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Abstract: Red meat (RM) consumption is correlated with multiple health outcomes. This study aims
to identify potential biomarkers of RM consumption in the Chinese population and evaluate their
predictive ability. We selected 500 adults who participated in the 2015 China Health and Nutrition
Survey and examined their overall metabolome differences by RM consumption by using elastic-net
regression, then evaluate the predictivity of a combination of filtered metabolites; 1108 metabolites
were detected. In the long-term RM consumption analysis 12,13-DiHOME, androstenediol (3α,
17α) monosulfate 2, and gamma-Glutamyl-2-aminobutyrate were positively associated, 2-naphthol
sulfate and S-methylcysteine were negatively associated with long-term high RM consumption,
the combination of metabolites prediction model evaluated by area under the receiver operating
characteristic curve (AUC) was 70.4% (95% CI: 59.9–80.9%). In the short-term RM consumption
analysis, asparagine, 4-hydroxyproline, and 3-hydroxyisobutyrate were positively associated, be-
henoyl sphingomyelin (d18:1/22:0) was negatively associated with short-term high RM consumption.
Combination prediction model AUC was 75.6% (95% CI: 65.5–85.6%). We identified 10 and 11 serum
metabolites that differed according to LT and ST RM consumption which mainly involved branch-
chained amino acids, arginine and proline, urea cycle and polyunsaturated fatty acid metabolism.
These metabolites may become a mediator of some chronic diseases among high RM consumers and
provide new evidence for RM biomarkers.

Keywords: red meat; metabolomics; elastic-net regression; biomarkers

1. Introduction

Red meat (RM) has been an important diet component that provides multiple nutrients
with high biological value. It has often been the most popular dish on the dining table.
During recent decades consumption of RM has increased all over the world, particularly in
developing countries, and China has experienced one of the fastest dietary trends toward
higher RM consumption [1]. For example, per capita consumption of pork in China has
been increasing by 3% every year. According to US Department of Agriculture statistics, in
2011 average per capita pork consumption in China was 38 kilograms (kg) [2].

RM provides all types of essential amino acids, essential fatty acids, micronutrients
like iron and zinc, and various vitamins. However, RM consumption is also positively asso-
ciated with multiple health outcomes, including cardiovascular diseases [3], cancers [4,5],
diabetes [3,6], and all-cause mortality [7–9]. Nutritional metabolomics is rapidly evolving
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to integrate nutrition with complex metabolomics data [10]. As it becomes possible to
examine concerns about the association between RM consumption and human metabolites,
finding and validating biomarkers of RM intake are important to nutritional epidemiology
to complement dietary recalls for measuring RM intake and understanding the mechanisms
leading to various health outcomes.

A number of researches on biomarkers of food intake are cross-sectional design. Food
frequency questionnaires (FFQs), 24 h food recall, or other dietary assessment tools can
identify consumers of specific foods. Comparison of these consumer groups can help
identify biomarkers that are reflective of habitual intake provided that these biomarkers
have sufficient half-life in the organism or that the foods are regularly consumed. Although
some studies have shown the potential of cross-sectional studies, one must be aware of
the high correlation between foods consumption, creating a risk of identifying biomarkers
that are not specific to the particular food of interest. Even so, cross-sectional data are
valuable resources that are currently to be developed and digging for dietary biomarker
discovery [11].

Research has reported on several putative biomarkers related to RM intake. Acyl-
carnitines, O-acetylcarnitines [12], carnitine, 3-dehydrocarnitine, anserine, β-alanine, 4-
hydroxyproline, histidine, 13C/12C, 15N/14N, carnosine, creatine, 1-methylhistidine, and
3-methylhistidine [13,14] have been found a higher concentration after RM consumption.
However, these compounds and their precursors are also associated with the overall intake
of any meat, and they, therefore, are not specific to RM intake [15].

This study aimed to identify possible biomarkers of long-term (LT) and short-term
(ST) RM consumption in the Chinese population with untargeted metabolomics technology.
We also constructed a prediction model using selected metabolites to test the predictive
qualities of these potential markers.

