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Abstract: In clinical practice, differences in glucocorticoid sensitivity among healthy subjects may
influence the outcome and any adverse effects of glucocorticoid therapy. Thus, a fast and accurate
methodology that could enable the classification of individuals based on their tissue glucocorticoid
sensitivity would be of value. We investigated the usefulness of untargeted plasma metabolomics in
identifying a panel of metabolites to distinguish glucocorticoid-resistant from glucocorticoid-sensitive
healthy subjects who do not carry mutations in the human glucocorticoid receptor (NR3C1) gene.
Applying a published methodology designed for the study of glucocorticoid sensitivity in healthy
adults, 101 healthy subjects were ranked according to their tissue glucocorticoid sensitivity based
on 8:00 a.m. serum cortisol concentrations following a very low-dose dexamethasone suppression
test. Ten percent of the cohort, i.e., 11 participants, on each side of the ranking, with no NR3C1 muta-
tions or polymorphisms, were selected, respectively, as the most glucocorticoid-sensitive and most
glucocorticoid-resistant of the cohort to be analyzed and compared with untargeted blood plasma
metabolomics using gas chromatography–mass spectrometry (GC–MS). The acquired metabolic
profiles were evaluated using multivariate statistical analysis methods. Nineteen metabolites were
identified with significantly lower abundance in the most sensitive compared to the most resistant
group of the cohort, including fatty acids, sugar alcohols, and serine/threonine metabolism inter-
mediates. These results, combined with a higher glucose, sorbitol, and lactate abundance, suggest
a higher Cori cycle, polyol pathway, and inter-tissue one-carbon metabolism rate and a lower fat
mobilization rate at the fasting state in the most sensitive compared to the most resistant group.
In fact, this was the first study correlating tissue glucocorticoid sensitivity with serine/threonine
metabolism. Overall, the observed metabolic signature in this cohort implies a worse cardiometabolic
profile in the most glucocorticoid-sensitive compared to the most glucocorticoid-resistant healthy
subjects. These findings offer a metabolic signature that distinguishes most glucocorticoid-sensitive
from most glucocorticoid-resistant healthy subjects to be further validated in larger cohorts. More-
over, they support the correlation of tissue glucocorticoid sensitivity with insulin resistance and
metabolic syndrome-associated pathways, further emphasizing the need for nutritionists and doctors
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to consider the tissue glucocorticoid sensitivity in dietary and exercise planning, particularly when
these subjects are to be treated with glucocorticoids.

Keywords: tissue glucocorticoid sensitivity in healthy adults; dietary planning; glucocorticoid
receptor; untargeted GC–MS metabolomics; blood plasma metabolic signature; precision medicine

1. Introduction

Glucocorticoids are steroid hormones synthesized in the adrenal cortex and released
into the peripheral circulation, displaying ultradian and circadian rhythms, [1,2]. These
endocrine molecules have several functions through binding to a ubiquitously expressed
protein, the glucocorticoid receptor (GR), which acts as a ligand-induced transcription
factor [3]. Within the target cell, the ligand-activated GR translocates into the nucleus
and binds to the promoters of glucocorticoid target genes, increasing or decreasing their
transcription rate [3,4]. Alternatively, the GR may regulate gene expression by interacting
with other transcription factors, such as the activator protein-1 (AP-1), the nuclear factor-
κB (NF-κB), and signal transducers and activators of transcription (STATs), influencing
their transcriptional activity [3–5]. Further to their genomic actions, glucocorticoids may
exert nongenomic actions, possibly through membrane-anchored GRs that activate kinase
signaling pathways [6]. Through these numerous actions, glucocorticoids exert beneficial
anti-inflammatory and immune-modulating effects, providing the basis for the therapeutic
management of an ever-increasing number of disorders [7].

Tissue sensitivity to glucocorticoids has been influenced by an ever-increasing number
of molecular, cellular, and tissue-associated factors. Specific polymorphisms or genetic de-
fects in the NR3C1 gene, which encodes the human glucocorticoid receptor (hGR), account
for certain clinical phenotypes associated with glucocorticoid resistance or hypersensitiv-
ity [4,8,9]. Moreover, several receptor isoforms have been identified, further contributing to
the complexity of tissue response to glucocorticoids [10]. Accumulating evidence suggests
that the hGR “interactome” is enhanced by numerous novel partners, including RNA
molecules (miRNA, non-coding RNA) [11,12].

