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Abstract: Alzheimer’s disease is a global public health problem and the most common form of
dementia. Due to the failure of many single therapies targeting the two hallmarks, Aβ and Tau, and
the multifactorial etiology of AD, there is now more and more interest in nutraceutical agents with
multiple effects such as Moringa oleifera (MO) that have strong anti-oxidative, anti-inflammatory,
anticholinesterase, and neuroprotective virtues. In this study, we treated APP/PS1 mice with
a methanolic extract of MO for four months and evaluated its effect on AD-related pathology in
these mice using a multitude of behavioral, biochemical, and histochemical tests. Our data revealed
that MO improved behavioral deficits such as anxiety-like behavior and hyperactivity and cognitive,
learning, and memory impairments. MO treatment abrogated the Aβ burden to wild-type control
mice levels via decreasing BACE1 and AEP and upregulating IDE, NEP, and LRP1 protein levels.
Moreover, MO improved synaptic plasticity by improving the decreased GluN2B phosphorylation,
the synapse-related proteins PSD95 and synapsin1 levels, the quantity and quality of dendritic spines,
and neurodegeneration in the treated mice. MO is a nutraceutical agent with promising therapeutic
potential that can be used in the management of AD and other neurodegenerative diseases.

Keywords: Alzheimer’s disease; amyloid beta; synaptic plasticity; cognitive impairment;
Moringa oleifera

1. Introduction

The increase in longevity as a result of scientific progress leads to the increasing aging
of the population globally. This results in an increase in the prevalence of chronic diseases
such as diabetes and neurodegenerative diseases such as Alzheimer’s disease (AD). AD is
the most prevalent neurodegenerative disease and the most common cause of dementia,
increasing the health burden worldwide and impairing the memory, language, and thinking
abilities of the affected individual [1]. Unless therapeutic strategies are found, the burden
of this major public health problem in modern society will exponentially increase in the
coming years. AD is histopathologically marked by the extracellular senile plaques and
intracellular neurofibrillary tangles (NFTs) which are predominantly made up of amyloid-
β (Aβ) peptides and hyperphosphorylated Tau, respectively. The Aβ peptides are the
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result of proteolysis of the amyloid precursor protein (APP) by two proteases, the beta
APP cleaving enzyme 1 (BACE1), also called β-secretase, and the γ-secretase [2–4], while
the hyperphosphorylated Tau protein in the NFTs results from the dysregulation of ki-
nase/phosphatase system [5]. A substantial amount of evidence from previous studies has
established that Aβ is the leading cause or trigger in the AD pathogenesis [6–11]. BACE1
is the rate-limiting enzyme in the amyloidogenic APP processing and therefore plays
an important role in Aβ generation [12]. Moreover, it is believed that in sporadic AD, an
age-associated decrease in Aβ clearance is also critical for Aβ accumulation [13–16]. There-
fore, inhibiting Aβ generation and enhancing its clearance might synergically contribute to
the improvement of AD. However, many of the Aβ-targeted therapies have failed [17–20].
This failure and the multifactorial complexity of AD trigger therapeutic interest in products
with multiple effects such as nutraceuticals such as Moringa oleifera (MO), Tamarix gallica,
Ginkgo biloba, Codonopsis pilosula polysaccharide, and Ferulic acid, which have shown poten-
tial antioxidative, anti-inflammatory, and neuroprotective virtues among others [21–27].

