on Nutrient Intakes and the Blood Biochemical Profile. Nutrients, 13(11), 3963. https://doi.org/10.3390/nu13113963