2. Materials and Methods
2.1. Study Population

The China Health and Nutrition Survey (CHNS) is an ongoing nationwide household-
based survey begun in 1989 to compile health, nutritional status, and sociodemographic
information in the Chinese population [16]. Using cluster stratified multistage random
sampling, the CHNS covers 15 provinces and municipalities. Detailed information on this
cohort study can be found elsewhere [17]. In our cross-sectional study, we used data from
the 2015 CHNS for 500 adults ages 25 to 68 in two neighboring southern inland provinces,
Guizhou and Hunan. All participants provided written informed consent prior to the
surveys. The Institutional Review Boards of the University of North Carolina at Chapel Hill
(Ethics Approval No. 07-1963) and the National Institute for Nutrition and Health, Chinese
Center for Disease Control and Prevention (Ethics Approval No. 201524), approved this
study’s standards for the ethical treatment of participants.

2.2. Serum Metabolomic Profiling

We asked participants to maintain their daily routines for three days then fast for
8 to 12 h before blood collection. Professional technicians collected fasting blood samples
using 3 mL gel separation tubes for coagulation and filled record charts. We immediately
refrigerated the samples at−2 to 8 degrees Celsius (◦C) (the ratio of sample to dry ice is 1:1).
We precisely collected 400 microliters of serum with pipette five times. We put one collection
into a tube for an automatic biochemical analyzer and the other four into freezing tubes for
a centrifuge. We cryopreserved the serum samples, transported them to laboratories within
three hours, and stored them at−80 ◦C in a freezer until we processed them. The collection,
processing, and storage of all blood samples followed the same standardized protocol with
strict quality control (QC). The College of American Pathologists Laboratory Accreditation
Program and the International Organization for Standardization 15189 Program accredited
the laboratories.
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We used the automated Micro lab STAR® liquid handling system to prepare the
samples. We added several recovery standards prior to the first step in the extraction
process for QC. We precipitated proteins with methanol with vigorous shaking for two
minutes with a Glen Mills Geno/Grinder 2000) followed by centrifugation. We divided the
resulting extract into five samples: two for separate reverse phase ultrahigh-performance
liquid chromatography tandem mass spectrometry (RP/UPLC-MS/MS) methods with
positive ion mode electrospray ionization (ESI), one for analysis by RP/UPLC-MS/MS
with negative ion mode ESI, one for analysis by hydrophilic ultrahigh-performance liquid
chromatography tandem mass spectrometry (HILIC/UPLC-MS/MS) with negative ion
mode ESI, and one for backup.

We also analyzed a number of types of controls together with the experimental samples
for quality assurance: A technical copy generated by a small portion of each sample; process
blanks and solvent blanks generated by water samples and extracts, and a carefully chosen
hybrid of QC standards without interfering measurement into each sample. Experimental
samples were randomly examined on the platform with QC samples evenly distributed
among them [18].

The untargeted metabolomics analysis used an ACQUITY UPLC (Waters, Milford,
MA, USA) and a Q Exactive high-resolution accurate mass spectrometer (Thermo Fisher
Scientific, Waltham, MA, USA). We dried and reconstituted the extract in solvents compati-
ble with each of the four methods. Two aliquots using acidic positive ion conditions were
chromatographically optimized for more hydrophilic and hydrophobic compounds, respec-
tively. The extract was gradient eluted from a C18 column (UPLC BEH 2.1 mm × 100 mm,
1.7 µm, Waters, Milford, MA, USA) by different elute solvents. The third aliquot used
basic negative ion optimized conditions and a separate dedicated C18 column, which was
gradient eluted the basic extracts from the column using methanol, water and 6.5 mm
ammonium bicarbonate at pH 8.0. The fourth aliquot used negative ionization following
elution from a hydrophilic column (UPLC BEH Amide 2.1 mm × 150 mm, 1.7 µm, Waters,
Milford, MA, USA) using a gradient consisting of water and acetonitrile with 10 mm
ammonium formate at pH 10.8. The scan range covered 70–1000 mass-to-charge ratio (m/z)
which was slightly fluctuated between each method.

