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Abstract: L-Citrulline is a non-essential but still important amino acid that is released from ente-
rocytes. Because plasma levels are reduced in case of impaired intestinal function, it has become
a biomarker to monitor intestinal integrity. Moreover, oxidative stress induces protein citrullina-
tion, and antibodies against anti-citrullinated proteins are useful to monitor rheumatoid diseases.
Citrullinated histones, however, may even predict a worse outcome in cancer patients. Supple-
mentation of citrulline is better tolerated compared to arginine and might be useful to slightly
improve muscle strength or protein balance. The following article shall provide an overview of
L-citrulline properties and functions, as well as the current evidence for its use as a biomarker or as a
therapeutic supplement.

Keywords: citrulline; amino acid supplementation; L-citrulline; glutamine; arginine

1. Introduction

L-Citrulline is a non-essential and non-proteinogenic amino acid (AA), which has
first been isolated by Koga out of water melon juice [1]. The presence in human proteins
has been suspected for a long time [2], and it has been shown that posttranslational
modification, called citrullination or deamination, plays a major role and is associated
with inflammatory disease [3,4]. Citrulline has antioxidant and vasodilation properties
and belongs to the human nitric oxide system [5]. In addition, both for undernourished
and sarcopenic aged patients [6] and for sports purposes [7], possible anabolic effects after
oral supplementation are suggested. Circulating citrulline is released from small intestinal
enterocytes, predominantly in its proximal sections of jejunum and duodenum [8], where
it is synthesized de novo from precursor AAs deriving from either nutritional proteins or
systemic circulation [9,10]. Because the kidney is the main organ to metabolize citrulline
into arginine, high plasma citrulline levels may reflect kidney failure [11]. Most nutrients do
not contain relevant amounts of citrulline; however, there are about 7–14 mg citrulline per g
dry weight of watermelon and 1.9 mg per g fresh weight [12]. In order to know more about
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the physiological properties of citrulline we performed a structured literature research and
hereby summarize the signaling pathways of citrulline and the current evidence for its
clinical use.

Literature research has been performed in April 2021 with the terms “citrulline” AND
(“clinical trials” OR “trials”) mentioned in the abstract or title. The research databases
Pubmed, EMBASe, and Cochrane Library were accessed, and case reports and animal
studies have been excluded. Afterwards, doubles were erased, and the remaining literature
was clustered by T.R. and J.L.M. and summarized in the following review. Important animal
data that were repetitively cited in these studies retrieved above are also summarized in
this review.

The structured research found 389 articles, the same search on EMBASE explicitly
excluding case reports or animal studies found 301 hits, and the Cochrane Library retrieved
263 articles. A total of 184 records were at least reported twice and erased. However, 153
published articles referred to rheumatological diseases where citrullinated proteins are
mainly used as biological markers for disease severity. A total of 52 articles assess the
effect of citrulline supplementation on sportive executive functions. These studies show
small but positive effects of citrulline supplementation on high-intensity strength that
are summarized within the review by Trexler et al. [13]. A total of 44 articles deal with
the potential effect of citrulline on hypertension and its effect on vessel tone. However, a
meta-analysis published in 2018 analyzed the potential effect of citrulline supplementation
on blood pressure but has not found any significant effect [14]. In 19 articles, citrulline as a
marker for intestinal function or as a potential supplement in cases of intestinal diseases is
discussed. The remaining articles either just mentioned citrulline related to certain diseases
or assessed protein status and metabolics after citrulline supplementation in different
persons or were unrelated to the topic. The PRISMA flow diagram is displayed in Figure 1.
A summary of the included studies can be found in the Appendices A–D.
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Figure 1. Literature research adapted from [15], table licensed under creative commons.

2. Results
2.1. Citrulline Precursors, Metabolism and Inter-Organ Relationship

Glutamate represents a crossroad between AA and carbohydrate metabolism. It can
serve as a source of all known precursors for intestinal citrulline synthesis, which are
glutamine [15–17], arginine [18,19], proline [20], and ornithine [9,18,21]. Glutamine has
generally been considered as the main precursor of intestinal citrulline synthesis [10,17],
and glutamine supplementation was shown to increase intestinal citrulline and renal
arginine synthesis [17,19]. Glutamine depletion from the diet was correlated with decreased
plasma citrulline levels in humans [22]. However, some studies suggest glutamine to
be a nonspecific nitrogen (and carbon) donor [23]. This discrepancy results from the
kind of precursors used in metabolic studies. When oral 15N-glutamine was used as
a precursor, an enrichment in 15N-citrulline can be observed, and it is responsible for
approximately 5% of the nitrogen of circulating citrulline [24]. When 13C-glutamine was
used, a negligible (0.4%) incorporation into circulating citrulline was detected. Orally
administered U-13C-arginine or U-13C-proline accounted for 40% and 3.4% of the circulating
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citrulline, respectively [20,25]. Therefore, the relative contribution of each precursor to
plasma citrulline synthesis in humans remains controversial [26].

The citrulline production, metabolism, reabsorption, and turnover involve the in-
testines, the liver (for ureagenesis), and the kidneys, as displayed in Figure 2. Citrulline in
enterocytes, as in hepatocytes, is made from ornithine in the mitochondrial matrix by the
enzyme ornithine carbamyltransferase (OCT), one of the key enzymes in citrulline synthe-
sis and in the urea cycle [21]. In contrast to hepatocytes, where the synthesized citrulline is
compartmentalized as an intermediate of the urea cycle and does not contribute to systemic
(circulating) citrulline flux, enterocytes show only a low expression of argininosuccinate
synthetase (ASS) [27] and argininosuccinate lyase (ASL), the two enzymes that subsequen-
tially interconvert citrulline to arginine. Citrulline, following synthesis in small intestinal
enterocytes, is released across the basolateral membrane into portal circulation [10,21,28].
Unlike other AAs, citrulline is poorly taken up by hepatocytes, therefore bypassing liver
metabolism and entering systemic circulation at a level of 10.4–13.6 µmol per kg and
hour [21,29]. It has been shown that citrulline uptake into renal epithelial cells can occur
both apically from primary urine [30] as well as basolaterally from the capillary system [30].
After filtration (at the glomeruli in the kidney) most of the citrulline is reabsorbed by proxi-
mal tubule kidney cells [31]. The almost complete reabsorption of plasma AAs prevents
their urinary loss and helps to maintain homeostasis [32]. Proximal kidney tubule cells
hereby use a similar set of luminal and basolateral amino acid transporters (AATs) for
AA reabsorption from the primary urine as the small intestine for absorption of digested
dietary proteins [32]. In the proximal kidney tubule cells, citrulline is converted by ASS and
ASL into arginine, which is released into systemic circulation for use by peripheral tissues.
Citrulline delivery to the kidney (and therefore circulating plasma citrulline concentration)
represents the rate-limiting step of renal arginine synthesis [33]. Pharmacokinetic studies
with oral citrulline supplementation have shown a dose-dependent increase in plasma
citrulline, arginine, and ornithine levels [34]. Furthermore, plasma citrulline has been
shown to be augmented following oral citrulline supplementation [22].

