Effects of Calorie Restricted Diet on Oxidative/Antioxidative Status Biomarkers and Serum Fibroblast Growth Factor 21 Levels in Nonalcoholic Fatty Liver Disease Patients: A Randomized, Controlled Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Study Design
2.3. Study Measurements
2.4. Statistical Analyses
3. Results
3.1. General Characteristics of the Participants
3.2. Dietary Intakes
3.3. Biochemical Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Younossi, Z.; Tacke, F.; Arrese, M.; Sharma, B.C.; Mostafa, I.; Bugianesi, E.; Wong, V.W.-S.; Yilmaz, Y.; George, J.; Fan, J.; et al. Global Perspectives on Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis. Hepatology 2019, 69, 2672–2682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araújo, A.R.; Rosso, N.; Bedogni, G.; Tiribelli, C.; Bellentani, S. Global epidemiology of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis: What we need in the future. Liver Int. 2018, 38, 47–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masarone, M.; Rosato, V.; Dallio, M.; Gravina, A.G.; Aglitti, A.; Loguercio, C.; Federico, A.; Persico, M. Role of oxidative stress in pathophysiology of nonalcoholic fatty liver disease. Oxidative Med. Cell. Longev. 2018, 2018, 9547613. [Google Scholar] [CrossRef] [PubMed]
- Spahis, S.; Delvin, E.; Borys, J.-M.; Levy, E. Oxidative stress as a critical factor in nonalcoholic fatty liver disease pathogenesis. Antioxid. Redox Signal. 2017, 26, 519–541. [Google Scholar] [CrossRef]
- Koroglu, E.; Canbakan, B.; Atay, K.; Hatemi, I.; Tuncer, M.; Dobrucali, A.; Sonsuz, A.; Gultepe, I.; Senturk, H. Role of oxidative stress and insulin resistance in disease severity of non-alcoholic fatty liver disease. Turk. J. Gastroenterol. 2016, 27, 361–366. [Google Scholar] [CrossRef]
- Himbert, C.; Thompson, H.; Ulrich, C.M. Effects of Intentional Weight Loss on Markers of Oxidative Stress, DNA Repair and Telomere Length-a Systematic Review. Obes. Facts 2017, 10, 648–665. [Google Scholar] [CrossRef]
- Ore, A.; Akinloye, O.A. Oxidative stress and antioxidant biomarkers in clinical and experimental models of non-alcoholic fatty liver disease. Medicina 2019, 55, 26. [Google Scholar] [CrossRef] [Green Version]
- Al-Busafi, S.A.; Bhat, M.; Wong, P.; Ghali, P.; Deschenes, M. Antioxidant therapy in nonalcoholic steatohepatitis. Hepat. Res. Treat. 2012, 2012, 947575. [Google Scholar] [CrossRef] [Green Version]
- Sumida, Y.; Yoneda, M. Current and future pharmacological therapies for NAFLD/NASH. J. Gastroenterol. 2018, 53, 362–376. [Google Scholar] [CrossRef] [Green Version]
- Zelber-Sagi, S.; Godos, J.; Salomone, F. Lifestyle changes for the treatment of nonalcoholic fatty liver disease: A review of observational studies and intervention trials. Ther. Adv. Gastroenterol. 2016, 9, 392–407. [Google Scholar] [CrossRef] [Green Version]