We extracted, peak identified, and QC processed the raw data. Then identified the
compounds by matching their quantity and ion characteristics with purified standard
compounds in Metabolon Inc’s library. which maintained authenticated standards contain-
ing m/z, chromatographic data, MS/MS data, and retention time index (RI). We based the RI
of each compound on its elution relationship (assuming a linear fit) with two surrounding
standards, which were isotopically labeled metabolites given a fixed RI value [19].

Professional analysts used proprietary software to visualize data, confirm the consis-
tency of peak identification among samples and remove assignment false and background
disturbance. For each sample, we checked library matches for each compound and cor-
rected them. We used the area under the curve (AUC) to quantify peaks. Each compound
was normalized, and log-transformed to obtain the relative concentration of each metabo-
lite. We scaled the data of each chemical to register the median as 1 and filled the missing
value by using the minimum detection limit.

2.3. Dietary Assessment and Covariate Profiling

During a five-day household visit, all participants provided sociodemographic and be-
havioral information, such as age, education, smoking, alcohol consumption, and physical
activity. We recorded their LT dietary behaviors with an FFQ that asked them to recall food
purchase information and every type of food they had consumed in the past 12 months,
including take-out meals and food consumed outside the home. We used the question-
naires to determine the frequency of consumption of 9 categories that included 63 types of
food. We investigated ST dietary behaviors with a three-day food diary that required that
participants record every meal for the three days before we collected their blood samples.
None of the participants reported additional protein supplementation or major illnesses.
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Professionally trained investigators filled in all the questionnaires according to unified
standards during face-to-face interviews.

Using the FFQs and three-day food diaries, we calculated the sum of lean and fat pork,
lamb/mutton, beef/veal, and processed meat each participant consumed to determine
LT and ST RM consumption. [2] We divided the LT RM consumers into three groups:
low consumers (LTLC) who had consumed less than 50 grams per day (g/day), middle
consumers (LTMC) who had consumed between 50 and 100 g/day, and high consumers
(LTHC) who had consumed more than 100 g/day. We divided the ST RM consumers
into three groups: low consumers (STLC) who had consumed less than 76 g/day, middle
consumers (STMC) who had consumed between 76 and 136 g/day, and high consumers
(STHC) who had consumed more than 136 g/day.

2.4. Statistical Analysis

We described the baseline characteristics of our study subjects as median and in-
terquartile ranges for quantitative variables and percentages for categorical variables. We
performed a Wilcoxon rank-sum test with false detection rate (FDR) correction on each
metabolite to determine the difference between each LT and ST group [20]. We considered
a two-sided p-value after FDR adjustment (q value) less than 0.1 significant.

We split the data set into the training set (70%) and the testing set (30%) and con-
ducted multivariate analyses. Because of the high dimensionality and collinearity feature
of our data, we applied an elastic-net penalty (performed with R package “glmnet”, glm-
net.stanford.edu/articles/glmnet.html) to reduce the dimension and filter the potential
metabolite markers for RM consumers by compressing the coefficient of the unimportant
variables to zero. This function fits generalized logistic models via penalized maximum
likelihood. The regularization path is computed for the elastic-net penalty at a grid of
values (on the log scale) for the regularization parameter lambda. We selected the best
tuning parameters for alpha and lambda with 10-fold cross-validation using another R
package, “caret”. The “caret” package tests different combinations of alpha and lambda
values and specifies the best alpha and lambda values that minimize cross-validation error
to produce the final elastic-net model.

We selected both q value <0.1 and nonzero variables in the elastic-net model (β 6= 0)
and constructed a forward stepwise logistic regression model on the training set to design
the best combination of metabolites for predicting RM consumption levels. We used
receiver operating characteristic (ROC) curves to evaluate the accuracy of this model [20].
We performed ROC curve analyses for the designed model in training and testing sets to
evaluate the combined model biomarker model by the area under the ROC curve.

