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Abstract: Several recent studies have demonstrated that the direct precursor of vitamin D3, the
calcifediol [25(OH)D3], through the binding to the nuclear vitamin D receptor (VDR), is able to
regulate the expression of many genes involved in several cellular processes. Considering that
itself may function as a VDR ligand, although with a lower affinity, respect than the active form of
vitamin D, we have assumed that 25(OH)D3 by binding the VDR could have a vitamin’s D3 activity
such as activating non-genomic pathways, and in particular we selected mesenchymal stem cells
derived from human adipose tissue (hADMSCs) for the in vitro assessment of the intracellular Ca2+

mobilization in response to 25(OH)D3. Our result reveals the ability of 25(OH)D3 to activate rapid,
non-genomic pathways, such as an increase of intracellular Ca2+ levels, similar to what observed
with the biologically active form of vitamin D3. hADMSCs loaded with Fluo-4 AM exhibited a
rapid and sustained increase in intracellular Ca2+ concentration as a result of exposure to 10−5 M
of 25(OH)D3. In this work, we show for the first time the in vitro ability of 25(OH)D3 to induce a
rapid increase of intracellular Ca2+ levels in hADMSCs. These findings represent an important step
to better understand the non-genomic effects of vitamin D3 and its role in endocrine system.

Keywords: vitamin D3; calcitriol; calcifediol; non-genomic effects; intracellular Ca2+

1. Introduction

Calcitriol (1α,25-(OH)2D3), the biologically active form of vitamin D3, is a hormone
that participates in many biological processes, including the regulation of the serum
calcium and phosphate levels, in addition to exerting direct effects on bone and mineral
metabolism [1]. In bone, its actions are mediated via the interaction with the nuclear
vitamin D receptor (VDR), to promote the expression of genes related to bone remodelling,
such as alkaline phosphatase (ALP), type I collagen, and non-collagenous proteins [2–4].

VDR acts like transcription factor forming heterodimers with retinoid X receptor (RXR)
and either positively or negatively regulating the expression of target genes by binding to
their promoter regions through vitamin D3 response elements (VDREs) [2].

Moreover, in addition to genomic actions, all the steroid molecules have been proven
to transmit via specific membrane receptors rapid non-genomic effects [5]. In 1942, Hans
Selye observed that progesterone was able to induce anaesthetic effects within minutes of
its administration differently than its major hormonal activity that occurred only hours
after its application, thus ascertaining for the first time the non-genomic actions of steroids
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molecules [6]. In 1964, Spach and Streeten demonstrated that the variation of Na+ ions
induced by aldosterone administration in dog erythrocytes happened within few minutes,
offering new evidence on non-genomic actions of this steroid hormone [7]. The results of
later studies remained obscure until the recent recognition of rapid non-genomic effects
for various steroid hormones, including 1α,25-(OH)2D3 [8]. These actions take place on
a range of seconds to minutes, are not controlled by molecules that inhibit the genomic
effects (i.e., cycloheximide or actinomycin D), and occur in response even to steroids bound
to large proteins and therefore no capable of entering in the cells [9].

Among the rapid non-genomic actions of 1α,25-(OH)2D3, it has been reported the
stimulation of specific intracellular signal transduction pathways (i.e., mitogen-activated
protein kinase (MAPK) cascades, cAMP-protein kinase A), the increase of cytoplasmic
calcium concentrations (Ca2+), and the activation of the chloride and calcium channels [10].

It has been postulated that non-genomic mechanisms require the interaction between
1α,25-(OH)2D3 and intracellular or membrane-bound proteins, thereby providing efficient
and rapid response to the stimulus [11].