- Perdomo, C.M.; Frühbeck, G.; Escalada, J. Impact of nutritional changes on nonalcoholic fatty liver disease. Nutrients 2019, 11, 677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kenneally, S.; Sier, J.H.; Moore, J.B. Efficacy of dietary and physical activity intervention in non-alcoholic fatty liver disease: A systematic review. BMJ Open Gastroenterol. 2017, 4, e000139. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Sámano, M.Á.; Grajales-Gómez, M.; Zuarth-Vázquez, J.M.; Navarro-Flores, M.F.; Martínez-Saavedra, M.; Juárez-León, Ó.A.; Morales-García, M.G.; Enríquez-Estrada, V.M.; Gómez-Pérez, F.J.; Cuevas-Ramos, D. Fibroblast growth factor 21 and its novel association with oxidative stress. Redox Biol. 2017, 11, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xu, Y.; Hu, Y.; Wang, G. The role of fibroblast growth factor 21 in the pathogenesis of non-alcoholic fatty liver disease and implications for therapy. Metabolism 2015, 64, 380–390. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, Y.; Berglund, E.D.; Coate, K.C.; He, T.T.; Katafuchi, T.; Xiao, G.; Potthoff, M.J.; Wei, W.; Wan, Y.; et al. The starvation hormone, fibroblast growth factor-21, extends lifespan in mice. Elife 2012, 1, e00065. [Google Scholar] [CrossRef]
- Rusli, F.; Deelen, J.; Andriyani, E.; Boekschoten, M.V.; Lute, C.; Akker, E.B.V.D.; Müller, M.; Beekman, M.; Steegenga, W.T. Fibroblast growth factor 21 reflects liver fat accumulation and dysregulation of signalling pathways in the liver of C57BL/6J mice. Sci. Rep. 2016, 6, 30484. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, J.A.; Meers, G.M.; Laughlin, M.H.; Ibdah, J.A.; Thyfault, J.P.; Rector, R.S. Modulating fibroblast growth factor 21 in hyperphagic OLETF rats with daily exercise and caloric restriction. Appl. Physiol. Nutr. Metab. 2012, 37, 1054–1062. [Google Scholar] [CrossRef] [Green Version]
- Hall, A.R.; Green, A.C.; Luong, T.V.; Burroughs, A.K.; Wyatt, J.; Dhillon, A.P. The use of guideline images to improve histological estimation of hepatic steatosis. Liver International. 2014, 34, 1414–1427. [Google Scholar] [CrossRef]
- Bilici, M.; Efe, H.; Köroğlu, M.A.; Uydu, H.A.; Bekaroğlu, M.; Değer, O. Antioxidative enzyme activities and lipid peroxidation in major depression: Alterations by antidepressant treatments. J. Affect. Disord. 2001, 64, 43–51. [Google Scholar] [CrossRef]
- Asghari, S.; Asghari-Jafarabadi, M.; Somi, M.-H.; Ghavami, S.-M.; Rafraf, M. Comparison of calorie-restricted diet and resveratrol supplementation on anthropometric indices, metabolic parameters, and serum sirtuin-1 levels in patients with nonalcoholic fatty liver disease: A randomized controlled clinical trial. J. Am. Coll. Nutr. 2018, 37, 223–233. [Google Scholar] [CrossRef]
- Ghaemi, A.; Taleban, F.A.; Hekmatdoost, A.; Rafiei, A.; Hosseini, V.; Amiri, Z.; Homayounfar, R.; Fakheri, H. How much weight loss is effective on nonalcoholic fatty liver disease? Hepat. Mon. 2013, 13, e15227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arefhosseini, S.R.; Ebrahimi-Mameghani, M.; Naeimi, A.F.; Khoshbaten, M.; Rashid, J. Lifestyle modification through dietary intervention: Health promotion of patients with non-alcoholic fatty liver disease. Health Promot. Perspect. 2011, 1, 147. [Google Scholar] [PubMed]
- Yamamoto, M.; Iwasa, M.; Iwata, K.; Kaito, M.; Sugimoto, R.; Urawa, N.; Mifuji, R.; Konishi, M.; Kobayashi, Y.; Adachi, Y. Restriction of dietary calories, fat and iron improves non-alcoholic fatty liver disease. J. Gastroenterol. Hepatol. 2007, 22, 498–503. [Google Scholar] [CrossRef] [PubMed]