In clinical practice, differences in glucocorticoid sensitivity among healthy subjects
may influence the outcome and any adverse effects of glucocorticoid therapy. Due to their
potent anti-inflammatory and immunosuppressive properties, glucocorticoids are used
extensively to treat several allergic, inflammatory, hematologic, and lymphoproliferative
disorders. However, a substantial number of patients with the above disorders may not
respond adequately to glucocorticoids because of tissue-specific glucocorticoid resistance,
while other subjects may rapidly develop symptoms and signs of hypercortisolism. The
above differences in the response to the same dose and duration of glucocorticoid therapy
among subjects have been attributed to individual variations in glucocorticoid sensitiv-
ity [8]. Although the various actions of glucocorticoids in many biological processes and the
side effects of synthetic glucocorticoids are well-recognized, it still remains difficult to de-
tect individual variations in tissue responsiveness to glucocorticoids among healthy adults
in order to adjust the therapeutic dose of synthetic glucocorticoids appropriately when they
need treatment with glucocorticoids. In addition, glucocorticoids have been associated
with weight gain, which can be substantially increased when combined with a high-fat
diet [13], while dietary advanced glycation end-products (AGEs) were recently shown to
induce glucocorticoid resistance [14]. Therefore, the identification of novel biomarkers
and the development of fast and accurate methods for distinguishing healthy subjects
as most glucocorticoid-sensitive or most glucocorticoid-resistant remains very important,
not only for appropriately selecting a course of glucocorticoid treatment in inflammatory
diseases but also in designing a dietary and exercise plan. Accurate assessment of the tissue
glucocorticoid sensitivity of an individual can play an important role in these decisions.
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In the era of personalized and precision medicine (PPM), high-throughput biomolecu-
lar (omic) analyses of blood and biofluids are pivotal because they provide specific infor-
mation on the pathogenesis, diagnosis, prognosis, or progression of a disease, and facilitate
the design and development of novel therapeutic strategies. Peripheral blood is one of the
most easily accessible human tissues in a noninvasive way, and its analysis can elucidate
the (patho)physiologic state of any organism. Untargeted plasma metabolomics quantifies
and analyzes in a multivariate way the concentration profile of the plasma metabolites.
Hence, it provides a comprehensive functional readout of a particular (patho)physiologic
state, while reflecting events occurring downstream of gene expression, representing a
direct link to phenotype [15,16]. In view of molecular physiology as an interconnecting net-
work of biomolecular networks, even subtle differences in a molecular quantity may result
in substantial outcomes within the framework of changes in other interacting molecules
according to their relative position and biological role [17]. In this context, metabolomics
is emerging as a valuable tool to study human (patho)physiology, opening a new field to
elucidate health and disease progression and identify disease-specific metabolic signatures
to diagnose and assess disease risks and appropriately design therapeutic treatments. In
the same context, metabolomics can play an important role in dietary and exercise planning
within therapeutic strategies and also to establish a healthy lifestyle, in general [18].

Metabolomics can and should be part of clinical practice as a component of the clinical
chemistry laboratory [19]. Its advantages over the other omics include its lower cost,
no need for special technological platforms, and the use of classical analytical chemistry
equipment, most being part of a clinical chemistry laboratory: nuclear magnetic resonance
(NMR) spectroscopy and/or mass spectrometry (MS) integrated with gas or liquid chro-
matography (GC or LC) [17,19]. It is worth mentioning that untargeted metabolomics has
not yet been used to investigate the metabolic alterations and implications associated with
the individual variations in tissue glucocorticoid sensitivity in human subjects. In this
context, the aim of our study was to search for a metabolic signature that could be used
to distinguish most glucocorticoid-resistant from most glucocorticoid-sensitive healthy
adult subjects, who do not carry mutations in the human glucocorticoid receptor (NR3C1)
gene, using untargeted plasma GC–MS-based metabolomics, which monitors mainly the
primary metabolism. To this end, we applied a very low-dose dexamethasone suppres-
sion test that had been explicitly designed and used to assess the tissue glucocorticoid
sensitivity in healthy subjects [8,20] to rank a gender-balanced cohort of 101 young (mean
age 26.5 ± 5 years) healthy subjects. The eleven (11) individuals, i.e., 10% of the cohort,
on each side of the ranking, who did not carry mutations in the human glucocorticoid
receptor (NR3C1) gene, were selected as the most glucocorticoid-sensitive and the most
glucocorticoid-resistant of this cohort. These two “extremes” of the 101-participant group
were deemed as most appropriate to be analyzed and compared with respect to their blood
plasma metabolic profile to reveal any associated metabolic differences in this first study of
this type, which could be further explored in larger clinical contexts.

2. Materials and Methods
2.1. Healthy Subject Cohort Description—Selection of the Most Glucocorticoid-Sensitive and Most
Glucocorticoid-Resistant Subgroups

One hundred one healthy subjects (n = 101; 50 males and 51 females) of a mean age
(±SD) 26.5 (±5) years, who were not taking any medications, including oral contraceptives
for the women participants, were recruited prospectively. The study was set up and
applied according to the published protocol of a very low-dose dexamethasone suppression
test, which had been explicitly developed to study interindividual variation in tissue
glucocorticoid sensitivity in healthy subjects [8,20]. More specifically, all participants
were given a very low-dose (0.25 mg) of oral dexamethasone at midnight, and serum
cortisol (261.8 ± 206.9 nmol/L) and plasma ACTH (16.1 ± 12.2 pg/mL) concentrations
were determined at 8:00 a.m. the following morning. The very low dexamethasone
dose was selected, and the protocol was designed to detect very mild differences owing to
interindividual variation in tissue glucocorticoid sensitivity among healthy participants. As
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in these studies the cortisol concentrations of all participants are within the normal healthy
range, the application of a cortisol cut-off was out of context. Rather, the participants
were rank-ordered according to their 8:00 a.m. serum cortisol concentrations and the two
“extreme” subgroups were, respectively, selected as the most glucocorticoid-sensitive and
the most glucocorticoid-resistant of the particular cohort.