This metabolic interaction between the small intestine and the kidneys is known as
the intestinal-renal axis and is believed to provide arginine supply to peripheral tissues,
which would otherwise be taken up by the liver and induce ureagenesis and hence AA
catabolism [35]. Citrulline is therefore seen as a form to avoid excessive hepatic metabolism
of AAs. This mechanism is mainly activated in conditions with low protein intake, as
in a post-absorptive (fasting) state [36]. However, in very preterm children, citrulline
might be converted into arginine directly by the gut in situ [37]. Citrulline may serve to
support protein anabolism in states of low protein intake [38,39]; this way, citrulline helps to
limit the plasmatic arginine decrease [40,41]. Moreover, endogenous arginine and citrulline
production is increased in the case of lowgrade inflammation with increased NO production
rates such as chronic obstructive lung disease [42]. The intestinal-renal axis underlies a
maturation process because kidneys produce arginine from citrulline in the presence of
ASS and ASL, which is differentially expressed depending on age [43]. Consequently,
plasma citrulline concentration is lower in neonates compared to adult individuals and
increases during development [21,44]. If the kidneys are dysfunctional, citrulline is directly
metabolized to arginine in the enterocytes, which show a high expression of ASS and ASL,
but low arginase expression [15,36].

2.2. Causes for High and Low Plasma Citrulline Levels

Normal plasma citrulline concentrations in healthy adults have been defined as
40 (±10) µmol/L [45,46]. Both elevations and reductions in citrulline levels can either
be inherited or acquired and are summarized in Table 1. Increased citrulline levels can be
caused by rare inborn errors of disease such as citrullinemia, which is caused by a deficiency
of ASS that leads to elevated levels of blood citrulline and ammonia, ending in hyper-
ammonemic coma and early death [47,48]. Likewise, the deficiency of ASL accumulates
argininosuccinic acid with deficient endogenous arginine production and high levels of am-
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monia and neurocognitive decline [49]. If ASS and ASL activity are reduced due to kidney
failure, citrulline elevations may be noticed, too [50]. The adult-onset type II citrullinemia is
caused by a defect in the mitochondrial aspartate-glutamate carrier [51]. Unlike the disease
conditions described above, a physiological increase in citrulline has been described after
improvement of the intestinal absorption capacity, such as after intestinal lengthening [52],
bariatric surgery [53], or after enterotrophic treatment with teduglutide (glucagon-like pep-
tide 2), which increases intestinal mucosal growth and trophic function [54,55]. In contrast,
lowered citrulline levels have been detected due to deficiencies in carbamoyl phosphate
synthetase 1 (CPS1) [56] and OTC [57] because they limit the turnover from ornithine to
citrulline in mitochondria. It seems that prematurity can potentially be associated with
lowered citrulline levels [58], but it is difficult to differentiate this lowering from lower
levels due to any inflammatory process. Any condition that is associated with a reduced
absorptive intestinal capacity has been associated with reduced citrulline levels and will be
discussed in detail (see below).

Figure 2. This image demonstrates how citrulline is synthesized, converted, and degraded. Abbreviations: ASL argini-
nosuccinate lyase, ASS argininosuccinate synthetase, GLNase glutaminase, OAT ornithine aminotransferase, OTC ornithine
trans-carbamylase, NOS nitric oxygen synthase.

Table 1. Main conditions that induce or decrease plasma citrulline concentration.

Elevated Citrulline Decreased Citrulline

• Rare metabolic deficiencies: argininosuccinate synthase
(ASS) [47,48]; argininosuccinic acid lyase (ASL) [49];
mitochondrial aspartate-glutamate carrier [51]

• Intestinal lengthening [54]
• Enterotrophic treatment with teduglutide (glucagon-like

peptide 2) [37]
• Bariatric surgery [36]
• Renal insufficiency [11]

• Rare metabolic deficiencies: carbamoyl phosphate
synthetase 1 (CPS1) [56];

• Ornithine transcarbamylase (OTC) 57
• Prematurity/before weaning [58]
• Mucositis due to chemo- or radiotherapy [59,60]
• Short bowel/gut syndrome (intestinal failure) [61]

• Villous atrophy: celiac disease, various intestinal
diseases [45]

• Graft rejection after small bowel transplantation [62]

• Intestinal dysfunction in intensive care conditions [63]
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The importance of intestinal nutrient absorption becomes evident in situations of in-
testinal failure. Intestinal failure reflects the reduction in functional small bowel below the
minimum necessary for digestion and absorption to maintain growth in children and/or
homeostasis in children and adults. The most common etiology is short bowel syndrome
(SBS), which describes a reduction in anatomical and functional bowel length [64–67].
Several diseases of the gastrointestinal tract, including necrotizing enterocolitis (NEC), in-
testinal atresia [68], midgut volvulus, and long-segment Hirschsprungs’ disease in children,
as well as mesenteric ischemia, Crohn’s disease, and irradiation in adults [65], may lead to
extensive damage and/or intestinal resections ending in SBS [69]. Patients with chronic
intestinal failure can be dependent on long-term parenteral nutrition with its inherent
morbidity and mortality, including (repeated) catheter-associated sepsis, cirrhosis, and
liver failure [69]. While many factors seem to play a role, the length of the remnant intestine
and the type of digestive anastomosis reflects a major determinant of patient survival and
nutritional prognosis [67,70,71].