In the clinic, the age-dependent learning and memory impairments that culminate
into cognitive deficits, and the accompanying synapse loss are the most common charac-
teristics of AD patients [28] and many AD animal models [29]. Synaptic dysfunction also
correlates with the degree of cognitive decline in AD patients and transgenic animals with
Aβ toxicity [28]. NMDA receptors (NMDARs) are key players for synaptic plasticity and
thus learning and memory [30] and Aβ is reported to decrease GluN2B positive synap-
tic spines as well as the surface expression of GluN2B containing NMDA receptors [31].
Moreover, animal models of AD also showed reduced surface expression and dephos-
phorylation of the GluN2B subunit of NMDAR at Tyr1472, which correlated with the
receptor endocytosis [31,32]. Interestingly, striatal-enriched protein tyrosine phosphatase
(STEP), the main phosphatase of GluN2B and GluA2 subunits of NMDA and AMPA re-
ceptors, as well as of synapse-related kinases, Fyn, Pyk2, and ERK1/2, was reported to be
increased in AD including in post-mortem AD patients and several AD mice models such
as the Tg2576, J20, APP/PS1, and 3×TG mice [32–34]. Interestingly, inhibition of STEP,
either pharmacologic [35] or genetic [33], was reported to ameliorate cognitive function
and hippocampal memory in the 3×Tg-AD mouse model, as well as restored GluN2B
phosphorylation at Tyr1472 [35]. Fyn is the main kinase that phosphorylates GluN2B at
Tyr1472 [36–38] and Fyn activity is regulated by its phosphorylation at Tyr416. Interest-
ingly, STEP can dephosphorylate (inactivate) Fyn at Tyr416 [39], thus impairing Tyr1472
GluN2B phosphorylation. On the other hand, in AD Aβ can induce an increase in STEP
via impairing the ubiquitin-proteosome system as well as via activating the α7 nicotinic
acetylcholine receptors (α7nAChRs) [40–42] which leads to intracellular calcium influx,
activating calcineurin (protein phosphatase 2B (PP2B)). The active PP2B can subsequently
dephosphorylate (inactivate) the inhibitor of protein phosphatase 1 (PP1), DARPP-32 at
Thr34, thereby leading to the dephosphorylation (activation) of PP1 at Thr320. Interest-
ingly, PP1 can undergo auto-dephosphorylation and can trans-dephosphorylate other PP1
molecules [43,44]. Thus, upon removal of the inhibitory effect of DARPP-32, the active PP1
can then dephosphorylate (activate) STEP at Ser221 [32].

Moringa oleifera is one of the natural compounds that contain many active constituents
including flavonoids, alkaloids, glycosides, lipids, proteins, carbohydrates, minerals, and
vitamins among others [45,46] and belongs to the family of Moringaceae that are distributed
widely in many African and Asian countries [47]. It has been reported to have antioxida-
tive, anti-inflammatory, antimicrobial, bactericidal, hypoglycemic, anti-cancer, anti-aging,
and neuroprotective potentials [48–55]. In the field of AD, MO was reported to exert
anti-aging, antioxidative, anti-cholinesterase, and neuroprotective activities [27,49,56–58]
and is safe at higher doses in both rats and mice as its LD50 was more than 6400 mg/kg
in mice [59–61]. Moreover, in our previous study [21], we found that MO can alleviate
homocysteine-induced AD-like pathological changes including Aβ production, Tau hyper-
phosphorylation, and neurodegeneration via decreasing BACE1, GSK-3β, CDK5, CaMKII,
increasing PP2A activities, and improving oxidative stress and cognitive deficits. However,
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whether MO has similar effects on APP/PS1, the Aβ model of AD remains enigmatic.
Therefore, in this study, we evaluate the effect of MO extract on Aβ load, synaptic plasticity,
and learning and memory in APP/PS1.

2. Materials and Methods
2.1. Animals

Male APP/PS1 mice 3 months of age were purchased from Cavins Laboratory
Animal Co., Ltd. (Changzhou, China), and the C57BL/6J wild-type (WT) mice were
purchased from the Experimental Animal Centre of Tongji Medical College. Four to five
animals were housed in ventilated cages, in a thermoregulated and pathogen-free environ-
ment. The mice were maintained under a 12/12-h light–dark cycle and had free access to
food and water. All experiment protocols for the mice were according to the Huazhong
University of Animal Care and Use Committee (protocol code (2020) IACUC Number:2735).

2.2. Moringa oleifera (MO) Extraction and Treatment

MO leaf powder was purchased from Moringa Smart (China). The powder was
exhaustively macerated in 80% methanol as previously described [21]. Briefly, 100 g of the
MO powder was soaked in 500 mL of 80% methanol and allowed at 4 ◦C with continuous
shaking for 2 days. The extract was then filtered through Whatman filter paper and
concentrated using a vacuum rotary evaporator at 40 ◦C. The condensed final yield of the
extract was dark green and was kept in a deep freezer at −80 ◦C until use.