In our study, we selected 10% of the 101 healthy subject cohort, i.e., 11 participants, on
each side of the ranking, who did not carry mutations in the NR3C1 gene, to participate in
the blood plasma metabolomic study. More specifically, the 11 individuals with the lowest
cortisol concentrations and the 11 with the highest cortisol concentration were selected as
the most glucocorticoid-sensitive (S) and the most glucocorticoid-resistant (R), respectively,
of the original cohort [(mean serum cortisol concentrations± SD: 34.4± 15 nmol/L in the S
participants vs. 622.4 ± 93.7 nmol/L in the R participants, p < 0.001); (mean plasma ACTH
concentrations ± SD: 2.8 ± 2.4 pg/mL in the S participants vs. 31.6 ± 10.6 pg/mL in the R
participants, p < 0.001)] (Table 1). These two subgroups of 11 individuals each participated
in further analyses, and one month after the very low-dose dexamethasone suppression
test, DNA, RNA, and plasma samples were collected for the genetic, biochemical, and
metabolomic analyses of the study.

Table 1. Clinical characteristics, serum cortisol and plasma ACTH concentrations of the most glucocorticoid-sensitive (S)
and most glucocorticoid-resistant (R) healthy subjects at the time of the very-low dexamethasone suppression test.

Sample
Code Sex Weight

(kg)
Height

(m) BMI (kg/m2)
Cortisol
(nmol/L)

ACTH
(pg/mL)

Glucocorticoid-
Sensitive

(S)

1 F 58 1.64 21.6 18.6 <1.0
2 F 62 1.75 20.2 22.2 1.4
3 M 70 1.77 22.3 23.1 6.2
4 F 45 1.50 20,0 24.5 <1.0
5 M 70 1.85 20.5 26.2 2.9
6 F 55 1.64 20.4 32.3 <1.0
7 F 48 1.57 19.5 34.2 5.1
8 M 80 1.78 25.2 36.1 <1.0
9 M 70 1.82 21.1 39.7 2.0

10 M 52 1.71 17.8 51.3 <1.0
11 M 81 1.87 23.2 69.5 7.6

Mean Value ± SD 21.1 ± 2.0 34.4 ± 15 2.8 ± 2.4

Glucocorticoid-
Resistant

(R)

1 F 52 1.59 20.6 834.0 35.3
2 F 56 1.68 19.8 720.9 38.1
3 F 59 1.55 24.6 690.8 46.0
4 M 93 1.86 26.9 644.2 42.2
5 M 53 1.68 18.8 599.0 32.8
6 F 47 1.54 19.8 597.9 23.7
7 F 59 1.70 20.4 579.4 39.9
8 F 58 1.65 21.3 565.3 16.1
9 F 58 1.7 20.1 556.2 29.9

10 M 70 1.72 23.7 537.4 30.9
11 M 77 1.88 21.8 520.6 12.4

Mean Value ± SD (1) 21.6 ± 2.5 622.4 ± 93.7 31.6 ± 10.6

BMI: body mass index; ACTH: adrenocorticotropic hormone. (1) The p-value for BMI, cortisol and ACTH were, respectively, p = 0.797,
p < 0.001, p < 0.001.

2.2. Ethical Considerations

The study was approved by the “Aghia Sophia” Children’s Hospital Committee on
the Ethics of Human Research (Approval Number: EB-PASCH-MoM: 13/02/2013, Re:
1490-21/01/2013). All participants provided written informed consent before participating
in the study.
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2.3. Sample Collection

Blood samples (5 mL) were obtained from the study participants at 8:00 a.m. in EDTA-
containing tubes and centrifuged immediately after collection. Blood plasma samples were
stored at −80 ◦C until further analysis. Aliquots of 150 µL were collected for each blood
plasma sample and two aliquots per sample were shipped in dry ice to the metabolomic
analysis laboratory.

2.4. Assays

The standard hematologic parameters were measured using the ADVIA 2110i analyzer
(Roche Diagnostics, GmbH, Mannheim, Germany). Glucose, triglycerides (TG), total
cholesterol (t-CHOL), and high-density lipoprotein cholesterol (HDL-C) were quantified
using the ADVIA 1800 Siemens analyzer (Siemens Healthcare Diagnostics, Tarrytown, NY,
USA). Lipoprotein (a) (Lp(a)) as well as apolipoproteins A1 (ApoA1) and B (ApoB) were
quantified by latex particle-enhanced immunonephelometric assays on the BN ProSpec
nephelometer (Dade Behring, Siemens Healthcare Diagnostics, Liederbach, Germany).