Significant reduction in plasma citrulline concentration has been shown in various
pathologies of the digestive tract [46], including NEC [72], SBS [73–78], villous atrophy
including celiac disease [8], acute mucosal enteropathy of various etiology such as mu-
cositis after antineoplastic treatment, chemotherapy and/or radiotherapy [79,80], HIV
enteropathy [81] and acute enteric infection or graft rejection after short bowel transplanta-
tion [82,83]. Plasma citrulline can also be decreased in critically ill patients with intestinal
dysfunction in the intensive care unit [63,84]. Interestingly, early antibiotic use seems to
be associated with lower citrulline levels and lower performance and survival rates in
patients with non-small-cell lung cancer, which might possibly be associated with the
changed microbial profile [85]. In post-surgical conditions (SBS) the threshold, for the
parenteral nutrition autonomy is 20 mol/L, whereas, in medical conditions, the threshold is
10 mol/L [8,45,46,86] . Some of these studies also suggested a correlation between plasma
citrulline and intestinal adaptation after small bowel resection, the dependence of nutri-
tional support, and absorptive function of the intestine [73–76]. Finally, plasma citrulline
was elevated in animal models and pediatric patients following intestinal lengthening
using serial transverse enteroplasty (STEP) [87,88]. Consequently, citrulline is a potential
sensitive biomarker for small intestinal absorptive function [45,86,89]. It can be clinically
useful to monitor citrulline levels of patients before and after intestinal surgery and to
predict absorption even before enteral feeds are started [61].

Surgical treatments aim to elongate the small intestine in order to increase its ab-
sorptive capacity, especially in pediatric patients. Among different surgical treatment
options, longitudinal intestinal lengthening and tailoring (LILT), first described by Bianchi
in 1980 [90], and STEP are the most commonly used [87]. Unfortunately, both procedures
reconfigure the intestinal morphology (making a long thin tube out of a short thick tube)
without creating more luminal surface area. As the LILT procedure is technically very
demanding and more prone to complications, the outcomes following STEP seem to be
more favorable and can potentially be repeated [88].

2.3. Citrulline and Cancer

In nine children with AML, citrulline was significantly lower after chemotherapy
(27 plasma samples) and positively correlated with scores for mucosal integrity [91].
Hepatocellular carcinoma, which often lacks ASS, is commonly dependent on arginine
metabolism. Consequently, several studies assessed arginine-depleting strategies such as
treatment via pegylated arginine deiminase [92] or arginase [93]. Both treatment strategies
led to higher plasma levels of citrulline. There is a debate whether arginine depletion
might also be useful in other ASS deficient cancer types. In a study including 68 patients
with ASS1 deficient mesothelioma, Szlosarek demonstrated a prolonged progression-free
survival and a reciprocal increase in citrulline after treatment with pegylated arginine
deiminase [94]. When this medicament was used against glioma-, melanoma- or other
ASS1 deficient malignancies, a similar rise of citrulline has been noted [95,96]. Likewise,
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parenteral glutamine substitution has been associated with higher citrulline levels [97].
However, in melanoma patients, a decrease in citrulline levels after treatment with pegy-
lated interferone y was noted, which has been attributed to lower NO production [98].
The largest study of citrulline assessment in cancer patients involves 957 patients where
citrullinated histone, an accepted marker for neutrophil extracellular trap (NET) formation,
was shown to correlate with patient mortality [99].

2.4. Intestinal Amino Acid Transporters and Transport Mechanisms—Application to Citrulline

AAs are polar molecules and therefore rely on a variety of transport proteins to cross
the lipid bilayer of cell membranes (such as small intestinal enterocytes or proximal kidney
tubule cells). AATs are a heterogeneous group of transmembrane proteins that vary in terms
of substrate specificity, transport mechanism, transport kinetics, tissue-specific expression,
cellular distribution within a cell, and dependence on protein subunits [100]. In this review,
we will focus on apical membrane transporters involved in the uptake of L-citrulline
and especially its precursors. At the basolateral membrane, we will discuss transporters
involved in citrulline efflux from cells. More information about AAT in epithelial cells (not
restricted to citrulline and its precursors) can be found elsewhere [100–103].

2.5. Brush-Border Membrane Transporters for Citrulline Precursors in Small
Intestinal Enterocytes

Transport of almost all neutral AA across the apical enterocyte (and proximal tubule)
membrane is largely mediated by the transporter B0AT1 (SLC6A19), a broad specificity
sodium-dependent symporter using the sodium gradient created by the basolateral Na-
K-ATPase as driving force [104–106]. Heterodimeric AAT b0,+AT-rBAT (SLC7A9-SLC3A1)
functions as an obligatory AA exchanger providing transport (exchange) of cationic (such as
arginine) and neutral AAs [107]. b0,+AT-rBAT is composed of two subunits, a type II mem-
brane protein (heavy chain; b0,+AT) and a polytopic membrane protein (light chain; rBAT)
bound together via a disulfide bridge [108,109]. Other luminal membrane transporters
such as IMINO transporter SIT1 (SLC6A20) and the proton-dependent AA transporter
PAT1 (SLC36A1) provide transport of proline, glycine, and some other neutral AAs to some
extent [32]. Interestingly, both neutral AATs, B0AT1 and SIT1 (but not the other transporters
mentioned) depend on the presence of accessory proteins for being expressed in the luminal
cellular membrane, whereas the B0AT1 and SIT1 expression in kidney proximal tubule
cells’ brush-border membrane depends on co-expression of type I membrane protein col-
lectrin (TMEM27) [110], expression of the same transporters in small intestinal enterocytes
depends on the presence of its structural homolog ACE2 (as shown in ACE2 knock-out
mice) [32,111]; ACE2 (angiotensin-converting enzyme 2) is a membrane-bound monocar-
boxypeptidase that hydrolyzes luminal peptides and provides AAs for transmembrane
transport. Moreover, ACE2 has also been identified as a functional receptor for the SARS
coronavirus (SARS-CoV) in 2003 and more recently for SARS-CoV-2 [68,112–115]. Finally,
the proton-dependent peptide transporter PEPT1 (SLC15A1) transports citrulline precur-
sors (including glutamine, arginine, glutamate, and proline) as di- or tripeptides [116].
PEPT1 seems to be important to provide sufficient AA uptake when AATs become saturated
after high dietary protein intake [117].

2.6. Citrulline Transport—Luminal Membrane

As previously indicated, citrulline is a non-proteinogenic AA. Therefore, it is not
incorporated in human protein biosynthesis, nor does it appear in nutritional proteins in
substantial quantities, except essentially in watermelon [12]. Citrulline transport across
the luminal enterocyte membrane hence seems to be of minor importance. As a functional
characterization of AA transporters (i.e., testing substrate specificities of different AAs for
a certain transporter) mainly focused on proteinogenic AA, transport of citrulline has not
been shown yet and remains unknown (to the best of our knowledge). Based on transported
substrates and their structural similarity with citrulline, it has been suggested that citrulline
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transport across the luminal membrane of proximal tubule kidney cells (and small intestinal
enterocytes) is mediated by AATs B0AT1 (SLC6A19) and b0,+AT (SLC7A9) [31,118,119].