After that, we applied an enrichment analysis to find the pathway impact of each
potential biomarker and identify the main pathway that correlated with RM consumption
using MetaboAnalyst 5.0 (www.metaboanalyst.ca, accessed on 12 November 2021). We
performed all statistical analyses with R 4.0.5 software (https://www.rproject.org, accessed
on 12 November 2021) and SAS 9.4 software (SAS Institute, Inc., Cary, NC, USA).

3. Results

Our study included 500 participants, 204 males and 296 females. In both the LT and the
ST analyses the high consumer (HC) groups included larger proportions of males compared
to the low consumer (LC) groups. The total energy intakes in the middle consumer (MC)
and HC groups were significantly different compared to the LC groups according to the
Wilcoxon rank-sum test (p < 0.05). Table 1 summarizes the baseline characteristics of the
participants.

www.metaboanalyst.ca
https://www.rproject.org
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Table 1. Characteristics of the China Health and Nutrition Survey subjects, median (inter-quartile range) or percentage.

Characteristics Long-Term Short-Term

Low Consumers
(<50 g/day)

Mid Consumers
(50–100 g/day)

High Consumers
(>100 g/day)

Low Consumers
(<76 g/day)

Mid Consumers
(76–136 g/day)

High Consumers
(>136 g/day)

N 158 178 164 167 167 166
Age (years) 53 (47–60) 51 (43–59) 53 (45–60) 53 (46–60) 50 (43–59) 53 (47–59)

Male (%) 29.7 41.6 50.6 31.7 38.9 68.7
Rural (%) 70.9 71.3 58.5 66.5 65.9 51.8

BMI (kg/m2) a 23.40
(21.41–26.23)

24.37
(21.70–26.35)

23.83
(21.85–26.03)

23.38
(21.64–26.13)

24.30
(22.23–26.49)

23.75
(21.30–25.87)

Energy intake b

(kilocalories/day)
1625.50

(1348.99–2009.57)
1,974.50 c

(1469.83–2315.49)
2052.50 c

(1619.00–2496.06)
1559.72

(1223.70–2013.81)
1938.71 c

(1507.41–2249.08)
2166.16 c

(1768.74–2599.90)
Completed high

school education (%) 19.6 34.3 36.0 25.7 32.3 23.5

Smoker (%) 15.2 24.7 37.2 21.6 23.9 33.7
Alcohol

consumer (%) 20.3 20.8 35.4 19.2 21.5 36.8

a. We calculated BMI as weight in kilograms divided by height in meters squared. b. We calculated total energy intake per day based on
three-day food diaries. c. p < 0.05 in the Wilcoxon rank-sum test compared to Low consumers.

3.1. LT RM Consumption Analysis

After calculating each participant’s LT RM consumption, we categorized 158 people as
LTLC (<50 g/day), 178 as LTMC (50–100 g/day), and 164 as LTHC (>100 g/day). Baseline
characteristics did not differ significantly between the three groups except for total energy
intake per day. The LTHC and LTMC groups had higher energy intakes compared with the
LTLC group.

In the univariate analysis, only two metabolites in the LTMC group differed from those
of the LTLC group after FDR adjustment. In contrast, 39 metabolites were significantly
different between the LTHC and LTLC groups (q < 0.1) and are useful for further analysis.

Of the 1108 metabolites we detected, we excluded from our multivariate analysis the
unidentified or tentative metabolites and those with more than 80% missing values. We
included 792 metabolites in the elastic-net regression model. The best tuning parameters
after 10-folds of cross-validation of LTHC versus LTLC elastic-net regression models were
α = 0.5500 and λ = 0.0841. After fitting the elastic-net model, 52 metabolites had nonzero
coefficients, which means they are an important factor in determining. RM consumption.
10 metabolites met our selection standard (q < 0.1 and β 6= 0), including three lipids, two
xenobiotics, three amino acids, and two peptides (Table 2).