Three-month-old male APP/PS1 and WT mice were divided into 3 groups: the WT
as control, APP/PS1 as the AD model, and APP/PS1 with MO treatment as the treatment
group. During the one-week acclimatization period of the mice, their water intake per day
was evaluated and was estimated to be 4–5 mL. The MO extract was then resuspended in
drinking water to a final concentration of 400 mg/kg/day in 5 mL so that the mice have
an average consumption of 400 mg/kg of MO every day. The AD model (APP/PS1) and
the WT (C57BL/6J) mice groups were provided normal drinking water without MO. The
bottles of water were changed every day and the treatment lasted for four months.

2.3. Behavioral Tests

The animals were randomly subjected to each behavioral test. Between each animal
and trial, the apparatuses for every behavioral test were wiped every time with 75%
ethanol. The scoring was performed by researchers that are blinded to both the genotypes
and treatments of the animals and the testing was performed in a dimly lit room.

2.3.1. Morris Water Maze (MWM) Test

The MWM test was employed to evaluate the spatial learning of mice and was carried
out as previously described [62]. Briefly, the mice were habituated to the behavior room
before the test began, and the acquisition test was carried out for 6 days, 3 trials per day
with each trial lasting 60 s. When a mouse finds and climbs onto the platform within
60 s, it would then be allowed to stay on the platform for 20 s; otherwise, at the end of the
60 s, it would be gently guided to the platform and allowed to stay for 20 s. The latency (s)
to find the hidden platform was recorded after each trial of every learning session. Then
twenty-four hours after the training ended, the hidden platform was removed, and the
probe trial was performed for 60 s, then the latency to cross the platform location and
the number of platform crossings, as well as the time in the target quadrant and the total
distance covered were all recorded.

2.3.2. Open Field Test (OFT)

To evaluate anxiety-like behaviors and spontaneous movements of the mice we used
the OFT. The apparatus (Techman Software Co., Ltd., Chengdu, China) used for this test
was fabricated of a plastic container constituting an open field arena (50 × 50 × 50 cm),
while a digital camera was hung directly above the center of the field. The square field was
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divided into 5 × 5 zones and the middle 3 × 3 sectors were defined as the center area. The
mice were gently placed one by one in the open field arena and allowed to freely explore
for 5 min. The center duration and the total distance traveled were both recorded by the
camera system.

2.3.3. Novel Objective Recognition Test (NOR)

This test is used to evaluate the ability of the mice to recognize an old object and show
a preference for exploring a new object. For this, the mice were placed for 5 min in the
apparatus, made up of a 50 × 50 × 50 cm plastic container, with no object and were allowed
for 24 h in the test room before the experiment was carried out. On the first testing day,
objects A and B, different in shapes and colors, were placed in two of the corners of the
box and the mice were brought into the middle of the area and were allowed to explore
objects A and B for 5 min. After 24 h i.e., on the second day, object B was replaced by object
C of a different shape and color from A and B. The exploration time of the mice on objects
A, B, and C was recorded, and the recognition index was calculated as TA/(TA + TC) and
TC/(TA + TC). TA and TC represent the exploring time of the mice on objects A (old) and
C (new), respectively.

2.3.4. Fear Conditioning Tests

This helps to assess the contextual and cue memory and the experiment was performed
as previously described [62]. Briefly, the mice were first habituated for 3 min in the
test chamber and on the first day, a conditioned stimulus (CS) was delivered and was
immediately followed by an unconditioned stimulus (US). Then on the second day, i.e., 24 h
after conditioning, the context-dependent test was performed by taking the mice back to
the same training chamber for 5 min with no CS or US. The cue-dependent test was carried
out on the third day, i.e., 48 h after conditioning, with different contextual cues, and each
mouse was allowed for 5 min in total without the US, but after 2 min of free exploration,
the mouse was exposed to the exact same CS. The freezing responses in both the context
and cue conditions were recorded.