2.7. Amino Acid Transport—Basolateral Membrane

Basolateral AA efflux from small intestinal enterocytes is mediated by two differ-
ent types of transporters: uniporters and heterodimeric AA exchangers. To enable net
efflux of all proteinogenic AAs from small intestinal enterocytes, a functional interaction
between these different transport types is necessary. Equilibration of essential neutral
AAs along their concentration gradients between enterocytes and the extracellular space is
mediated by the two low-affinity uniporters for essential AAs, LAT4 (SLC43A2) and TAT1
(SLC16A10). LAT4 belongs to the sodium-independent large neutral AA transporter family
“system L” and acts as low-affinity facilitated diffusion protein for branched-chain AAs
(leucine, isoleucine, valine) [120], as well as for phenylalanine and methionine [121]. TAT1
transports aromatic AAs (tyrosine, tryptophan, phenylalanine) [122,123].

Neutral and cationic AAs are transported by the exchangers LAT1 (SLC7A5), LAT2
(SLC7A8), y+LAT1 (SLC7A7), and y+LAT2 (SLC7A6), with LAT2 and y+LAT1 being ex-
pressed primarily and at a much higher level in resorbing epithelia such as the small
intestine and the renal tubular cells [124,125]. The heavy chain 4F2 (SLC3A2) hereby binds
to different light chains in the basolateral membrane, including LAT1, LAT2, y+LAT1, and
y+LAT2 [108,109].

2.8. Citrulline Transport—Basolateral Membrane

As for B0AT1 and b0,+AT in the luminal membrane, transport of citrulline across the
basolateral membrane remains unknown from the literature, as mainly proteinogenic AAs
were tested as putative transporter candidates in the past (to the best of our knowledge). Re-
viewing transport specificities and structural similarities of proteinogenic AAs (to citrulline)
accepted by the named transporters makes LAT2 and y+LAT1 the most valuable candidates
for basolateral citrulline transport [109,119,126]. As these AA exchangers exchange AAs
in a 1:1 ratio, they rely on the co-expression of uniporters such as LAT4 and TAT1. As
LAT4 has a quite narrow substrate specificity [120,121], citrulline transport by LAT4 seems
unlikely. Nevertheless, citrulline levels in amniotic fluid and plasma were reduced in LAT4
knock-out mice, indicating LAT4 as a functional partner providing extracellular substrates
for LAT2/y+LAT1-mediated citrulline exchange [28,121].

2.9. Citrulline and Intensive Care Treatment

The review found 11 articles that referred to ICU treatment; however, most of them
deal with arginine or protein supplementation. In six studies, citrulline is men-tioned in
detail: in these patients. Three studies measured serum citrulline in these patients. Ware
et al. analyzed 135 patients with severe sepsis and found out that those 44 with ARDS at
ICU entrance had lower citrulline levels (mean 6, IQR 3.3–10.4 µmol/L) compared to those
without ARDS (mean 10.1 (6.2–16.6 µmol/L)). Piton analyzed the effect of 3 days of enteral
nutrition in patients with severe sepsis and found that those with enteral nutrition rose
from 12.2 to 18.7 µmol/L while those on parenteral nutrition who started with 13.3 had a
citrulline level of 15.3 µmol/L. In patients with severe sepsis, only low levels of citrulline
were found, but no significant difference between survivors and non-survivors. Groups
differed concerning their glutamine level, which was higher in those who died.

2.10. Citrulline in Intestinal Development

Preterm infants are often dependent on parenteral nutrition at least for one week
until their enteral feds are established. Bourdon found only weak correlations with post-
conceptional age, parenteral amino acid supply, and daily volume of enteral mixture
administered. They found that urinary citrulline cannot predict GI tolerance, but the major
determinant of urinary citrulline may be arginine produced by NO-synthase [37].
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2.11. Citrulline and Intestinal Microbiota

Citrulline changes are associated with microbial changes in the gut, for example, after
chemotherapy [127]. Gut bacteria are known to use AAs, including arginine, for both
protein synthesis and the production of arginine-derived metabolites such as polyamines
or nitric oxide, as reviewed by Baier et al. [128]. Interestingly, Indian women, especially
those with very light babies, had lower citrulline and arginine flux compared with Jamaican
or American women, which has been associated with microbial dysbiosis [129]. In addi-
tion, the bacterium Porphyromonas gingivalis, which is associated with the development of
periodontitis, is also able to convert arginine to citrulline with the aid of the peptidylargi-
nine deiminase, a process called “citrullination” [130]. This protein, which contains the
AA citrulline, is recognized by the anti-citrullinated protein antibodies, which are highly
specific for rheumatoid arthritis [131,132].

2.12. Clinical and Therapeutical Implications

With its diverse biological functions, citrulline suggests several therapeutic applica-
tions, as summarized in Table 2. As a precursor of arginine [126], it might be useful when
the arginine turnover is high such as during hemolysis or liver damage. As a precursor
of nitric oxide (NO), it might support the treatment of pulmonary hypertension [133].
Improved arginine recycling by citrulline [134] might improve T cell function [135].

Table 2. Physiological function and potential medical use of citrulline as suggested by animal experiments.

Physiological Function Potential Medical Use

• Precursor of arginine [136]
Counteracts arginine deficiency such as during
conditions of increased arginase activity
(hemolysis, liver damage) [137]
Protects against cerebral malaria [138]

• Precursor of nitric oxide (NO) [139]
Reduces blood pressures in hypertension [133]
Vasodilator for pulmonary hypertension
[140,141]
Improvement of erectile dysfunction [142]

• Improvement of arginine recycling [134] Improved T cell function [135]

• Increased protein synthesis [143] Counteracts sarcopenia state [6,144]

• Hydroxyl radical scavenger [145]
• Reduction in LPS-induced

inflammation [146]

improves the capacity of neuronal networks
during aging [147]
Attenuates fructose-induced non-alcoholic
fatty liver disease [148]

2.13. Safety of Oral Citrulline Supplementation

Whereas some studies indicate gastrointestinal side effects from oral L-arginine sup-
plementation, including nausea, abdominal cramping, and diarrhea [149], no side effects
were seen when oral citrulline was administered [22,116]. Indeed, no toxicity was iden-
tified when oral citrulline had been administered to infants and children in doses up to
3.8 g/m2 per day (in five doses of 1.9 g/m2 every 12 h) [116] and in doses up to 15 g in
healthy human adults [34]. Due to its limited degradation in the placenta [150], it seems
to be a promising supplement for pregnant women. Animal data suggest that it might
be beneficial for the prevention of intrauterine growth restriction [151,152]. In 24 obese
pregnant women, citrulline has been used at a dose of 3 g/day for 3 weeks, which has
been associated with improved vascular function and blood pressure without any side
effects [153].