With these metabolites, we constructed a stepwise logistic regression model adjusted
for urban residence, age, gender, and energy intake in the training set as a prediction model.
Five metabolites remained in the model: 12,13-DiHOME, androstenediol (3 alpha [α], 17α)
monosulfate 2, and gamma-Glutamyl-2-aminobutyrate were positively correlated with
HC, while 2-naphthol sulfate and S-methylcysteine were negatively correlated with HC.
We evaluated the prediction model by AUC, which was 83.4% (95% CI: 78.3–88.5%) in the
training set and 70.4% (95% CI: 59.9–80.9%) in the testing set (Figure 1). When we added
four variables to the stepwise logistic model, body mass index (BMI), completed high
school, smoking status, and alcohol consumption status. These five metabolites remained
significant (p < 0.05) in the predictive model and the predictive qualities did not change
much. The AUC was 69.9% (95% CI: 59.4–80.4%).

3.2. ST RM Consumption Analysis

When we grouped our 500 participants according to their three-day food diaries, 167 were
STLC (<76 g/day), 167 were STMC (76–136 g/day), and 166 were STHC (>136 g/day). Our
univariate analysis was similar to that of the LT groups. The metabolites in the STMC
group showed limited differences when compared with the STLC group. We found that
34 metabolites differed between the STHC and STLC groups.

The elastic-net model selected 173 metabolites with the best tuning parameters
α = 0.5500 and λ = 0.0087, and 11 of them met the inclusion criteria (Table 3).
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Table 2. Selected markers of long-term red meat consumption.

Metabolite name Super Pathway Sub Pathway

Univariate
Analysis

Elastic-Net
Model

p a q b β c

12,13-DiHOME d lipid fatty acid, dihydroxy <0.001 <0.001 0.089
2-naphthol sulfate e xenobiotic Chemical <0.001 <0.001 −0.158

androstenediol (3α, 17α) monosulfate 2 d lipid androgenic steroid <0.001 <0.001 0.217

S-methylcysteine sulfoxide e amino acid methionine, cysteine, S-adenosylmethionine
and taurine metabolism <0.001 <0.001 −0.130

7alpha-Hydroxy-3-oxo-4-cholestenoate lipid Sterol 0.001 0.041 0.008
Perfluorooctane sulfonate xenobiotic Chemical 0.001 0.041 0.042

S-methylcysteine amino acid methionine, cysteine, S-adenosylmethionine
and taurine metabolism 0.001 0.041 −0.014

2-oxoarginine amino acid urea cycle, arginine and proline metabolism 0.002 0.065 0.054
gamma-Glutamyl-2-aminobutyrate d peptide gamma-glutamyl amino acid 0.003 0.082 0.153

epsilon-(gamma-Glutamyl)-lysine peptide gamma-glutamyl amino acid 0.003 0.082 0.126
a. The p value in the Wilcoxon rank-sum test between high consumers and low consumers. b. The probability after false detective rate
adjustment. c. The coefficient in the elastic-net regression model. d. Positively correlated (p < 0.05) with high consumers in the stepwise
logistic regression model. e. Negatively correlated (p < 0.05) with high consumers in the stepwise logistic regression model.

Figure 1. (a) Receiver operating characteristic curve of the combination of 10 differential metabolites between long-term red
meat low consumers and high consumers in training set. (b) Receiver operating characteristic curve of the same metabolites
in testing set for prediction.

The stepwise logistic regression model adjusted for urban residence, age, gender,
and energy intake showed four significant metabolites. Asparagine, hydroxyproline, and
3-hydroxyisobutyrate were positively associated with ST RM consumption, while behenoyl
sphingomyelin (d18:1/22:0) was negatively associated with ST RM consumption. The AUC
in the training set was 84.7% (95% CI: 79.8–89.8%) and in the testing set was 75.6% (95% CI:
65.5–85.6%) (Figure 2). When we added BMI, completed high school, smoking status, and
alcohol consumption status into the model, these four metabolites remained significant,
and the AUC was 74.8% (95% CI: 64.7–85.0%).
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Table 3. Selected markers of short-term red meat consumption.