2.4. Golgi Staining

After anesthesia and perfusion with normal saline, the brains of the mice were collected
and directly placed in Golgi solution (1 g potassium dichromate, 1 g mercuric chloride,
0.8 g potassium chromate, and 100 mL double-distilled water) for 2 weeks in the dark with
the solution being changed every 2 days. The brains were then sequentially incubated in
10%, 20%, and 30% sucrose protected from light and sectioned at 100 µm thickness with
a vibratome (Leica, VT1000S, Nussloch, Germany) and then placed on gelatin-coated glass
slides. After rinsing with double-distilled water, the slides were incubated in ammonium
hydroxide for 30 min, then washed with water and incubated for 30 min in black and white
film developer diluted 1:9 with water and then rinsed with double-distilled water. Grading
concentrations of alcohol were used to dehydrate the brain slices which were then trans-
ferred into a CXA solution containing formyl trichloride, xylene, and absolute ethyl alcohol
(1:1:1) for 15 min. Finally, slides were cover-slipped and visualized under the microscope
(Nikon, Tokyo, Japan), whereby intact dendritic branches from the hippocampus were
selected for spine counting.

2.5. Nissl Staining

The mice were anesthetized and then intracardially perfused with saline followed
by 4% paraformaldehyde. The brains were harvested and postfixed for 24 h in the same
4% paraformaldehyde and dehydrated in 30% sucrose solution until the brains sink to the
bottom then coronally sectioned at a thickness of 25 µm with a cryotome (CM1950, Leica,
Nussloch, Strasse, Germany), and the free-floating sections were preserved in antifreeze
solution (40% PBS, 30% glycerol, and 30% ethylene glycol) at −20 ◦C until used. Sections
were mounted on gelatin-coated slides before Nissl staining was performed according to
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the manufacturer’s instructions (Beyotime Biotechnology, Shanghai, China). The slides
were first incubated in Cresyl violet for 10 min at 25 ◦C, dehydrated through 50%, 75%,
95%, and 100% alcohol, then finally cleared in xylene and cover-slipped. A light microscope
(Nikon, Tokyo, Japan) was used to snap the pictures, the Nissl-stained neurons in the
hippocampal CA3 regions were counted, and the thickness of the cortex was measured.

2.6. Thioflavin S Staining

Thioflavin S staining (ThS) helps to stain beta sheets such as those present in Aβ

plaques. Briefly, the antifreeze-preserved 25 µm brain slices were brought to room tempera-
ture and washed three times in PBS, and then stained with ThS (T1892-25G, Sigma-Aldrich,
Shanghai, China) (12.5 mg/mL) in 50% ethanol in dark for 5–10 min at room temperature.
This was followed by two washes with 50% ethanol and PBS then another 2 washes in PBS.
The slides were then sealed using 50% glycerin in PBS. The Olympus VS120 S6 slide scanner
system (Tokyo, Japan) was used to snap the images and the immunofluorescence intensity
was evaluated using ImageJ software (1.51n, Wayne Rasband, Bethesda, MD, USA).

2.7. Western Blot Analysis

The mice were deeply anesthetized and perfused with normal saline before the brains
were harvested and hippocampi were separated and homogenized in RIPA lysis buffer
and the Western blot was performed as previously described [21]. Briefly, equal quantities
of proteins were separated and transferred to a nitrocellulose membrane, blocked, and
incubated overnight with primary antibodies (Table 1) at 4 ◦C, then with the secondary anti-
bodies. The blots were visualized with the Odyssey (LICOR Biosciences, Boston, MA, USA)
before ImageJ software was used to quantify the density of the bands. All blot gels are
shown in Supplementary Figures S1–S7.

Table 1. The primary antibodies used in this study.

Antibody Specificity Type Species Source (Catalog Number)

Anti-GluN1 GluN1 pAb Rabbit ABclonal (A7677)
Anti-GluN2A GluN2A mAb Rabbit ABclonal (A19089)
Anti-GluN2B GluN2B C-terminus pAb Rabbit ABclonal (A3056)
Anti-p-Y1472 p-GluN2B (Y1472) pAb Rabbit Abcam (ab3856)

Anti-STEP STEP (23E5) pAb Mouse Cell Signaling Technology (4396)
Anti-np-S221 np-STEP (S221) mAb Rabbit Cell Signaling Technology (5659)