Nutrients 2021, 13, 2794 10 of 29

Furthermore, long-term citrulline administration in patients with urea cycle defects
was without any side effects [154]. Finally, citrulline administration via the intravenous
route has been performed in infants and young children without any side effects (including
severe systemic hypotension) [155].

2.14. Oral AA Supplements to Induce Nitric Oxide-Mediated Vasodilation

Nitric oxide (NO) is a vasoactive gaseous signaling molecule that induces vasodilation
in both arterial and venous blood vessels [156]. In endothelial cells, NO is synthesized from
arginine by eNOS (endothelial-nitric oxide synthase). Reduced eNOS synthesis associated
with aging contributes to endothelial dysfunction. Decreased NO bioavailability impairs
blood flow and increases the risk of hypertension, atherosclerosis, insulin resistance, and
cardiovascular disease [133]. As arginine and its precursor citrulline are intermediates
in the urea cycle and substrates for nitric oxide production, their supplementation has
been investigated, at various doses, in the treatment of endothelial dysfunction and related
diseases (including arterial hypertension, pulmonary arterial hypertension, pressure sores,
erectile dysfunction, arteriosclerosis, some mitochondrial disorders, and necrotizing entero-
colitis) [116,157,158]. Arginine has a relatively high first-pass extraction in the intestine and
the liver (as arginases 1 and 2 metabolize arginine to ornithine and urea). Furthermore, oral
arginine supplementation may cause (dose-dependent) gastrointestinal distress (unlike
citrulline), resulting in higher activity and bioavailability of citrulline as compared to
arginine [133]. Different animal studies have shown a protective effect of dietary citrulline
supplementation by preserving eNOS synthesis and NO production against an atherogenic
diet [159,160]. Furthermore, oral citrulline shows antioxidant effects by reducing reactive
oxygen species (ROS) (NO-dependent and NO-independent), thereby preventing platelet
aggregation and pathological vascular remodeling [133]. By increasing endogenous argi-
nine and hence NO synthesis, citrulline was shown to reduce arterial stiffness and also
had anti-hypertensive effects: oral citrulline or watermelon extract supplementation for
a few weeks resulted in blood pressure reductions in pre-hypertensive and hypertensive
patients [161]. It is to note that a recent meta-analysis did not find any significant beneficial
effect of citrulline on arterial, systolic or diastolic, blood pressure [14], but this area needs
further rigorous clinical trials. In a randomized controlled trial of 40 children randomized
to five perioperative doses (1.9 g/m2/dose), oral citrulline or placebo found that either chil-
dren with naturally elevated citrulline or citrulline due to supplementation did not develop
postoperative pulmonary hypertension [162]. Moreover, in obese asthmatics with low or
normal fractional excretion of NO L-citrulline treatment (15 g/d for 2 weeks) improved
asthma control [163].

2.15. Oral L-Citrulline Supplementation to Improve Exercise Performance in Healthy Athletes

Oral citrulline supplementation has been shown to increase pulmonary oxygen uptake
and exercise performance in healthy human probands and athletes [7,164]. Nevertheless, re-
sults from different studies were not uniform as others could not show an effect on exercise
performance upon oral citrulline supplementation [165]. Furthermore, oral citrulline was
supplemented as a malate salt, possibly biasing obtained results. It hence remains unclear
if citrulline itself or the Krebs cycle intermediate malate improved exercise performance.

2.16. Citrulline Supplementation in Children

Citrulline supplementation has shown to be safe in children, the group of Mare-
alle and Cox used 0.1 mg/kg/day in ready to use supplementary food (RUSF) [166,167],
while Silvera Ruiz calculated 3 g/m2/day [154] for long term supplementation (4 months).
Citrulline can be a marker for intestinal function which is reduced in malnourished chil-
dren [168], in those with necrotizing enterocolitis [169] or in case of severe mucositis [170].
Citrulline may increase with gluten free diet in children with celiac disease [171]. However,
it is not a marker of gastrointestinal tolerance [37] and has shown to be higher in a group
of children formerly born preterm compared to their term counterparts [172], while shortly
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after delivery preterm citrulline levels have shown to be very low [173]. As it improves the
supply with NO, it has been used to lower pulmonary hypertension [162,174]. As in adults,
severely ill children have lower amounts of serum citrulline than healthy children [175]. A
more detailed overview is shown in Appendix A [162]

2.17. Citrulline Supplementation and Exercise Performance in Sarcopenic Elderly Patients

Sarcopenia refers classically to the loss of skeletal muscle mass, power, and strength
due to aging and/or immobility [176]. Sarcopenia may lead to disability and reduced qual-
ity of life and is considered to be part of frailty syndrome, which refers to the progressing
decline in health and function typically occurring in geriatric patients [177]. Moreover,
sarcopenia is possible in all chronic conditions such as inflammatory diseases, chronic liver
and intestinal diseases, undernutrition of various causes, and cancers [178]. In addition
to loss of muscle mass and strength, mitochondrial oxidative capacity likewise deterio-
rates as humans age, resulting in reduced exercise performance [179,180]. Oral citrulline
supplementation has shown anabolic effects on muscle protein synthesis in malnourished
animals [181] as well as higher systemic AA availability, but has no significant effect,
with an oral dose of 10 g per day during 3 weeks, on protein synthesis in sarcopenic
malnourished patients of more than 80 years [6]. However, in this last study, citrulline sup-
plementation was associated with a higher systemic AA availability, and in the subgroup of
women, citrulline supplementation increased lean mass and appendicular skeletal muscle
mass and decreased fat mass. Inconsistent findings were also found when citrulline effects
on protein synthesis in healthy humans were assessed [39,182]. In nine adult SBS patients
in suitable nutritional status, in the late phase of intestinal adaptation and with near-normal
baseline citrulline homeostasis, oral citrulline supplementation (0.18 g/kg/d during 7 days)
enhanced citrulline and arginine bioavailability but did not have any anabolic effect on
whole-body protein metabolism [183]. Whether oral citrulline would impact whole-body
protein anabolism in severely malnourished SBS patients in the early adaptive period, and
with baseline plasma citrulline below 20 µmol/L, is not known. In addition, the mechanism
of citrulline action on muscle protein synthesis (anabolic effect but not anti-catabolic) is
hereby not completely understood and may involve the mTOR (mammalian/mechanistic
target of rapamycin) pathway, iNOS, insulin secretion, and vasodilation effects [5,133]
and/or reallocating ATP consumption [143]. Major surgical procedures (tumor resections,
etc.) are frequently necessary for the elderly and often lead to a further decline in frailty in
these patients. As physical fitness, mood, and nutritional status have been shown to affect
outcome following major surgical procedures, especially in sarcopenic and/or frail patients,
not only the post- but also the presurgical period has been recognized as an important time
span to improve exercise tolerance, optimize the nutritional status, as well as psychological
wellbeing of the patients, which is referred to as multimodal prehabilitation [184,185]. Evi-
dence is currently not sufficient to recommend citrulline supplementation in frail patients,
but possible anabolic effects warrant further investigation.