Metabolite name Superpathway Sub Pathway

Univariate
Analysis

Elastic-Net
Model

p a q b β c

3-(4-hydroxyphenyl)lactate amino acid tyrosine metabolism <0.001 <0.001 0.590
asparagine d amino acid alanine and aspartate metabolism <0.001 <0.001 3.235

4-hydroxyproline d amino acid urea cycle, arginine and proline metabolism <0.001 <0.001 0.187
cinnamoylglycine xenobiotic food component/plant 0.001 0.053 −0.096

leucine amino acid leucine, isoleucine, and valine metabolism 0.001 0.053 0.658
lysine amino acid lysine metabolism 0.001 0.053 0.226

tricosanoyl sphingomyelin (d18:1/23:0) lipid sphingomyelin 0.001 0.053 −0.329
androstenediol (3α, 17α) monosulfate (3) lipid androgenic steroid 0.002 0.073 0.268

S-allylcysteine xenobiotic food component/plant 0.002 0.073 0.267
3-hydroxyisobutyrate d amino acid leucine, isoleucine, and valine metabolism 0.003 0.094 0.384

behenoyl sphingomyelin (d18:1/22:0) e lipid sphingomyelin 0.003 0.094 −0.437
a. The p value in the Wilcoxon rank-sum test between high consumers and low consumers. b. The probability after false detective rate
adjustment. c. The coefficient in the elastic-net regression model. d. Positively correlated (p < 0.05) with high consumers in the stepwise
logistic regression model. e. Negatively correlated (p < 0.05) with high consumers in the stepwise logistic regression model.

Figure 2. (a) Receiver operating characteristic curve of the combination of 11 differential metabolites between short-term red
meat low consumers and high consumers in training set. (b) Receiver operating characteristic curve of the same metabolites
in testing set for prediction.

3.3. Enrichment Analysis

Most of the identified metabolites were registered in the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database with identification numbers, and we applied an enrichment
analysis using their KEGG identifications. The enrichment analysis shows that the most
critical pathways are D-arginine and D-ornithine metabolism in LT RM consumption and
branched-chain amino acids (BCAAs), that is, valine, leucine, and isoleucine, biosynthesis
in ST RM consumption. In the urea cycle, arginine and proline metabolism plays an
important role in both LT and ST RM consumption.
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4. Discussion

RM consumption is increasing in the Chinese population [21]. In addition, epidemi-
ological evidence indicates that the prevalence of chronic diseases related to high RM
consumption is also increasing [2]. Untargeted metabolomic technology can detect a wide
range of metabolites. In our study, we used untargeted UPLC-MS/MS technology and
a combined metabolites selection strategy to investigate RM consumption in relation to
serum metabolites in Chinese adults. We determined our participants’ levels of LT RM
consumption with FFQs and their levels of ST RM consumption with three-day food diaries.

We chose an elastic-net logistic regression, which has been widely applied in multi-
omics biomarker identification. P. Hernandes-Alonso et al. used elastic-net regression
to identify plasma metabolites associated with frequent red wine consumption [22], J.P.
Drouin-Chartier et al. used elastic-net regression to identify the plasma metabolites associ-
ated with both total and specific dairy consumption [23], and J. Li et al. selected metabolites
significantly associated with the Mediterranean diet with an elastic-net regression [24].

We identified 10 metabolites, including three lipids, three amino acids, two xenobiotics,
and two peptides, that showed significant differences between LTLC and LTHC and
11 metabolites, including three lipids, six amino acids, and one xenobiotic, that showed
significant differences between STLC and STHC. Our results show that differences among
serum metabolites were mainly lipids and amino acids, but the candidate biomarkers in LT
and ST RM consumption analysis have no similarities. The differential metabolites of our
ST analysis seem more convincing, and the ST prediction model has a better AUC.