- Thomas, E.L.; Brynes, A.E.; Hamilton, G.; Patel, N.; Spong, A.; Goldin, R.; Frost, G.; Bell, J.D.; Taylor-Robinson, S.D. Effect of nutritional counselling on hepatic, muscle and adipose tissue fat content and distribution in non-alcoholic fatty liver disease. World J. Gastroenterol. 2006, 12, 5813. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.A.; Greenson, J.K.; Chao, C.; Anderson, L.; Peterman, D.; Jacobson, J.; Emick, D.; Lok, A.S.; Conjeevaram, H.S. One-year intense nutritional counseling results in histological improvement in patients with nonalcoholic steatohepatitis: A pilot study. Am. J. Gastroenterol. 2005, 100, 1072. [Google Scholar] [CrossRef]
- Ueno, T.; Sugawara, H.; Sujaku, K.; Hashimoto, O.; Tsuji, R.; Tamaki, S.; Torimura, T.; Inuzuka, S.; Sata, M.; Tanikawa, K. Therapeutic effects of restricted diet and exercise in obese patients with fatty liver. J. Hepatol. 1997, 27, 103–107. [Google Scholar] [CrossRef]
- Tiikkainen, M.; Bergholm, R.; Vehkavaara, S.; Rissanen, A.; Häkkinen, A.-M.; Tamminen, M.; Teramo, K.; Yki-Järvinen, H. Effects of identical weight loss on body composition and features of insulin resistance in obese women with high and low liver fat content. Diabetes 2003, 52, 701–707. [Google Scholar] [CrossRef] [Green Version]
- Romero-Gómez, M.; Zelber-Sagi, S.; Trenell, M. Treatment of NAFLD with diet, physical activity and exercise. J. Hepatol. 2017, 67, 829–846. [Google Scholar] [CrossRef] [Green Version]
- Koutoukidis, D.A.; Astbury, N.M.; Tudor, K.E.; Morris, E.; Henry, J.A.; Noreik, M.; Jebb, S.A.; Aveyard, P. Association of weight loss interventions with changes in biomarkers of nonalcoholic fatty liver disease: A systematic review and meta-analysis. JAMA Intern. Med. 2019, 179, 1262–1271. [Google Scholar] [CrossRef] [Green Version]
- Katsagoni, C.N.; Georgoulis, M.; Papatheodoridis, G.V.; Panagiotakos, D.B.; Kontogianni, M.D. Effects of lifestyle interventions on clinical characteristics of patients with non-alcoholic fatty liver disease: A meta-analysis. Metabolism 2017, 68, 119–132. [Google Scholar] [CrossRef] [Green Version]
- Katsagoni, C.N.; Papatheodoridis, G.V.; Ioannidou, P.; Deutsch, M.; Alexopoulou, A.; Papadopoulos, N.; Papageorgiou, M.-V.; Fragopoulou, E.; Kontogianni, M. Improvements in clinical characteristics of patients with non-alcoholic fatty liver disease, after an intervention based on the Mediterranean lifestyle: A randomised controlled clinical trial. Br. J. Nutr. 2018, 120, 164–175. [Google Scholar] [CrossRef] [PubMed]
- Yesilova, Z.; Yaman, H.; Oktenli, C.; Ozcan, A.; Uygun, A.; Cakir, E.; Sanisoglu, S.Y.; Erdil, A.; Ates, Y.; Aslan, M.; et al. Systemic markers of lipid peroxidation and antioxidants in patients with nonalcoholic fatty liver disease. Am. J. Gastroenterol. 2005, 100, 850. [Google Scholar] [CrossRef] [PubMed]