Ferritin, insulin, LH, FSH, and estradiol were quantified using automated electro-
chemiluminescence immunoassays “ECLIA” (Analyzer Cobas e411, Roche Diagnostics,
GmbH, Mannheim, Germany). TSH, free (f) T4, anti-TPO, anti-TG, androstenedione,
DHEA-S, ACTH, cortisol, IGF-I, IGFBP-3, and high-sensitivity C-reactive protein (hs-CRP)
concentrations were determined using automated chemiluminescence immunoassays on
an IMMULITE 2000 Immunoassay System (Siemens Healthcare Diagnostics Products
Ltd., Frimley, Camberley, Surrey, UK). Total 25-hydroxyvitamin D (25-OH Vitamin D)
concentrations were determined using automated electrochemiluminescence immunoas-
says (Modular Analytics E170 analyzer, Roche Diagnostics, GmbH, Mannheim, Germany).
HbA1C was measured using reversed-phase cation exchange high-performance liquid
chromatography (HPLC) on an automated glycohemoglobin analyzer HA-8160 (Arkray,
Kyoto, Japan). The applied quantification procedures are the standard used in clinical
practice for defining the glucocorticoid sensitivity of treated individuals.

2.5. Sequencing of the NR3C1 Gene

The Maxwell 16 instrument for automated DNA extraction was used to isolate ge-
nomic DNA from peripheral leukocytes (Promega Corp., Madison, WI, USA). Sequencing
of the NR3C1 gene (NM_000176.3) was performed as previously described [21]. Specif-
ically, the NR3C1 gene coding regions and their flanking sequences on chromosome 5
(GRCh37:NR3C1-201 ENST00000343796.2) analyzed in this work were presented and num-
bered relative to coordinates of the NR3C1 gene: Exon 2: 142780516–142779199, Exon 3:
142693835-142693511, Exon 4: 142689849–142689542, Exon 5: 142680396–142679927, Exon 6:
142678424–142678207, Exon 7: 142675319–142674851, Exon 8: 142662436-142662012, Exon 9
and 3′UTR: 142661729–142661302.

2.6. Metabolic Profile Acquisition, Normalization & Filtering

Polar and semipolar metabolite extraction and untargeted GC–MS metabolic profile
acquisition protocols were followed as previously described [17,19,22,23]. More specifi-
cally in this study, 30 µg ribitol (Alfa Aesar, Heysham, UK) and 30 µg (U-13C)-D-glucose
(Cambridge Isotope Laboratories, Cambridge, MA, USA) were added as internal standards
in each 150 µL plasma aliquot. The dried extracts were derivatized to their (MeOx)TMS
derivatives through reaction first with 50 µL of 20 mg/mL methoxyamine hydrochloride
(MeOx-HCL) (Alfa Aesar, Thermo Fisher (Kandel) GmbH, Kandel, Germany) in pyridine
(Carlo Erba Reagents, Cornaredo (MI), Italy) for 90 min, followed by a reaction with 100 µL
of N-methyl-trimethylsylil-trifluoroacetamidine (MSTFA) (Alfa Aesar, Thermo Fisher (Kan-
del) GmbH, Kandel Germany) at 40 ◦C for at least 6 h. The GC–MS analysis was performed
using the Saturn 2200 GC-(ion trap)MS (formerly Varian Inc., currently Bruker/Agilent,
Santa Clara, CA, USA). The sequence of sample analysis was randomized, and the profile of
each aliquot was measured at least thrice at different derivatization times. Peak identifica-
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tion and quantification were based on the commercial NIST and our in-house MESBL peak
library containing more than 700 reviewed peaks annotated and classified following the
standards previously described [24]. Appropriate metabolomic data validation, normaliza-
tion, and filtering were carried out based on the criteria described and justified in [19,22,23]
using the relevant module of M-IOLITE, the GC–MS metabolomic analysis streamlining
software suite of our group (http://miolite2.iceht.forth.gr) [24]. The metabolite deriva-
tive relative peak areas (RPAs) were estimated with respect to the 319 marker ion of the
internal standard ribitol. The glucose RPA was estimated from the sum of glucose-MeOx1,
glucopyranose 1, and glucopyranose 2 derivative RPAs. After normalization and filtering,
each metabolic profile comprised 50 metabolite RPAs. The normalized metabolic profile
of each aliquot was estimated from the mean of the normalized profiles of its technical
replicates and the mean aliquot profile of each sample was used in further analyses. The
final normalized metabolomic dataset considered in multivariate statistical analysis is
provided in Supplementary Table S1, containing all information about the peak annotation
confidence level, too.

2.7. Multivariate Analysis of the Metabolomic Dataset

Principal component analysis (PCA) and significance analysis for microarrays (SAM)
algorithms were used as implemented in version 4.9.0 of the omic data analysis software
TM4/MeV [25,26]. In the multivariate significance analysis method SAM, the metabolites,
the abundance of which were identified as significantly higher or lower in a set of metabolic
profiles compared to one another, will be, respectively, referred to as “positively” or “neg-
atively” significant metabolites of the particular comparison for a selected significance
threshold associated with a false discovery rate (FDR-median). The computational anal-
ysis of untargeted GC–MS metabolomic data followed in this study has been previously
described [23].