In the LT RM consumption analysis we found that 12,13-DiHOME was associated with
the LTHC group, 12,13 DiHOME is a stimulator of brown adipose tissue activity, which
is negatively correlated with BMI and insulin resistance. 12,13-DiHOME can increase
brown adipose tissue fuel intake and result in decreased levels of serum triglycerides [25].
KEGG database search revealed that 12,13-DiHOME is involved in linoleic acid metabolism.
Linoleic acid is one of the polyunsaturated fatty acids (PUFAs) in animal products. The
main PUFAs in RM are the essential fatty acids linoleic acid (n-6) and α-linolenic acid (n-3).
The human body can convert α-linoleic acid into long-chain beneficial n-3 fatty acids [26].
Linoleic acid is the precursor of arachidonic acid, which can also modulate inflammatory
associated risks factor in chronic diseases. S-methylcysteine sulfoxide was negatively
correlated with LTHC. S-methylcysteine sulfoxide, found in Brassica vegetables, is con-
sidered a phytoalexin, providing protection against microbial pathogens and herbivores
through its degradation by cysteine sulfoxide lyases [27]. The bioconversion of individual
phytochemicals in the diet, such as glucosinolates, may confer additional health benefits
to the host. Human feces bacteria can reduce the dietary compound S-methylcysteine
sulfoxide [28]. 2-oxoarginine is an intermediate of the urea cycle, which was reported as a
potential biomarker of arthritis [29].

In the ST RM consumption analysis we observed high concentrations of several amino
acids, including asparagine, 4-hydroxyproline, and 3-hydroxyisobutyrate (3-HIB), in the
HC group. These amino acids are mainly involved in alanine and aspartate metabolism in
the urea cycle, arginine and proline metabolism, and BCAAs biosynthesis. RM contains
proteins with various amino acids of high nutritional value for the human body. Our
results indicate that ST RM consumption may activate the amino acid metabolism pathway.
Asparagine is the metabolic intermediate of alanine, aspartate, and glutamate metabolism;
4-hydroxyproline is a substrate of glycine, pyruvate, and glucose synthesis. Proline is
considered a functional amino acid for humans and other mammals; thus, proline is
expected to be translated into enhanced efficiency of nutrient utilization and improved
health [30]. 3-HIB is a strong marker of insulin resistance in type 2 diabetes and obesity [31].
3-HIB is a catabolic intermediate of the BCAA valine, secreted from muscle cells, promotes
muscle lipid accumulation and insulin resistance in animals, it may cause diabetes as a
bioactive signaling metabolite. The high intake of BCAAs is harmful in terms of insulin
resistance and Type 2 diabetes [32]. Additionally, lysine is the framework of carnitine
synthesis and carnitine can be found in most animal products, especially lambs and beef.
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Carnitine is an activator not only of fatty acid oxidation but also of carbohydrate metabolism
The supplementation of the myocardium with carnitine resulted in an increased tissue
carnitine content, a stimulation of pyruvate oxidation, lessening of the severity of ischemic
injury and improvement in the recovery of heart function during reperfusion [33].

Other RM biomarker studies have identified several potential biomarkers of RM
intake by testing blood or urine samples. In their clinical study, A.B. Ross et al. found that
β-alanine and 4-hydroxyproline are potential biomarkers of beef intake among overweight
men. Eating beef may also increase concentrations of 2-aminoadipic acid and leucine [34].
In a combined untargeted and targeted metabolomics study, Lu et al. identified a number
of amino acids, including hydroxyproline and valine, associated with meat and seafood
consumption in a Chinese population [35].

Our study has several limitations. Our participants had no restrictions on their
dietary behaviors, so the results of our prediction model may not be satisfying. We
categorized participants in the LT RM consumption group based on FFQs that recorded
dietary intakes over the past year. That time period may be too long to identify the
influence of RM consumption. In addition, recall bias can lower the accuracy of RM
consumption reports. Nevertheless, the three-day food diaries may provide relatively
accurate ST RM consumption. Additionally, RM consumption is very common among the
Chinese population, and consequently, our study participants did not include enough RM
non-consumers to compare them with RM consumers.

5. Conclusions

In this study, we identified 10 and 11 serum metabolites that differed according to LT
and ST RM consumption. We found a higher concentration of amino acids and lipids that
act as a mediator in BCAA metabolism, urea cycle, arginine and proline metabolism, and
PUFA metabolism. These metabolites may become a mediator of some diseases, especially
type 2 diabetes, obesity and cardiovascular disease in high RM consumers. Further research
is needed to validate these potential markers as robust biomarkers of RM intake and find
the value of these metabolites in investigating the relationship between RM consumption
and health outcomes.
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