- Mendes, I.K.S.; Matsuura, C.; Aguila, M.B.; Daleprane, J.B.; Martins, M.A.; Mury, W.V.; Brunini, T.M.C. Weight loss enhances hepatic antioxidant status in a NAFLD model induced by high-fat diet. Appl. Physiol. Nutr. Metab. 2017, 43, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Asghari, S.; Rafraf, M.; Farzin, L.; Asghari-Jafarabadi, M.; Ghavami, S.-M.; Somi, M.-H. Effects of pharmacologic dose of resveratrol supplementation on oxidative/antioxidative status biomarkers in nonalcoholic fatty liver disease patients: A randomized, double-blind, placebo-controlled trial. Adv. Pharm. Bull. 2018, 8, 307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peluso, I.; Raguzzini, A. Salivary and urinary total antioxidant capacity as biomarkers of oxidative stress in humans. Pathol. Res. Int. 2016, 2016, 5480267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suresh, D.; Annam, V.; Pratibha, K.; Prasad, B.M. Total antioxidant capacity–a novel early bio-chemical marker of oxidative stress in HIV infected individuals. J. Biomed. Sci. 2009, 16, 61. [Google Scholar] [CrossRef] [Green Version]
- Ighodaro, O.M.; Akinloye, O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med. 2018, 54, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Ramezani, F.; Keshavarz, A.; Jalali, M.; Eshraghian, M.; Chameri, M. The effect of weight loss on plasma MDA, lipids profile and ApoA and ApoB in obese woman. ARYA Atheroscler. 2010, 4, 2. [Google Scholar]
- El-Kader, S.M.A.; Al-Dahr, M.H.S. Impact of weight loss on oxidative stress and inflammatory cytokines in obese type 2 diabetic patients. Afr. Health Sci. 2016, 16, 725–733. [Google Scholar] [CrossRef] [Green Version]
- Yesilbursa, D.; Serdar, Z.; Serdar, A.; Sarac, M.; Coskun, S.; Jale, C. Lipid peroxides in obese patients and effects of weight loss with orlistat on lipid peroxides levels. Int. J. Obes. 2005, 29, 142. [Google Scholar] [CrossRef] [Green Version]
- Ozcelik, O.; Ozkan, Y.; Karatas, F.; Kelestimur, H. Exercise training as an adjunct to orlistat therapy reduces oxidative stress in obese subjects. Tohoku J. Exp. Med. 2005, 206, 313–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meydani, M.; Das, S.; Band, M.; Epstein, S.; Roberts, S. The effect of caloric restriction and glycemic load on measures of oxidative stress and antioxidants in humans: Results from the CALERIE Trial of Human Caloric Restriction. J. Nutr. Health Aging 2011, 15, 456–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchowski, M.S.; Hongu, N.; Acra, S.; Wang, L.; Warolin, J.; Roberts, L.J., II. Effect of modest caloric restriction on oxidative stress in women, a randomized trial. PLoS ONE 2012, 7, e47079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, I.-J.; Croft, K.; Mori, T.A.; Falck, J.; Beilin, L.J.; Puddey, I.B.; Barden, A.E. 20-HETE and F2-isoprostanes in the metabolic syndrome: The effect of weight reduction. Free Radic. Biol. Med. 2009, 46, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Fisher, F.M.; Maratos-Flier, E. Understanding the physiology of FGF21. Annu. Rev. Physiol. 2016, 78, 223–241. [Google Scholar] [CrossRef] [Green Version]
- Maratos-Flier, E. Fatty liver and FGF21 physiology. Exp. Cell Res. 2017, 360, 2–5. [Google Scholar] [CrossRef]
- Ge, X.; Wang, Y.; Lam, K.S.; Xu, A. Metabolic actions of FGF21: Molecular mechanisms and therapeutic implications. Acta Pharm. Sin. B 2012, 2, 350–357. [Google Scholar] [CrossRef] [Green Version]
- Monserrat-Mesquida, M.; Quetglas-Llabrés, M.; Abbate, M.; Montemayor, S.; Mascaró, C.M.; Casares, M.; Tejada, S.; Abete, I.; Zulet, M.A.; Tur, J.A.; et al. Oxidative stress and pro-inflammatory status in patients with non-alcoholic fatty liver disease. Antioxidants. 2020, 9, 759. [Google Scholar] [CrossRef]