2.18. Oral Citrulline Supplementation to Improve Non-Alcoholic Fatty Liver Disease

Another situation of the potential interest of citrulline, due to its anti-inflammatory
and antioxidant actions with reduction in hypertriglyceridemia and liver fat accumulation
induced by diet (mainly fructose), is metabolic liver disease (NAFLD, i.e., steatosis), but at
the present time, after animal preclinical data in rats with fructose-induced non-alcoholic
liver disease [146,148], there is only one clinical promising study with a low dose of 2 g/d
during 3 months [186].

3. Conclusions

Citrulline appears to be a suitable functional biomarker for severe intestinal disease,
no matter whether the intestinal dysfunction developed because of surgical, chemother-
apeutical, or radiological intervention or due to a medical condition. It can be used as a
marker for the intestinal function as a follow-up under adapted care such as nutritional
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care, surgery, or pharmacological treatments. Citrulline is a potential therapeutic tool,
which may be used as a dietary supplement and as a NO donor bypassing the metabolism
of arginine. The optimal dose, application route (either intravenous or oral), and timing for
citrulline supplementation need further investigation.
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Appendix A

Appendix Tables summarizing the data on citrulline.

Table A1. Publications concerning citrulline in children.

Study
First Author
and Year of
Publication

N and
Patient

Characteristics
Median

(Interquartile
Range, IQR)

Intervention Control Outcome

Citrulline
Level

Median
(IQR)

Bourdon,
2012 [37]

47 Preterm
infants
<1500 g
29 weeks
[27–29]

Measurement
of citrulline
and analysis
of potential
influencing

factors

None

Gastrointestinal
(GI) tolerance
(citrulline is
no predictor

of GI
tolerance in

this age
group)

Urinary: 24·7
(14·5–38·6)
µmol/mmol

creatinine

Cox, 2018
[167]

119 children
with sickle
cell disease

age 8–12,
Double blind

random
order

crossover
trial

Ready-to-use
supplemen-

tary food
(RUSF) with
supplementa-

tion of
arginine and

citrulline
(arginine, 0.2

g/kg/day;
citrulline, 0.1
g/kg/day)
4 months

RUSF (4
months) and

baseline
before sup-

plementation
washout

phases were
4 months

mean
height-for-
age Z-score

and
body-mass

index-for-age
Z-score for

both
interventions

Baseline
24.53

(23.41–25.70)
RUSF with

arginine and
citrulline

25.52
(22.91–28.41)
RUSF alone

21.59
(20.68–22.53)
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Table A1. Cont.

Study
First Author
and Year of
Publication

N and
Patient

Characteristics
Median

(Interquartile
Range, IQR)

Intervention Control Outcome

Citrulline
Level

Median
(IQR)

Gosselin,
2014 [170]

26 children at
mean age of
14.9 years

undergoing
hematopoi-

etic stem cell
therapy

Peak
mucositis
score 2–4

Peak
mucositis
score 0–1

Citrulline
was lower

when severe
mucositis

was present.
Graft versus
host disease

preferentially
occurred in

those
patients with

very low
citrulline

levels

Citrulline
with severe

mucositis 6.7
(95% CI
3.4–13.1)
µmol/L-
citrulline
without

severe oral
mucositis

11.9 (95% CI
5.8–24.4)
µmol/L,
p = 0.003

Ioannou,
2010 [171]

73 children
Age 7.6 ± 1.6

years

Citrulline
levels

according to
disease

group (celiac
disease with
or without

diet)

Citrulline
levels in
healthy
controls

Patients with
celiac disease:

24.5 ± 4.9
µmol/L

patients with
celiac disease

on
gluten-free
diet: 31.2 ±
6.7 µmol/L

patients with
gastrointesti-

nal
symptoms
but normal

mucosa: 30.3
± 4.7

µmol/L
healthy

controls: 32.4
± 7.5

µmol/L

Ioannou,
2012 [169]

41 preterm at
a gestational

age of
30.8 ± 2

Preterms
with

necrotizing
enterocolitis

(NEC)
(n = 17)

Control
preterms
(n = 24)

Citrulline
cut-off distin-

guishing
NEC patient
from controls

was 17.75
µmol/L

(sensitivity
76%,

specificity
87%)

At day 7:
16.85 ± 4.2

vs. 20.5 ± 4.5
µmol/L,
p < 0.05
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Table A1. Cont.

Study
First Author
and Year of
Publication

N and
Patient

Characteristics
Median

(Interquartile
Range, IQR)

Intervention Control Outcome

Citrulline
Level

Median
(IQR)

Lanyero,
2019 [168]

430 children
aged 21.6 ±
6.5 months

Severe acute
malnutrition

(n = 400)

Children
with normal

nutrition
(n = 30)

Citrulline
levels with

severe acute
malnutrition

were
significantly

lower
compared to

normal
nutrition

Children
with severe

acute
malnutrition
had citrulline
levels of 5.14

vs. 27.4
µmol/L in

children with
normal

nutrition

Marealle,
2018 [187]

29 children
with sickle

cell disease at
age 9–11

Ready-to-use
supplemen-

tary food
with arginine
and citrulline
(arginine, 0.2

g/kg/day;
ci-trulline, 0.1
g/kg/day for
10.7 weeks)

Ready-to-use
supplemen-

tary
food

(Arginine, 0.2
g/kg/day;

ci-trulline, 0.1
g/kg/day)

48.19 ± 62.66
versus 22.18

± 6.02
µmol/L,
p = 0.07

Posod, 2016
[172]

108 children
at 5–7 years

of age

Formerly
born preterm

(n = 79)

Formerly
born at term

(n = 29)

Amino acid
profiles

Elevated in
preterm
group

31.72 ± 6.8
versus 26.89

± 7.24
µmol/L,
p < 0.01

Raphael, 2011
[188]

10 children
30.3 ± 30.5
months of
age with

cisapride use
for gastroin-

testinal
rehabilitation

Observational
study - Amino acid

profiles

14.5 µmol/L
(10.5–31.3
µmol/L)
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Table A1. Cont.