Membrane-bound VDR (mVDR) complexed with caveolin 1 (CAV1) and proto-oncogene,
non-receptor tyrosine kinase Src in caveolae is involved in the regulation of different signal
transduction pathways, such as transcriptional activity of Wnt [12–15], Notch [16–18], and
sonic hedgehog (Shh) (Figure 1) [19–24]. Moreover, its interaction with CAV1 results in the
activation of several intracellular signalling molecules (i.e., phospholipase A2 (PLA2),
protein kinase C (PKC), phosphatidylinositol 3-kinases (PI3Ks), calcium/calmodulin-
dependent protein kinase II gamma (CaMKII), and MAP kinases) (Figure 1) [10].
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Figure 1. Schematic representation of the genomic and non-genomic mechanisms of the biological
active form of vitamin D3, 1α,25-(OH)2D3. Abbreviations: mVDR: membrane-bound VDR; RXR:
retinoid X receptor; VDRE: vitamin D3 response elements; CAV1: caveolin 1; Shh: Sonic hedgehog;
Pdia3: protein disulphide isomerase family A member 3; PLA2: phospholipase A2; PLAA: PLA2
activating protein; PLC: phospholipase C; PIP2: phosphatidylinositol bisphosphate; DAG: diacylglyc-
erol; IP3: inositol trisphosphate; PKC: protein kinase C; CaMK2G: calcium/calmodulin-dependent
protein kinase II gamma; MAPK: mitogen-activated protein kinase.



Nutrients 2021, 13, 4227 3 of 12

In addition, these actions could be mediated via the joint interaction of CAV1 and
protein disulphide isomerase family A member 3 (Pdia3) (Figure 1) [11,25,26]. This latter is
an endoplasmic reticulum (ER) chaperone for calnexin (CANX) and calreticulin (CALR)
and a 1α,25-(OH)2D3-membrane associated, rapid response steroid (MAARS) binding
protein that interacts with vitamin D3 compounds, making it essential for the non-genomic
responses of 1α,25-(OH)2D3. Although no binding site for 1α,25-(OH)2D3 has been iden-
tified in the structure of Pdia3 using crystallographic studies, in vivo studies on Pdia3-/-

and VDR-/- mice strongly suggest the involvement of this ER chaperone in skeletal devel-
opment and intestinal Ca2+ absorption [27–31]. On the basis of this evidence, despite the
fact that Pdia3 could not directly interact with 1α,25-(OH)2D3, this protein could serve as
a chaperone for vitamin D3 binding protein (DBP) or VDR, suggesting its importance in
rapid responses to the biologically active metabolite of vitamin D3.

The most noticeable non-genomic rapid effect of 1α,25-(OH)2D3 is the increase of
intracellular Ca2+ ion concentrations at subnanomolar concentrations by modulating its
release from intracellular stores and its uptake in intestinal epithelia, referred as “transcal-
tachia” [8,32]. In addition, a rapid increase in tissue Ca2+ concentrations has been also
found in primary cultured myocytes obtained from chicken embryonic heart [33] and in
the osteoblast-like cells ROS 24/1 lacking the nuclear VDR [34].

Interestingly, evidence has demonstrated that 1α,25-(OH)2D3 exerts rapid, non-genomic
actions in vivo. In particular, functional studies showed that the stimulation of phosphate
uptake into intestinal epithelial cells isolated from chicken results from the rapid actions of
the secosteroid hormone [35]. In a further study, Boyan et al. observed that the regulation of
PKC activity from 1α,25-(OH)2D3 is mediated by rapid membrane associated mechanisms
in cultured costochondral cartilage cells derived from VDR knockout mice [27].

Calcifediol (25(OH)D3), the major circulating form of vitamin D3 and the direct pre-
cursor of 1α,25-(OH)2D3, is produced mainly in the liver by hydroxylation of vitamin D3
through the enzyme 25-hydroxylase [36–40]. Recently, several studies demonstrated that
25(OH)D3 is an agonistic VDR ligand with gene regulatory and anti-proliferative properties,
although with a lower affinity compared with the active form of vitamin D3 [41].

In this study we have hypothesized for the first time that the 25(OH)D3 could activate
non-genomic pathways. As it had been previously shown, human mesenchymal stem cells
(hMSCs) are an excellent model for studying the hormonal effects of 1α,25-(OH)2D3 [42],
we selected MSCs derived from human adipose tissue (hADMSCs) for the in vitro analysis
of the intracellular Ca2+ mobilization in response to 25(OH)D3.