Anti-FYN FYN mAb Mouse ABclonal (A0086)
Anti-p-Y416 p-Sar family Y416 pAb Rabbit ABclonal (RK06002)
Anti-PP1CA PP1CA (a.a 1–330) pAb Rabbit ABclonal (A12468)
Anti-p-T320 p-PP1CA T320 pAb Rabbit ABclonal (AP0786)

Anti-DARPP-32 DARPP-32 pAb Rabbit Abmart (Q9UD71)
Anti-p-T34 p-T34 DARPP-32 pAb Rabbit Abcam Ab254063
Anti-APP APP (APP695, APP770, APP751) pAb Rabbit Cell Signaling Technology (2452)

Anti-APPβ sAPPβ pAb Rabbit IBL (18957)
Anti-BACE1 BACE1 (D10E5) mAb Rabbit Cell Signaling Technology (5606)

Anti-PS1 PS1 pAb Rabbit Cell Signaling Technology (3622)
Anti-AEP Legumain (D6S4H) mAb Rabbit Cell Signaling Technology (93627)
Anti-IDE IDE pAb Rabbit Abcam (ab32216)
Anti-NEP CD10/MME pAb Rabbit ABclonal (A5664)
Anti-LRP1 LRP1 pAb Rabbit ABclonal (A13509)

Anti-PSD95 PSD95 N-terminal mAb Rabbit Cell Signaling (2507)
Anti-Synapsin1 Synapsin1 pAb Rabbit Millipore (AB1543)

Anti-GFAP GFAP C-terminus pAb Rabbit ABclonal (A14673)
Anti-IBA1 AIF1/IBA1 mAb Rabbit ABclonal (A19776)

Anti-β-actin β-actin pAb Rabbit ABclonal, China (AC026)

Abbreviations: p-: phosphorylated; np-: non phosphorylated, pAb: polyclonal antibody; mAb: monoclonal antibody.
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2.8. PP2B Activity Assay

PP2B activity was assayed using the Cellular Calcineurin Phosphatase Activity As-
say Kit (Colorimetric) (ab139464) according to the manufacturer’s instructions (Abcam,
Boston, MA, USA). Briefly, supernatants from mice brain tissue extracts were prepared
with the provided lysis buffer. Endogenous-free phosphate was firstly removed from the
supernatants then the background, total phosphatase activity, total phosphatase activity
less PP2B, and the positive control wells were prepared in duplicates for each sample. To
each well of the calcineurin samples except for the “background” control, a volume of
10 µL of the calcineurin substrate was added and equilibrated for 10 min at 30 ◦C. Following
this, a volume of 5 µL extract or diluted calcineurin was added to appropriate wells and
incubated at 30 ◦C for 30 min. Finally, the reaction was terminated by adding 100 µL
of Green Assay Reagent, and the color was allowed to develop for 30 min. The amount
of phosphate released from the substrate was detected by measuring the absorbance of
a molybdate-malachite green-phosphate complex at 620 nm. The PP2B activity equals total
phosphatase activity minus total phosphatase activity less PP2B.

2.9. ELISA Assay for Aβ40/42, IL-1β and TNF-α

The mice were deeply anesthetized, the brain removed, and the hippocampi were
isolated then homogenized with PBS (containing 1:100 PMSF and 1:100 protease inhibitor
cocktail) and centrifuged at 12,000× g at 4 ◦C for 10 min. The RIPA-soluble supernatant
fraction was collected for detecting Aβ40/42, IL-1β, and TNF-α levels. Protein concen-
tration in the supernatant was measured by the BCA method, and 200 µg of total protein
in 100 µL PBS was added for the assay. The amount of Aβ40 and Aβ42 were detected in
protein soluble fractions by using a sandwich ELISA kit according to the manufacturer’s
instructions (Elabscience Biotechnology, Wuhan, China). The amount of IL-1β and TNF-α
were detected in protein soluble fractions by using a sandwich ELISA kit according to the
manufacturer’s instructions (ABclonal, Wuhan, China).