Study
First Author
and Year of
Publication

N and
Patient

Characteristics
Median

(Interquartile
Range, IQR)

Intervention Control Outcome

Citrulline
Level

Median
(IQR)

Ruiz, 2020
[174]

15 children at
3–48 months
undergoing
reconstruc-
tive heart
surgery

Citrulline
supplementa-
tion 5 doses a
3 g/m2 each

Placebo ad-
ministration

Pulmonary
artery

pressure was
lower in

intervention
group

67 mmHg
IQR 63–73 vs.

81 mmHg
IQR 75–82, p

= 0.025,
treated group
vs. placebo

17.93 (10–27)
µmol/L

Smith, 2006
[162]

40 children
aged 8.5

(4–29)
months

5 doses of
oral citrulline
1.9 g/m2 per
dose (n = 20)

5 doses of
placebo(n = 20)

If the
citrulline
level was

higher than
37µmol/L,

no
pulmonary

hypertension
occurred

36 [28–48]
µmol/L vs.
26 (24–35)
µmol/L
p = 0.012

Steinbach,
2007 [173]

122 preterms
at a

gestational
age of 27
(25–28)

Observational
study with
cholestasis

(n = 13)

Without
cholestasis
(n = 109)

Amino acid
profiles

8.2 [6.6–9.7]
vs. 11.4

(7.7–14.3)
µmol/L,
p = 0.021

Appendix B

Table A2. Publications dealing with cancer and citrulline.

First
Author

and Year
n Characteristics Intervention Control Outcome Citrulline

Level

Blijlevens,
2004 [80] 32

Patients
admitted to
receive an

HLA-matched
T-cell-depleted

sibling graft,
provided they

were between 18
and 65 years of

age

Aminomix
in which a
portion of
the amino
acids were
replaced

by 200 mL
glutamine-
dipeptide,
L-alanyl-L-
glutamine

(Dipep-
tiven,

Fresenius-
Kabi)

Standard
Aminomix
(Fresenius-

Kabi,
Nederland

BV‘s-
Hertogen-
bosch, The

Nether-
lands)

parenter-
ally

Significant
differences

in
citrulline,
albumin,
and CRP
apparent
on SCT
day +21
favoring

glutamine-
dipeptide

supple-
mentation

Citrulline
was 18 ± 6
µmol/L
with the

glutamine-
dipeptide
and 12 ± 3
µmol/L
with the
placebo

(p = 0.03)
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Table A2. Cont.

First
Author

and Year
n Characteristics Intervention Control Outcome Citrulline

Level

Fekkes,
2007 [98] 40

Patients
participating in

a trial of the
European

Organization for
Research and
Treatment of

Cancer (EORTC
18991),

evaluating the
efficacy and
toxicity of

PEG-IFN-a-2b
versus controls

in high-risk
melanoma

patients

8 weeks
induction

with 6
mg/kg/wk

s.c.,
followed
by a five

years main-
tenance
with 3

mg/kg/wk
s.c

Observation
only

The con-
centrations

of
citrulline
decreased

signifi-
cantly at
all time

points in
the

patients
treated

with
PEG-IFN-a
during the

whole
study

period.
Both

compared
to baseline
and to non-

treated
controls.

No
changes in
citrulline

levels were
observed

in the non-
treated
controls

Treatment
group

Baseline:
26.5 ± 6.0
µmol/L

Change in
% after 3
Months:
−19.4
µmol/L

(−31.0/−5.8)
(p < 0.05)
Control
group

Baseline:
27.4 ± 7.3
µmol/L

Change in
% after 3
Months:

5.7
µmol/L

(−8.6/22.4)
(95%

confidence
interval)

Grilz, 2019
[99] 957

Adult patients
(aged ≥ 18

years) with a
newly

diagnosed
cancer or a

progression of
disease after
complete or

partial remission

/ /

Univariable
association

between
two

biomark-
ers of NET
formation,
H3Cit and

cfDNA,
and the
risk of

mortality
in patients

with
cancer

Only data
on citrulli-

nated
histone
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Table A2. Cont.

First
Author

and Year
n Characteristics Intervention Control Outcome Citrulline

Level

Kim, 2016
[189] 41

Patients who
received
intensity-

modulated
radiotherapy

(IMRT)

Whole
pelvic

(WP) IMRT

Small field
(SF) IMRT

Plasma
citrulline
levels did

not show a
serial

decrease
by radio-
therapy
volume

difference
(WP

versus SF)
and were

not
relevant to

the
irradiated

doses

WP
Baseline:

30.9 ± 13.6
µmol/L

At 30 Gy:
38.2 ± 21.8
µmol/L

At 60 Gy:
31.6 ± 16.0
µmol/L
p-Value:

0.95
SF

Baseline:
30.1 ± 10.5
µmol/L

At 30 Gy:
24.1 ± 10.5
µmol/L

At 60 Gy:
34.4 ± 16.7
µmol/L
p-Value:

0.66

Patiroglu,
2015 [190] 27

Patients aged
4–17 years
receiving

chemotherapy
regimens with

strong
mucotoxic

effects

Second
chemother-
apy course

given
standard
oral care

(SOC) plus
Ankaferd

Blood
Stopper
(ABS)

First
chemother-
apy course
given SOC

alone

Stages of
oral

mucositis
were
found

lower in
the second
chemother-
apy course
given SOC
plus ABS

when
compared

to first
chemother-
apy course
given SOC
alone (p =

0.007)

Control:
44.08

(before) to
23.99
(after)
µmol/L

(p < 0.001)
Intervention:

38.67
(before) to

26.78
(after)
µmol/L



Nutrients 2021, 13, 2794 18 of 29

Table A2. Cont.