2. Materials and Methods
2.1. Isolation of hADMSCs Cells and Cultures

hADMSC lines were prepared from small fragments of subcutaneous adipose tissue
biopsies developed by Dr. Brandi during her visiting years at the National Institutes of
Health (NIH, Bethesda, MD, USA). The adipose tissue biopsies were immediately placed
in culture medium supplemented with 100 IU/mL penicillin and 100 µg/mL streptomycin
and transported to the laboratory for their processing. Briefly, each sample was minced
mechanically into small fragments (1 mm) and was subjected to the enzymatic treatment
in Ham’s F12 Coon’s modification medium supplemented with 20% foetal bovine serum
(FBS), 100 IU/mL penicillin, 100 µg/mL streptomycin, and 3 mg/mL collagenase type
II for 3 h at 37 ◦C. After centrifugation, pellet fragments were mechanically dispersed
by pipetting and sedimented by centrifugation at 400× g for 5 min. After removing the
supernatant by aspiration, the cell pellet was suspended and cultured into a 100 mm Petri
dish at 37 ◦C in humified atmosphere with 5% CO2 in growth medium (GM) [Ham’s F12
Coon’s modification medium supplemented with 10% FBS, 100 IU/mL penicillin, and
100 µg/mL streptomycin]. The medium was replaced with fresh GM every 3 days and
once confluence was reached, the cells were detached by trypsinization and were used
either for cell expansion, or cryopreserved upon reaching 5 × 103 cells/cm2, or plated on
tissue culture dishes or wells for other purposes.
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2.2. Multiple Differentiation Potential Assessment of hADMSCs

The characterization analysis to evaluate the stem cell potential of hADMSCs cell
lines were performed by studying the ability of the cells to differentiate toward both the
adipogenic and osteogenic lineage, as described below.

2.2.1. Adipogenic Differentiation

hADMSCs cell lines were plated on 24-well plates at a cell density of 1× 104 cells/cm2

in GM until reaching 80–90% confluence. Afterward, the medium was changed to adi-
pogenic medium (AM), composed as follow: Ham’s F12 Coon’s modification medium
supplemented with 10%FBS, 100 IU/mL penicillin, 100 µg/mL streptomycin, 1 µM dex-
amethasone, 1 µM bovine insulin, 0.5 mM IsoButylMethylXanthine (IBMX), and 100 µM
indomethacin. The AM was refreshed twice a week. The expression of the adipogenic
phenotype was assessed on cells cultured in AM or GM (negative control) for 21 days,
stained directly with freshly prepared Oil Red O working solution in order to prevent the
burst of lipid droplets, and immediately observed in brightfield microscopy (Axiovert 200,
Zeiss, Oberkochen, Germany).

2.2.2. Osteogenic Differentiation

hADMSCs cell lines were seeded on 24-well plates at a cell density of 1× 104 cells/cm2

in GM until reaching the 70–80% confluence. Afterward, the medium was switched to
osteogenic medium (OM), composed as follow: Ham’s F12 Coon’s modification medium
supplemented with 10% FBS (South America origin), 100 IU/mL penicillin, 100 µg/mL
streptomycin, 10 nM dexamethasone, 0.2 mM sodium L-ascorbyl-2-phosphate, 10 mM
β-glycerol phosphate, and 1 µg/mL calcein. The OM was refreshed twice a week. The
osteogenic phenotype was evaluated up to 35 days of osteogenic induction both by moni-
toring alkaline phosphatase (ALP) activity and Ca2+ deposition by cythochemical staining.
Thus, the cells were washed twice with Dulbecco’s phosphate buffered saline (DPBS), fixed
in 4% paraformaldehyde (PFA)/DPBS, and washed three times with ultrapure distilled
H2O. For ALP cytochemical staining, the fixed cells were washed twice with DPBS, and
stained with a specific dye mixture composed of 5 mg naphtol-AS-MX phosphate sodium
salt in 1mL dimethyl sulfoxide (DMSO), 40 mg Fast Red Violet LB salt in 50 mL Tris-HCl
Buffer pH 9 for 30 min at 37 ◦C, by monitoring the course of staining every 10 min through
the microscope. ALP-positive cells were stained in red, and nuclei, counterstained in
green with methyl green were observed in LSCM (Zeiss, Oberkochen, Germany) under
brightfield observation. For calcium mineralized deposits, hydroxyapatite (HA) deposits
were stained with 1% silver nitrate solution and placed under ultraviolet light for 4 h. After
that, the unreacted silver solution was removed with 5% sodium thiosulfate for 5 min and
rinsed several times with distilled water. ALP+ cells and HA deposits were observed in
bright field microscopy (Axiovert 200, ZEISS).