2.8. Statistical Analyses

Results are presented as mean± standard deviation (SD). Normality was tested graph-
ically according to histograms and Q–Q plots to determine whether or not to use parametric
methods for the sample data analysis. The associations between variables and participant
groups were evaluated by Student’s t-tests or the Mann–Whitney U tests for independent
samples. All statistical tests were two-sided and performed at a 0.05 significance level.
Data analyses were performed using the SPSS (Chicago, IL, USA) statistical package version
24.0.

3. Results
3.1. Clinical Characteristics, Biochemical and Endocrinologic Parameters of the Participants

The clinical characteristics, as well as the biochemical and endocrinologic parameters
of the 22 healthy participants at the time of the very low-dose dexamethasone suppres-
sion test and one month later are shown in Tables 1 and 2, respectively. No statistically
significant difference in the endocrinologic parameters was identified between the S and R
groups (p value > 0.05). We noted that considering the reproductive cycle of the women
participants, gonadotropin and sex steroid concentrations in women were determined
between the 3rd and 5th day of the menstrual cycle.

http://miolite2.iceht.forth.gr
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Table 2. Clinical characteristics, biochemical and endocrinologic parameters of the most glucocorticoid-sensitive (S) and
most glucocorticoid-resistant (R) healthy subjects one month after the very-low dexamethasone suppression test.

Glucocorticoid-Sensitive (S) Glucocorticoid-Resistant (R) p Value

Age (years) 25.3 ± 3.9 27.5 ± 6.7 0.478
Weight (kg) 62.8 ± 12.3 62 ± 13.2 0.847
Height (cm) 1.7 ± 0.1 1.7 ± 0.1 0.519

BMI (kg/m2) 21.1 ± 2.0 21.6 ± 2.5 0.797
25-Hydroxy-Vitamin D (ng/mL) 16.0 ± 7.9 14.0 ± 8.5 0.652

ACTH (pg/mL) 33.2 ± 18.8 27.6 ± 15.4 0.519
Androstenedione (ng/mL) 2.9 ± 0.9 3.2 ± 1.2 0.502

Anti-TG (IU/mL) 20 ± 0.0 20 ± 0.0 0.999
Anti-TPO (IU/mL) 10.4 ± 0.7 11.1 ± 2.6 0.652

ApoA1 (mg/dL) 158.4 ± 8.0 167.6 ± 15.0 0.237
ApoB (mg/dL) 75.5 ± 14.4 71.4 ± 7.7 0.515

Total Cholesterol (mg/dL) 157.4 ± 16.9 156. ± 15.0 0.965
Cortisol (nmol/L) 638.2 ± 155.3 523.7 ± 280.0 0.270
DHEAS (µg/dL) 238.6 ± 146.0 248.6 ± 115.0 0.562
FSH (mUI/mL) 5.2 ± 2.7 4.0 ± 2.3 0.300

FT4 (ng/dL) 1.1 ± 0.1 1.1 ± 0.1 0.261
Glucose (mg/dL) 73.2 ± 6.3 74.7 ± 13.6 0.965

HDL (mg/dL) 49.5 ± 7.0 52.9 ± 8.1 0.315
IGFBP-3 (µg/mL) 5.3 ± 1.0 5.2 ± 1.2 0.562

IGF-I (ng/mL) 259.2 ± 79.5 251.4 ± 66.8 0.699
Insulin (µUI/mL) 6.7 ± 2.7 13.7 ± 1 0.116

LDL (mg/dL) 90.7 ± 17.8 87.6 ± 13.5 0.762
LH (mUI/mL) 10.1 ± 14.9 6.4 ± 2.3 0.699
Lp(a) (mg/dL) 21.8 ± 37.4 25.8 ± 27.3 0.460

Prolactin (ng/mL) 24.9 ± 8.8 21.5 ± 9.1 0.193
PTH (pg/mL) 34.1 ± 15.2 38.5 ± 17.9 0.562

SHBG (nmol/L) 65.1 ± 27.9 46.2 ± 15.3 0.175
T3 (ng/dL) 102.3 ± 27.6 102.0 ± 23.8 0.982

Triglycerides (mg/dL) 69.4 ± 30.0 74.2 ± 16 0.315
TSH (µUI/mL) 2.8 ± 0.9 2.0 ± 1.1 0.101

The parameters for the two groups are expressed as mean ± SD (n = 11). ACTH: adrenocorticotropic hormone, Anti-Tg: thyroglobulin
antibodies, Anti-TPO: thyroid peroxidase antibodies, BMI: body mass index; DHEAS: dehydroepiandrosterone sulfate, FSH: follicle-
stimulating hormone, FT4: free thyroxine, IGF-I: insulin-like growth factor-I, IGFBP-3: insulin-like growth factor-binding protein 3, LH:
luteinizing hormone, PTH: parathormone, SHBG: sex hormone-binding globulin, T3: triiodothyronine, TSH: thyroid-stimulating hormone.

3.2. NR3C1 Gene Sequencing Revealed No Polymorphisms or Mutations in the 22 Subjects

To investigate whether any genetic defects or polymorphisms in the NR3C1 gene could
explain this variation in tissue glucocorticoid sensitivity, the protein-expressing region and
the intron/exon junctions were PCR-amplified and sequenced bidirectionally. No genetic
defects or polymorphisms were detected in the NR3C1 gene of the 22 subjects.