First
Author

and Year
n Characteristics Intervention Control Outcome Citrulline

Level

Vidal-
Casarieg

[191]
69

Patients who
needed RT
because of
pelvic or

abdominal
malignancies

Glutamine
(30 g/d)

Placebo
(casein, 30

g/d)

Final
citrulline

levels were
similar

between
groups.

Citrulline
concentra-
tion was
reduced

during RT
with

placebo
but

remained
un-

changed
with

glutamine

Glutamine
group:
26.31

(10.29)
µmol/L
Placebo
group:
27.69

(12.31)
µmol/L
p = 0.639

Vliet, 2009
[91] 9

Children newly
diagnosed with
acute myeloid

leucemia

Patients
were

monitored
for the

presence of
oral

(mucosal
barrier
injury)

MBI using
two

different
clinical

indices for
MBI: the

NCI symp-
tomatic
scale for
oral MBI
and the

daily
mouth
score

(DMS)

/

A
significant
decrease in

plasma
citrulline
was seen

in the post-
samples

compared
to the pre-
samples in

all
chemother-

apy
cycles

1.0–29.4
µmol/L
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Appendix C

Table A3. Publications dealing with citrulline in patients needing intensive care treatment.

First Author
and Year of
Publication

n Characteristics Intervention Control Outcome

Citrulline
Level

in Mmol/Liter
[Interquartile

Range]

de Betue, 2011
[192] 51

Patients from
the

Medicosurgical
Department of
Intensive Care,

Erasme
University

Hospital, who
required

artificial enteral
Nutrition

support and
were over 18
years of age

Formula
enriched with
free arginine

(6.3 g/L)

Isocaloric and
isonitrogenous
control solution

The time course of the
plasma citrulline

concentration was
unaffected by the type of

enteral solution
administered

/

de Betue, 2013
[175] 8

Critically ill
infants with
respiratory

failure because
of viral

bronchiolitis

Protein-energy–
enriched
enteral

formulas

Standard infant
formula

(S-formula)

The intake of a
PE-formula in critically
ill infants resulted in an

increased arginine
appearance and NO
synthesis, whereas

citrulline production and
plasma arginine con-

centrations were
unaffected

/

Gills, 2021 [193] 28 Recreationally
active males

12 g dextrose +
8 g Citrulline-

malate
(CM)

Placebo
(12 g dextrose)

Acute CM
supplementation in
recreationally active
males provides no

ergogenic benefit in
aerobic cycling

performance followed by
an anaerobic cycling test.

/

Piton, 2011
[194] 165

Ventilated
adults with

shock

Enteral
nutrition

Parenteral
nutrition

Plasma citrulline
concentration was higher

after 3 days of enteral
nutrition than after 3

days of parenteral
nutrition. This result

raises the question of the
possibility that enteral
nutrition is associated

with more rapid
restoration of enterocyte

mass than parenteral
nutrition

18.7 [13.4; 29.2]
enteral

nutrition
15.3 [9.8; 21.2]
in parenteral

nutrition
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Table A3. Cont.

First Author
and Year of
Publication

n Characteristics Intervention Control Outcome

Citrulline
Level

in Mmol/Liter
[Interquartile

Range]

Viana, 2020
[195] 37

Critically ill
patients (ITT),
on mechanical

ventilation,
with full

treatment and a
functional

gastrointestinal
tract

Enteral hydrox-
ymethylbu-

tyrate (HMB)
twice 1.5 g/day

Placebo

There was no significant
difference in production
of essential amino acids

and branched-chain
amino acids over time (p
= 0.1148 and p = 0.1758,

respectively) and also no
interaction between

groups (p = 0.2163 and p
= 0.2144, respectively.)

However, the HMB
group had significant

higher conversions over
time of arginine to

citrulline (nitric oxide
synthesis: p = 0.0093)

and glutamate to
glutamine (p = 0.038). In
addition, the HMB group

showed over time a
higher citrulline

production (0.0026)

/

Ware, 2013
[196] 135 Patients with

severe sepsis

Analysis of
potential

association
between

citrulline levels
and end organ

damage

/

Plasma citrulline levels
were below normal in all

patients and were
significantly lower in

acute respiratory distress
syndrome (ARDS)

compared to the no
ARDS group. The rate of

ARDS was 50% in the
lowest citrulline quartile
compared to 15% in the

highest citrulline quartile
(p = 0.002). In

multivariable analyses,
citrulline levels were

associated with ARDS
even after adjustment for

covariates, including
severity of illness

Median 9.2
(5.2–14.4)
ARDS: 6
(3.3–10.4)
No ARDS

10.1(6.2–16.6)
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Appendix D

Table A4. Citrulline in patients with gastrointestinal diseases.

Study
First Author
and Year of
Publication

N
and Patient
Characteris-

tics
Median (In-
terquartile

Range, IQR)

Intervention Control Outcome

Citrulline
Level

Median
(IQR)

Jirka, 2019
[197]

9 adults with
short bowel
syndrome

7 day oral
citrulline sup-
plementation
0.18 g/kg/d

7-day
placebo sup-
plementation

Increased
citrulline

level and no
effect on
protein

metabolism

25 ± 9 vs.
384 ± 95
µmol/L

Van der
Velden, 2013

[59]

106 patients
with stem
cell trans-
plantation

Time course
measure-
ment of

citrulline and
albumin with

different
stem cell

transplant
conditioning

regimens

Reduced
citrulline
may be a
suitable

marker to
monitor GI
mucositis

and precedes
the disease

course

Below 10
µmol/L was

associated
with severe
GI mucositis

Picot, 2009
[198]

26 patients
with small

bowel
disruption
and double
enterostomy

Assessment
before chyme

reinfusion

Assessment
after start of

chyme
reinfusion 30
± 33 days

(range 8–186
days)

Assessment
citrulline

level in each
patient

17.0 ± 10.0
vs. 31.0 ±

12.0 µmol/L;
p = 0.0001

Luo, 2007
[77] 24 patients

Growth
hormone
treatment
(n = 15)

Placebo
treatment

(n = 9)

Correlation
of 0.47,

p = 0.028
between

bowel length
and citrulline

levels

24 ± 2
µmol/L

Hyšpler, 2015
[199]

117 patients
undergoing
colorectal
surgery

Serial mea-
surements of

citrulline

24.9
(19.1–32.0)
µmol/L on
day 4 after
surgery, a

value below
20 µmol/L
achieved a
sensitivity

and
specificity of
75% and 76%

in the
diagnosis of
prolonged
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