- Crujeiras, A.; Gomez-Arbelaez, D.; Zulet, M.; Carreira, M.; Sajoux, I.; de Luis, D.; Castro, A.I.; Baltar, J.; Baamonde, I.; Sueiro, A.; et al. Plasma FGF21 levels in obese patients undergoing energy-restricted diets or bariatric surgery: A marker of metabolic stress? Int. J. Obes. 2017, 41, 1570. [Google Scholar] [CrossRef]
- Tezze, C.; Romanello, V.; Sandri, M. FGF21 as Modulator of Metabolism in Health and Disease. Front. Physiol. 2019, 10, 419. [Google Scholar] [CrossRef]
Variables | Control (n = 30) | Calorie-Restricted (CR) (n = 30) | p-Value |
---|---|---|---|
Age (year) | 39.27 (5.51) | 40.08 (7.08) | 0.90 † |
Sex | 0.83 ‡ | ||
Male | 19 (63%) | 20 (67%) | |
Female | 11 (37%) | 10 (33%) | |
Weight (kg) | 86.61 (10.70) | 89.62 (14.20) | 0.10 † |
BMI (kg/m2) | 30.41 (3.39) | 31.32 (3.31) | 0.21 † |
Waist circumference (cm) | 101.88 (8.18) | 103.93 (10.30) | 0.12 † |
Energy intake (kcal) | 2082.6 (246.2) | 2182.2 (268.7) | 0.43 † |
Carbohydrate intake (g) | 321.4 (47.8) | 339.5 (50.9) | 0.42 † |
Protein intake (g) | 83.2 (5.7) | 84.6 (6.2) | 0.55 † |
Total fat intake (g) | 52.8 (3.9) | 53.9 (4.6) | 0.51 † |
Physical activity level | 0.63 § | ||
Light | 15 (50%) | 15 (50%) | |
Moderate | 15 (50%) | 13 (43%) | |
Vigorous | 0 (0%) | 2 (7%) |
Variables | Control (n = 30) | Calorie-Restricted (CR) (n = 30) | p-Value | |
---|---|---|---|---|
Vitamin E (mg/day) | Before | 10.53 (4.32) | 9.87 (4.45) | 0.46 † |
After | 8.96 (6.56) | 7.59 (3.56) | 0.12 ‡ | |
p-value § | 0.28 | 0.09 | ||
Vitamin C (mg/day) | Before | 86.42 (38.69) | 83.43 (39.67) | 0.83 † |
After | 90.33 (42.76) | 93.35 (46.45) | 0.26 ‡ | |
p-value § | 0.71 | 0.12 | ||
β-Carotene (µg/day) | Before | 566.17 (231.45) | 576.65 (252.25) | 0.88 † |
After | 623.14 (244.20) | 651.12 (263.14) | 0.61 ‡ | |
p-value § | 0.36 | 0.13 | ||
Zinc (mg/day) | Before | 8.09 (3.03) | 7.95 (3.24) | 0.61 † |
After | 8.28 (3.13) | 7.37 (3.38) | 0.14 ‡ | |
p-value § | 0.81 | 0.26 | ||
Selenium (µg/day) | Before | 67.33 (28.50) | 68.54 (22.75) | 0.75 † |
After | 67.87 (27.07) | 69.86 (29.71) | 0.72 ‡ | |
p-value § | 0.94 | 0.53 |
Variables | Control (n = 30) | Calorie-Restricted (CR) (n = 30) | p-Value | |
---|---|---|---|---|
ALT (IU/L) | Before | 33.71 (20.36) | 43.58 (26.38) | 0.30 † |
After | 40.94 (28.81) | 39.25 (24.21) | 0.01 ‡ | |
MD (95%CI), p-value § | 7.23 (−0.82 to 15.28), 0.07 | −4.33 (−8.43 to −0.23), 0.04 | ||
AST (IU/L) | Before | 29.85 (9.80) | 33.66 (12.62) | 0.45 † |
After | 34.27 (21.06) | 29.58 (12.57) | 0.02 ‡ | |
MD (95%CI), p-value § | 4.42 (−1.95 to 10.79), 0.16 | −4.08 (−8.04 to −0.12), 0.04 | ||
MDA (nmol/mL) | Before | 1.70 (0.41) | 1.77 (0.39) | 0.82 † |
After | 1.67 (0.54) | 1.70 (0.42) | 0.85 ‡ | |
MD (95%CI), p-value § | −0.03 (−0.30, 0.24), 0.80 | −0.07 (−0.29, 0.15), 0.51 | ||
TAC (mmol/L) | Before | 1.70 (0.49) | 2.06 (0.36) | 0.008 † |
After | 1.90 (0.42) | 1.97 (0.34) | 0.22 ‡ | |
MD (95%CI), p-value § | 0.20 (−0.01, 0.42), 0.07 | −0.08 (−0.20, 0.04), 0.18 | ||
SOD (U/g Hb) | Before | 1179.23 (166.30) | 1185.09 (152.08) | 0.99 † |