2.10. Statistical Analysis

The data represent the Mean ± SEM and were analyzed using GraphPad Prism8
(GraphPad Software Inc., San Diego, CA, USA). The difference between the two groups
was assessed using an unpaired Student’s t-test, while that among more than two groups
was assessed by one- or two-way analysis of variance or repeated measured analysis of
variance followed by a post-hoc test. Statistical significance was set at p ≤ 0.05.

3. Results
3.1. Moringa oleifera Improves Behavioral and Cognitive Alterations in APP/PS1 Mice

Aβ is known to trigger the pathological changes that result in AD which clinically
translates as cognitive impairment. MO was shown to have some anti-oxidative, anti-
inflammatory, and neuroprotective properties all of which are implicated in AD. In this
study, three-month-old APP/PS1 mice were treated with a 400 mg/kg/day dose of MO,
following which we carried out a panel of behavioral experiments and found out that
APP/PS1 mice exhibit memory and behavioral impairments which are abrogated by the
MO (Figure 1).

Firstly, we performed Morris Water Maze and found out that compared with the WT
control, the APP/PS1 mice showed a longer escape latency during the six training days
whereas the escape latency remains similar to the WT in the APP/PS1 treated with MO
(Figure 1A). Moreover, on the test day, a longer latency to cross the position of the platform,
less crossing times of the platform position, and a lesser time spent in the target quadrant
were observed in the APP/PS1 mice compared with the WT and the MO treatment groups
(Figure 1B–E). No difference was observed in the distance covered among all three groups
(Figure 1F) indicating normal motor functions. Next, the open field test was carried out
(Figure 1G–J) and the results showed that both the time spent in the center and the distance
traveled were increased in the APP/PS1 mice, while in the APP/PS1 mice treated with MO
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these remain comparable with the WT control. However, the movement time is similar in
all groups. These results indicate anxiety-like behavior and restlessness in the APP/PS1
mice which were improved by MO. A novel object recognition test was also performed and
the results revealed an increased time spent exploring the new object, as well as a higher
recognition index in both the WT control and MO-treated APP/PS1 mice compared with
the APP/PS1 mice (Figure 1K,L). Lastly, a fear conditioning test was performed, and the
results of the contextual fear memory test showed lower freezing episodes and freezing
time and a higher freezing latency in the APP/PS1 mice when compared with the WT and
the MO-treated APP/PS1 mice (Figure 1M–O). The cued fear memory results were not
different among all groups (Supplementary Figure S8A–C). Together, these results indicate
behavioral and cognitive deficits in the APP/PS1 mice which were significantly abrogated
by the MO treatment, implying the role of MO in synaptic plasticity.

3.2. Moringa oleifera Alleviates Aβ Level and Plaques Burdens in APP/PS1 Mice

Aβ can induce synaptic dysfunction [63] and thus lead to behavioral deficits. To
investigate how MO improved cognitive functions in these mice, we first evaluated the Aβ

levels (Figure 2). The results from the Western blot from the brain hippocampal lysates
revealed an increase in the total APP protein level in the APP/PS1 mice compared with
the WT with no significant difference between APP/PS1 with or without MO treatment
(Figure 2A,B). However, compared with APP/PS1 without MO treatment, the APPβ level
was significantly decreased in APP/PS1 mice with MO treatment and this is comparable
with the WT control (Figure 2A,C). Moreover, the thioflavin S staining results show similar
patterns to the Western blot. Significantly higher plaque areas were observed in both the
cortex and the hippocampus of the APP/PS1 mice compared with the WT and these were
abrogated by MO treatment in the APP/PS1 mice (Figure 2D–F). Furthermore, to confirm
our results, we evaluated both Aβ40 and Aβ42 via ELISA. Both Aβ40 (Figure 2G) and
Aβ42 (Figure 2H) were found to be significantly higher in the APP/PS1 mice compared
with the WT, and MO treatment reduces it to WT control levels. These results together
indicate that MO treatment can significantly improve the Aβ load in APP/PS1 mice which
might be at least in part responsible for the improved behavioral and cognition functions
in these mice.