3.3. Metabolic Profiling Analysis

Multivariate statistical analysis of the 22 metabolic profiles indicated individual R11_m
as having a substantially different plasma metabolic profile from all others. Interestingly,
also, while the participant (male) had been characterized as glucocorticoid-resistant based
on the cortisol measurement of the dexamethasone suppression test, his sample clustered
with the sensitive profiles (Supplementary Figure S1). To avoid skewing the results, this
particular profile was excluded from further analysis. Reviewing this participant’s medical
record, it became evident that he had undertaken excessive exercise a few days before
the blood plasma sampling (a month after the very low-dose dexamethasone suppression
test). Interestingly, the discriminatory profile of R11_m became evident in its metabolomic
data as no significant difference was observed in their biochemical and endocrinological
parameters (see Supplementary Table S2 replicating Table 2 for S and R groups but in the
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absence of R11_m), supporting the sensitivity of the metabolic profile to identify such
differences.

Subsequently, we searched for specific discriminatory metabolites between the S and
R groups using multivariate significance analysis based on the SAM method. The analysis
indicated that the total abundance of the 50 analyzed metabolites was on average lower
in the S compared to the R group, implying that the relevant pathways and metabolic
processes are of lower activity/flux in the S compared to the R group. In this context of
the total abundance decrease, for the strictest significance threshold providing results, the
SAM method identified 19 metabolites with significantly lower abundances (“negatively
significant”) in the S compared to the R subjects, but no metabolite crossed the positive
significance threshold (Table 3, Supplementary Figure S2). The negatively significant
metabolites include lipids, i.e., the polyunsaturated (PUFA) and saturated fatty acid (SFA),
respectively, linoleic and octadecanoic (stearic) acid, the monoglycerides (MAGs) glycerol
monostearate and glycerol monopalmitate (1-monopalmitin), erythritol, myo-inositol, 2-
hydroxybutyrate, and the amino acids glycine, serine, threonine, and glutamate. On the
other side, an unknown sugar pyranose putatively annotated as galactopyranose, sorbitol,
lactate, and glucose were in this order of decreasing significance the four metabolites
identified with a higher abundance in the S compared to the R subjects, just below the
positive significance threshold (Supplementary Figure S2). It is important to consider
these metabolites as they enhance the perspective of the metabolic physiology that can be
obtained by the combined analysis of interconnected metabolites in the context of metabolic
pathways. In addition, the mean relative composition of the 50 metabolites in these four
metabolites is larger in the S compared to R group, but they do not “cross” the significance
threshold with respect to the actual abundance in the context of the overall abundance
decrease of the 50 metabolites in the S vs the R group. Finally, the galactopyranose and
sorbitol exhibited a characteristically larger abundance in the first four most sensitive
individuals of the cohort, differentiating them from the rest and in decreasing order from
the first to the fourth S individual (Supplementary Table S1).

Table 3. The blood plasma metabolites identified with significantly lower abundances in the most
glucocorticoid-sensitive (S) compared to the most glucocorticoid-resistant (R) healthy subjects based
on the multivariate significance analysis SAM method, as implemented in the TM4/MeV software.
The metabolites are shown in decreasing significance based on the SAM curve shown in Figure S2.

Negatively Significant Metabolites in the S vs. the R Group in Decreasing Significance for
FDR-Median = 23.5% (or 4.5 Metabolites) (1)

1. Octadecanoic (stearic) acid

2. Un_0063 (2)

3. Glycerol 1-palmitate

4. 9,12-octadecadienoic acid (Z,Z) (linoleic acid)

5. Un_ 0180 (sugar, putatively)

6. Glycine

7. Un_0130 (sugar pyranose putatively)

8. Myo-inositol

9. Un_0253 (sugar acid putatively)

10. Threonine

11. Serine

12. Un_0134 (sugar pyranose putatively)

13. Erythritol

14. Un_0185
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Table 3. Cont.

Negatively Significant Metabolites in the S vs. the R Group in Decreasing Significance for
FDR-Median = 23.5% (or 4.5 Metabolites) (1)

15. Un_0254 (steroid putatively)

16. 2,3-Dihydroxypropyl octadecanoate (glycerol monostearate)

17. Urea

18. Glutamate (3)

19. 2-hydroxybutanoic acid
(1) The particular FDR-median is the lowest for which significant metabolites were identified; it corresponds to a
significance threshold δ (delta) equal to 0.508 (see Figure S2). (2) The identifiers for the unknown metabolites are as
archived in the peak library of our group; the full normalized metabolomic dataset is provided in Supplementary
Table S1. (3) The glutamate abundance is based on its pyroglutamate derivative measurement (Kanani et al., 2007).