2.3. Evaluation of the Intracellular [Ca2+] Levels Variation on hADMSCs by LSCM

The variation of intracellular Ca2+ levels on hADMSCs exposed to 10−5 M of 25(OH)D3
was evaluated by LSCM. Briefly, cells were plated on 24-well plates at a cell density of
1 × 104 cells/cm2 in GM, until they reaching 70% confluence on the day of imaging and
were loaded with 4 × 10−4 M Fluo-4 acetoxymethil ester form (Fluo-4 AM) fluorescent dye
(λex/λem: 494/506 nm) diluted 1/200 in Ca2+ free Hank’s buffered salt solution (HBSS)
for 60 min at RT. Fluo-4 AM is a calcium indicator that once inside the cell, is cleaved by
cellular esterases, resulting in a fluorescent form which exhibits increased fluorescence
intensity at the emission wavelength of 506 nm, upon excitation at 494 nm, reflecting the
cytoplasmic [Ca2+]. After this period, cells were washed two times with HBSS, and further
incubated with 300 µL of HBSS for 60 min at RT, so that esterase activity were inhibited
and allowing Fluo-4 to bind intracellular Ca2+. The mobilisation of intracellular Ca2+ was
measured in untreated cells (negative control), cells exposed to 10−5 M of 25(OH)D3, and
10−5 M calcium ionophore-treated cells (positive control) by LSCM. Briefly, we set the
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LSCM to scan images every 8 s for around 8 min to establish baseline fluorescence for Fluo-
4 (negative control), by exciting cells at 488 nm. Subsequently, cells were exposed to 10−5

M 25(OH)D3 added directly to a single well after 35 s of acquisition with a pipette. Once
imaging was completed, the maximum intensities for Fluo-4 signals in single cells were
determined by using image analysis software through the selection of multiple regions
of interest (ROI). The fluorescence was then normalised by pixel-pixel adjustment to the
fluorescence measured in a single image acquired before addition of the 25(OH)D3 (baseline
fluorescence). Maximum fluorescence intensity derived from cells exposed to 25(OH)D3
was compared to negative control. Cells treated with 10−5 M calcium ionophore A23187
(Merck KGaA, Darmstadt, Germany) were used as positive control for influx of intracellular
Ca2+ experiment.

2.4. Statistical Analysis

The statistical analysis was carried out by using GraphPad Prism 9 (GraphPad Soft-
ware, San Diego, California, CA, USA). The normality distribution of the data was analyzed
by the Kolmogorov-Smirnov and Shapiro-Wilk tests. Statistical analysis was performed by
ANOVA followed by Bonferroni’s test with a predetermined experimentwise αT = 0.05.

3. Results
3.1. Isolation of hADMSCs

From the adipose tissue biopsies (Figure 2A) have been established four cell lines,
named respectively preadipocyte cell lines (PA) 60, PA 67, PA 70, and PA 73. The above cell
lines displayed a spindle-shaped fibroblast-like morphology with long cytoplasmic exten-
sions (Figure 2B). All cell lines adhered to the plastic of culture dishes without any additional
surface modifications and maintained their morphology throughout their expansion.
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Figure 2. Biopsy sample obtained by surgical resection from healthy donor (A) and primary hADMSCs cell line (B).
Observation with a phase contrast microscopy (AxioVision, ZEISS). Original Magnification: 10×.

3.2. Multipotentiality of hADMSCs

To evaluate the potential for their multipotentiality, cells were induced to differentiate
toward the osteogenic and adipogenic phenotypes, by using appropriate medium defined
in the ‘Materials and Methods’ section.

3.2.1. Osteogenic Differentiation

Osteogenic phenotype of the established hADMSCs lines was evaluated in OM up
to 35 days, by monitoring the ALP expression and the production of calcium mineralized
deposits. Results obtained by cytochemical staining showed that the above-mentioned
cell lines cultured in OM displayed an increase of ALP-positive cells in a time-dependent
manner, reaching a maximum ALP activity at 14 days of induction (Figure 3A). In contrast,
control cells cultured in GM did not exhibit any ALP-positive cells in the same time span
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(data not shown). Furthermore, a time-dependent increase in terms of number and size of
mineralized nodules was observed in the PA 60, PA 67, PA 70 lines grown in OM (Figure 3B).
In contrast, control cells cultured in GM did not show any calcium mineralized deposits in
the same time span (data not shown).
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Figure 3. Osteogenic Differentiation Assay—ALP and HA. Osteogenic differentiation at 14 days (A)
and 35 days (B) of induction by cytochemical staining for ALP with Fast Red Violet B and for HA
with Von Kossa staining. The ALP+ cells are in red and the grainy deposits are in black. Nuclei are
counterstained in green. Observation in brightfield (AxioVision, ZEISS). Original magnification: 20×.