After | 1164.32 (145.84) | 1197.35 (167.57) | 0.25 ‡ | |
MD (95%CI), p-value § | −14.91 (−48.49, 18.66), 0.37 | 12.26 (−29.30, 53.81), 0.54 | ||
GSH-Px (U/g Hb) | Before | 50.07 (16.12) | 50.50 (17.74) | 0.99 † |
After | 49.83 (17.82) | 48.04 (18.18) | 0.35 ‡ | |
MD (95%CI), p-value § | −0.24 (−2.42, 1.93), 0.82 | −2.45 (−6.59, 1.68), 0.23 | ||
FGF-21 (pg/mL) ¥ | Before | 392.2 (56.7, 2178.0) | 549.4 (221.7, 2366.0) | 0.18 † |
After | 381.9 (58.3, 1876.0) | 531.7 (102.2, 2463.0) | 0.95 ‡ | |
p-value§ | 0.54 | 0.87 | ||
FBS (mg/dL) | Before | 88.80 (8.45) | 91.37 (11.34) | 0.57 † |
After | 91.00 (7.15) | 95.39 (10.90) | 0.14 ‡ | |
MD (95%CI), p-value § | 2.20 (−1.34 to 5.74), 0.21 | 4.02 (0.48 to 7.54), 0.03 | ||
TG (mg/dL) | Before | 159.98 (86.91) | 169.50 (111.81) | 0.93 † |
After | 171.46 (97.38) | 141.83 (67.37) | 0.11 ‡ | |
MD (95%CI), p-value § | 11.47 (−21.01 to 43.96), 0.47 | −27.66 (−59.22 to 13.89), 0.11 | ||
TC (mg/dL) | Before | 207.44 (36.62) | 189.29 (40.80) | 0.24 † |
After | 211.39 (34.48) | 183.58 (36.47) | 0.03 ‡ | |
MD (95%CI), p-value § | 3.94 (−6.46 to 14.35), 0.44 | −5.70 (−15.53 to 4.11), 0.24 | ||
LDL-C (mg/dL) | Before | 135.75 (31.42) | 118.22 (41.33) | 0.21 † |
After | 139.41 (32.12) | 118.21 (32.01) | 0.15 ‡ | |
MD (95%CI), p-value § | 3.65 (−5.81 to 13.11), 0.43 | −0.01 (−14.55 to 14.54), 0.99 | ||
HDL-C (mg/dL) | Before | 39.69 (6.78) | 37.16 (10.71) | 0.59 † |
After | 37.69 (8.55) | 36.00 (10.48) | 0.89 ‡ | |
MD (95%CI), p-value § | −2.00 (−5.07 to 1.07), 0.19 | −1.16 (−4.90 to 2.57), 0.52 | ||
Grade of liver steatosis (0/1/2/3) € | Before | 0/12/18/0 | 0/10/17/3 | 0.21 * |
After | 0/11/19/0 | 0/11/17/2 | 0.35 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asghari, S.; Rezaei, M.; Rafraf, M.; Taghizadeh, M.; Asghari-Jafarabadi, M.; Ebadi, M. Effects of Calorie Restricted Diet on Oxidative/Antioxidative Status Biomarkers and Serum Fibroblast Growth Factor 21 Levels in Nonalcoholic Fatty Liver Disease Patients: A Randomized, Controlled Clinical Trial. Nutrients 2022, 14, 2509. https://doi.org/10.3390/nu14122509
Asghari S, Rezaei M, Rafraf M, Taghizadeh M, Asghari-Jafarabadi M, Ebadi M. Effects of Calorie Restricted Diet on Oxidative/Antioxidative Status Biomarkers and Serum Fibroblast Growth Factor 21 Levels in Nonalcoholic Fatty Liver Disease Patients: A Randomized, Controlled Clinical Trial. Nutrients. 2022; 14(12):2509. https://doi.org/10.3390/nu14122509
Chicago/Turabian StyleAsghari, Somayyeh, Mahsa Rezaei, Maryam Rafraf, Mahdiyeh Taghizadeh, Mohammad Asghari-Jafarabadi, and Maryam Ebadi. 2022. "Effects of Calorie Restricted Diet on Oxidative/Antioxidative Status Biomarkers and Serum Fibroblast Growth Factor 21 Levels in Nonalcoholic Fatty Liver Disease Patients: A Randomized, Controlled Clinical Trial" Nutrients 14, no. 12: 2509. https://doi.org/10.3390/nu14122509
APA StyleAsghari, S., Rezaei, M., Rafraf, M., Taghizadeh, M., Asghari-Jafarabadi, M., & Ebadi, M. (2022). Effects of Calorie Restricted Diet on Oxidative/Antioxidative Status Biomarkers and Serum Fibroblast Growth Factor 21 Levels in Nonalcoholic Fatty Liver Disease Patients: A Randomized, Controlled Clinical Trial. Nutrients, 14(12), 2509. https://doi.org/10.3390/nu14122509