4. Discussion

We performed untargeted plasma metabolomics in healthy subjects with marked
differences in tissue glucocorticoid sensitivity based on their response to a very low-dose
dexamethasone suppression test. Multivariate significance analysis of the profiles indicated
a set of metabolites, the difference in the abundance of which could be discriminatory of
individuals belonging to the two groups. Sorbitol appeared among the metabolites, with
higher abundances in the glucocorticoid-sensitive individual profiles. Sorbitol accumula-
tion in the blood indicates a higher rate of the polyol pathway in the S compared to the R
subjects, a metabolic route connected to hyperglycemic conditions and oxidative stress [27].
This result concurs with the observed higher concentration of glucose and lactate in the S
compared to the R group, which implies a higher Cori cycle rate in the S compared to the
R subjects after overnight fasting. This phenomenon has been associated with metabolic
syndrome and insulin resistance conditions [28].

Moreover, we found that the S subjects had statistically significantly lower abundances
of the linoleic (PUFA) and octadecanoic/stearic (SFA) acids, as well as the monoglycerides
glycerol-monostearate and glycerol-monopalmitate. Decreased linoleic acid concentration
has been associated with hypertension and cardiovascular disease [29]. These findings
in combination imply a lower rate of fat mobilization after overnight fasting in the S
compared to the R subjects. This phenomenon has been associated with decreased ex-
pression of the hormone-stimulated enzymes regulating the fat mobilization process [30]
and has been related to insulin resistance and obesity. Fatty acids related to triglyceride
metabolism (e.g., palmitic, stearic, linoleic) have been associated with glucocorticoid action
in two recent untargeted metabolomic studies of the dose-dependent effect of glucocorti-
coid treatment of glucocorticoid-dependent disorders [31,32].

Finally, the S group exhibited lower abundances of plasma glycine, serine, and thre-
onine compared to the R group. This is the first study linking increased glucocorticoid
sensitivity to glycine, serine, and threonine metabolism based on the collective profile of
these amino acids. Threonine was identified as differential in an untargeted metabolomic
study of the dose-dependent effect of glucocorticoid treatment of congenital adrenal hy-
perplasia [31]. Lower plasma levels of these amino acids may imply their higher uptake
rate from the tissues toward higher inter-tissue rates of cytosolic one-carbon metabolism
associated with mitochondrial deficiency and oxidative stress [33,34]. We hypothesize
that the activation of one-carbon metabolism, observed in the glucocorticoid-sensitive
subjects, could be a counter-regulatory mechanism to reduce oxidative stress, to increase
energy production, as well as to provide methyl groups for epigenetic modifications [35,36].
Moreover, by upregulating glucose consumption, this metabolic pathway could be further
used to reduce the stress-increased glucose concentrations and, therefore, to avoid any
chronic hyperglycemia complications [37].

The acquired results agree with current knowledge about the differences between
glucocorticoid-sensitive and glucocorticoid-resistant healthy subjects owing to polymor-
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phisms of the NR3C1 gene given that the former are known to exhibit an unfavorable
cardiometabolic profile compared to their normal counterparts [38,39]. Indeed, carriers
of the N363S polymorphism of the NR3C1 gene, who have higher sensitivity to gluco-
corticoids, have a higher waist-to-hip ratio, increased body mass index (BMI), elevated
concentrations of cholesterol and triglycerides, lower bone mineral density, and higher
prevalence of coronary artery disease independent of weight gain [40–42]. In addition
to the N363S polymorphism, the BclI polymorphism of the NR3C1 gene has also been
associated with increased glucocorticoid sensitivity [43]. Subjects with this polymorphism
are obese and more susceptible to chronic diseases, such as hypertension, bronchial asthma,
and mood disorders [44,45]. Furthermore, one point mutation in the NR3C1 gene has
been associated with primary generalized glucocorticoid hypersensitivity. This was a
heterozygous guanine to cytosine (G→C) substitution at nucleotide position 1201 in exon
2 of the NR3C1 gene, which led to an aspartic acid (D) to histidine (H) substitution at
amino acid position 401 in the N-terminal domain of the receptor [46]. This mutation was
identified in a 43-year-old female who displayed all cardinal manifestations of metabolic
syndrome (visceral obesity, hypertriglyceridemia, hypercholesterolemia, type 2 diabetes,
and hypertension) [46]. Moreover, there have been cases of transient generalized gluco-
corticoid hypersensitivity in which no genetic defects in the NR3C1 gene were discovered,
suggesting that other unknown factors (i.e., viral proteins) might trigger the activation of
the hypothalamic–pituitary–adrenal (HPA) axis in these patients [47–49]. Finally, patients
with Cushing’s syndrome display a worse metabolic profile due to hypercortisolism [50,51].
However, the participants in our study were all healthy and did not have any genetic
defects or polymorphisms in the NR3C1 gene, indicating that other factors in the glucocorti-
coid signaling pathway might influence tissue sensitivity to glucocorticoids and contribute
to this distinct metabolic phenotype.