3.2.2. Adipogenic Differentiation

Adipogenic phenotype of the established hADMSCs lines was evaluated in AM for
21 days, monitoring the formation of intracellular vesicles containing drops of lipids by
Oil Red O staining. The presence of multiple intracellular lipid droplets was observed in
brightfield (AxioVision, ZEISS) (Figure 4A). In contrast, control cells cultured in GM did
not show any lipid vesicles in the same time span (Figure 4B).
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3.3. Effect of 25(OH)D3 on the Mobilization of Intracellular Ca2+

To assess in vitro the capacity of 25(OH)D3 to trigger rapid non-genomic response, we
evaluated its effects on the mobilization of intracellular Ca2+ levels in hADMSC by using
LSCM (Figure 5). Overall, 4 cells, one for each tested cell line, responded positively to
10−5 M calcium ionophore A23187 as well as 17 cells treated with 10−5 M of 25(OH)D3. As
shown in Figure 6, three of them reached a maximum peak comparable to that of calcium
ionophore A23187 (positive control), while the other cells showed a weaker response
compared to ionophore. The estimated recovery time from exposure to 10−5 M 25(OH)D3,
which is the time required for the returning to the basal conditions, was about 8 min for
the cells treated with 10−5 M 25(OH)D3. In contrast, in cells exposed to 10−5 M calcium
ionophore, no recovery in the same time span was observed. The maximum peak of
calcium spikes was recorded after around 48 s from the beginning of the experiment
(13 s) for the 10−5 M calcium ionophore A23187-treated cells (5.10). Similar results were
obtained in cells exposed to 10−5 M 25(OH)D3 where the maximum calcium response
was reached between 64 s to 240 s (29 to 235 s from the addition of 25(OH)D3), varying
between cells (Figure 6). The maximum fluorescence intensity derived from untreated cells
was 0.84 ± 0.55 (mean ± ds), from cells exposed to 10−5 M of 25(OH)D3 was 3.83 ± 0.62
(mean± ds), and from 10−5 M calcium ionophore-treated cells was 4.81± 0.21 (mean± ds)
(Figure 6B). The rate of increase of the maximum fluorescence intensity of the cells treated
with 25(OH)D3 and calcium ionophore compared with cells untreated was 356% and 473%,
respectively. Altogether, our experiments have revealed that the increase of intracellular
Ca2+ levels in response to 10−5 M 25(OH)D3 was comparable to what observed with the
calcium ionophore A23187 for every cell line tested.
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4. Discussion

Vitamin D has attracted attention because its deficiency underlies the pathogenesis of
well-known bone pathological conditions, such as rickets in children and osteomalacia in
adults [43–45].

Following the identification of the molecular structure of vitamin D, a great interest
has been focused on the mode of action of vitamin D at cellular level. 1α,25-(OH)2D3, the
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biologically active form of vitamin D, has been showed classically to mediate its effects
through the interaction with a VDR, a nuclear receptor found to be expressed in virtually
all cell types [1,3].

The discovery of non-genomic steroid actions opened to the characterization of non-
genomic effects for all steroid hormones, including the sterol 1α,25-(OH)2D3 [6,7]. It is
recognized that 1α,25-(OH)2D3 exerts non-genomic actions such as the activation of both
intracellular signalling molecules (i.e., phospholipase A2 (PLA2), p21ras, phospholipase C,
and phosphatidylinositol-3 kinase (PI3K)) and second messengers generation (i.e., cyclic
AMP, phosphatidylinositol 3,4,5 trisphosphate, Ca2+) together with the activation of protein
kinases [46–50]. The non-genomic mechanisms of 1α,25-(OH)2D3 encompass also the
opening of Cl− and Ca2+ channels [51].

The major difference between genomic and non-genomic actions seems to be at-
tributable to the time to onset of action [5], with the non-genomic ones taking place within
minutes, differently than genomic responses, which require the accumulation of newly
formed proteins, and thus occurring in the range of hours or even days [8].