Our study succeeded in identifying a metabolic signature that might be used to dif-
ferentiate glucocorticoid-resistant from glucocorticoid-sensitive healthy subjects based
on their metabolic profiling. This is a first pilot metabolomic study for the investigation
of tissue glucocorticoid sensitivity in healthy subjects and our results can form the basis
for future larger studies. Indeed, as the sample size of our study was relatively small,
comprising 10% of the initially studied and screened (n = 101) participants in each of the
S and R groups (22 subjects in total), further and larger studies are undoubtedly needed
to validate and provide convincing explanations about the differences observed between
the glucocorticoid-sensitive and glucocorticoid-resistant subjects. In the limitations of our
study, we may also consider the use of immulite instead of HPLC for determining serum
cortisol concentrations as we carried out the standard procedure that we normally follow
in clinical practice. The purpose of our study was to directly compare the information
obtained by the standard in clinical practice procedures for determining glucocorticoid
sensitivity, which is currently used to decide the appropriate glucocorticoid treatment,
with that acquired from metabolic profiling analysis. Finally, we did not determine the
dexamethasone concentrations of the participants following the very-low dexamethasone
suppression test because we designed our study according to similar studies that deter-
mined glucocorticoid sensitivity in healthy subjects, such as the study by Donn et al.,
who identified a new glucocorticoid sensitivity-determining gene using gene expression
profiling [20]. Furthermore, in most published studies that use dexamethasone suppression
tests, researchers have not routinely determined dexamethasone concentrations in their
subjects [52–55].

From the clinical point of view, the results of the present study—if validated by
further larger studies—hold a particular significance as a panel of differential between
the S and R groups could be used for the development of diagnostic regression mod-
els that could assist in classifying an individual based on his/her tissue glucocorticoid
sensitivity and appropriately adjusting the dose of synthetic glucocorticoids in patients
with glucocorticoid-dependent disorders in order to achieve better clinical outcome and
fewer adverse effects [7]. However, it should be noted that the metabolic physiology
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might be altered in the context of these disorders; therefore, our metabolomic signature
might not be directly informative and specific studies should be carried out to identify
the effect of interindividual variation of tissue glucocorticoid sensitivity on the efficacy of
the therapeutic treatment. Moreover, our results support the connection of glucocorticoid
sensitivity with metabolic processes associated with insulin resistance, metabolic syndrome,
inflammation, and obesity, making the assessment and classification of an individual with
respect to his/her glucocorticoid sensitivity a pivotal part of dietary and exercise planning
both under pathophysiological conditions as part of an optimized therapeutic treatment
and also for the adoption of a healthy lifestyle. Based on the acquired results, the most
glucocorticoid-sensitive subjects may be more careful in their eating and exercise habits,
emphasizing on a long-term healthy lifestyle of a low-fat diet and regular physical exercise.

The consumption of high-fat and high-sugar foods (“comfort foods”) is proportional
to circulating glucocorticoids and/or glucocorticoid sensitivity as indicated by the fact that
patients with Cushing’s disease choose foods containing high fat compared to subjects with
normal glucocorticoid concentrations [56]. Studies in rodents that investigated whether
prior metabolic stress (restraint or cold stress) influenced the preference for “comfort foods”
and modulated the subsequent HPA axis response showed that rodents preferred “comfort”
foods to standard chow. Their provision on these “comfort” foods led to a reduction of
the degree of the stressor-activated sympathetic responses and reduced the basal con-
centrations of corticotropin-releasing factor/hormone (CRF) in the hypothalamus [57].
Glucocorticoids enhance feeding behavior by altering the levels of neuropeptide Y (NPY),
a key orexigenic neurotransmitter associated with food consumption and deposition of adi-
pose tissue [58]. Clinically, this is very relevant, as it suggests that healthy subjects who are
most glucocorticoid-sensitive display higher risk for developing metabolic complications
if they systematically prefer a high-fat diet, particularly if they need to take exogenous
glucocorticoid therapy. On the other hand, regular physical exercise is used widely to
address many cardiometabolic conditions due to its beneficial actions with several organs,
including muscle, adipose tissue, liver, and bone. While increased glucocorticoid sensitivity
induces insulin resistance, physical exercise increases insulin sensitivity and reduces the
expression of both GR and 11-β-HSD1 within the insulin-sensitive organs (skeletal muscle,
adipose tissue, and liver), ultimately reducing tissue exposure to glucocorticoids [13,59].
On the other hand, in the context of the one identified case in our cohort, it appears that
excessive exercise can induce substantial stress to the body, modifying the glucocorticoid
sensitivity status of the individual. This is an observation in clear need for further specific
investigation.

We speculate that pre-existing epigenetic alterations might influence the expression
of genes, thereby regulating several important metabolic pathways [21]. Furthermore, we
cannot predict whether these metabolic alterations might be prevented in the future through
a healthy lifestyle. Sex-specific differentiations should also be investigated. Supporting
the metabolic findings with proteomic and lipidomic data would be of importance to
further enhance physiological signatures leading to a more accurate determination of the
glucocorticoid sensitivity of each individual.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nu13062120/s1, Figure S1: The PCA graph of the metabolomic dataset of all 22 samples,
Figure S2: The SAM curve of the metabolic profile data of the S (Group B) compared to the R (Group
A) groups, Table S1: The normalized blood plasma metabolomic dataset of the 22 participants used in
multivariate statistical analysis, Table S2: Clinical characteristics, biochemical and endocrinological
parameters of the most glucocorticoid sensitive (S) and most glucocorticoid resistant (R), excluding
R11_m, healthy subjects one month after the very-low dexamethasone suppression test.
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