In addition to the rapid time course, non-genomic mechanisms are unresponsive to
inhibitors of protein synthesis or transcription, such as cycloheximide and actinomycin
D [5]. The identification of non-genomic effects could be made through the use of steroid
bounded to large macromolecules, such as bovine serum albumin, preventing steroid
molecules from entering the cell, even though the endocytosis-mediated uptake of active
molecules could disprove these conclusions [8].

25(OH)D3, for a long time considered only a metabolic precursor of 1α,25-(OH)2D3,
has been demonstrated to be an agonist VDR ligand with gene regulatory function and
anti-proliferative properties despite having a reduced affinity compared with that of 1α,25-
(OH)2D3 [41].

Our hypothesis has been that to test whether 25(OH)D3 could also activate non-
genomic pathways. In particular, we analyzed in vitro the intracellular Ca2+ mobilization
in response to 10−5 M 25(OH)D3 in MSCs derived from human adipose tissue, hADMSCs.
Previous studies showed that hMSCs can differentiate into several different types of cell,
such as osteoblasts, chondrocytes, adipocytes, and muscle cells [52]. Furthermore, they
have been showed as good models for studying hormonal-mediated effects in vitro [42]. So,
we have decided to test the non-genomic effects of 25(OH)D3 on previously characterized
hADMSCs cell lines.

Here we show that 25(OH)D3 has the ability to activate rapid non-genomic path-
ways, such as an increase of intracellular Ca2+ levels, similarly to what observed with the
biologically active form of vitamin D3 [53].

In hADMSCs loaded with Fluo-4 AM the 25(OH)D3 (10−5 M) induce a rapid (48 s) and
sustained increase in intracellular Ca2+ concentration in line with what has been observed
with the action of the secosteroid 1,25α(OH)2D3 [53].

In fact, we found that the rise of intracellular Ca2+ concentrations induced by 10−5 M
25(OH)D3 was 356% higher than that of untreated cells. This response was compara-
ble to that of the calcium ionophore A23187 for every cell line tested (473% above the
cells untreated).

This variation of intracellular concentration of calcium could result from an initial
transient 25(OH)D3-induced IP3-dependent Ca2+ mobilization from intracellular stores
into the cytoplasm followed by Ca2+ influx from the extracellular environment which
accounts for the endorsed Ca2+ phase.

Regarding the 1α,25(OH)2D3, it has been proposed that the generation of non-genomic
responses could be mediated by the binding of the secosteroid hormone to caveolae-
associated VDR, resulting in the generation of second messengers and activation of differ-
ent signal transduction pathways [54]. Recent studies have also shown that the interaction
of PDIA3 and CAV1 could be involved in the activation of these rapid responses to the
biologically active form of vitamin D3 [47,55,56]. However, the mechanisms underpinning
these rapid responses to hormones at the cellular and molecular levels are not well es-
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tablished so far, and their elucidation could provide novel therapeutic strategies able to
modulate their actions.

Another interesting non-genomic mechanism of 25(OH)D3 involves the processing and
subsequent degradation of sterol regulatory element-binding proteins (SREBPs) cleavage-
activating protein (SCAP) in the ER to control lipogenesis. Since studies provided evidence
of an inverse correlation between serum levels of 25(OH)D3 and metabolic syndrome
severity, a study of Asano et al. [57] evaluated whether SREBPs could be inhibited by
secosteroids compounds. From the chemical library of substances analysed, 25(OH)D3
induces SCAP ubiquitin-mediated proteasomal degradation via a non-genomic mechanism
independently from VDR. This mechanism results in the destabilization of SREBP thus
reducing the expression of SREBP-responsive genes.

According to these findings, 25(OH)D3 has a non-genomic action responsible for the
regulation of intracellular Ca2+ at concentrations that are orders of magnitude higher than
those subnanomolar under normal physiological conditions. This response at a higher dose
could be caused by the remarked reduced affinity of 25(OH)D3 approximately 500 times
for VDR respect that of active form of vitamin D [58]. In this respect, subnanomolar
concentrations of 25(OH)D3 have been demonstrated unable to trigger an increase in
intracellular Ca2+ concentration even though a marked but delayed response was observed
at higher concentrations in human spermatozoa [58].

In summary, to the best of our knowledge, this is the first report that demonstrate
in vitro that 25(OH)D3 induce a rapid increase of intracellular Ca2+ levels in hADMSCs.
These findings could improve the understanding of the vitamin D endocrine system,
thereby paving the way for the identification of novel therapeutical targets.
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