3.3. Moringa oleifera Modulates Both Production and Clearance Pathways of Aβ in APP/PS1 Mice

The Aβ peptides result from the successive cleavage of APP by BACE1 and the
γ-secretase [3,4]; thus, we evaluated the levels of these proteins and the result showed
that in the APP/PS1 mice MO downregulates BACE1, the rate-limiting enzyme in Aβ

production, to a level comparable with the WT control, but the level of PS1, the catalytic
subunit of γ-secretase, remains unchanged (Figure 3A–C). It was reported that Asparagine
endopeptidase (AEP), a pH-controlled cysteine proteinase, can cleave APP at N585, BACE1
at N294, and Tau at N368 residues to mediate AD [64–69]. Therefore, we measured the
AEP level in the APP/PS1 following the MO treatment. Our results show an upregulation
of AEP in the APP/PS1 mice compared with WT mice whereas following MO treatment,
the AEP level was significantly reduced although it is higher than in the WT control
mice (Figure 3A,D). Aβ clearance-associated proteins including insulin-degrading enzyme
(IDE), neprilysin (NEP), and the low-density lipoprotein receptor-related protein 1 (LRP1)
were also evaluated. Interestingly, our results revealed a decrease in these proteins in
the APP/PS1 mice compared with the WT ones, and the MO supplement significantly
improved these proteins to the WT control level (Figure 3A,E–G).
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(A–F) Morris Water Maze results. (A) The escape latency (s) of mice to find the platform dur-
ing the six days of training; (B) the representative traces of mice searching the target during
the probe test; (C) the first crossing time (s); (D) crossing number; (E) the time (s) spent in
the target quadrant; and (F) the total distance (m) covered by the mice during the probe test.
(G–J) Open field test results. (G) Center duration (s); (H) the distance (m) covered; (I) the movement
time (s); and (J) the representative movement traces of mice during the five minutes of the test.
(K,L) Novel object recognition test results. (K) The exploration time (s) of old and new objects
during the test; and (L) the recognition index. (M–O) Fear conditioning test results. (M) The freez-
ing episodes; (N) the freezing time (s); and (O) the freezing latency (s) during the test time. Data
are presented as Mean ± SEM, (n = 8) for each group. * p < 0.05; ** p < 0.01; *** p < 0.001; and
**** p < 0.0001 vs. WT or vs. APP/PS1 mice groups.
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Figure 2. Long-term MO treatment alleviates the Aβ burden in APP/PS1 mice. (A) The expression 
of APP and APPβ from hippocampal lysates of WT control and APP/PS1 mice with or without 
MO treatment was evaluated by Western blotting, (n = 3). β-actin serves as the loading control. 
(B,C) Statistical analysis of APP and APPβ. (D) Representative images of thioflavin S staining from 

Figure 2. Long-term MO treatment alleviates the Aβ burden in APP/PS1 mice. (A) The expression
of APP and APPβ from hippocampal lysates of WT control and APP/PS1 mice with or without
MO treatment was evaluated by Western blotting, (n = 3). β-actin serves as the loading control.
(B,C) Statistical analysis of APP and APPβ. (D) Representative images of thioflavin S staining
from WT control and APP/PS1 mice with or without MO treatment (scale bare = 400 µm, n = 3).
(E,F) The quantification of thioflavin S fluorescence of the % areas occupied by the Aβ plaques in the
cortex and hippocampus. (G,H) The statistical analysis of the ELISA test for Aβ40 and Aβ42 from
hippocampal lysates of WT control and APP/PS1 mice with or without MO treatment (n = 4). The
data are presented as Mean ± SEM. * p < 0.05; ** p < 0.01; *** p < 0.001; and **** p < 0.0001 vs. WT or
vs. APP/PS1 mice groups.
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found to be significantly downregulated in the APP/PS1 mice compared with the WT, 
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that regulate the phosphorylation of GluN2B at this site. Our results showed an upregu-
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Figure 3. MO decreases production and increases clearance of Aβ in APP/PS1 mice. (A) The
expression level of BACE1, PS1, AEP, IDE, NEP, and LRP1 from hippocampal lysates of WT mice
and APP/PS1 mice with or without MO treatment was evaluated by Western blotting. (B–G) The
quantification of the Western blot bands from panel A. β-actin serves as the loading control. The data
are presented as Mean ± SEM, (n = 3). * p < 0.05; ** p < 0.01; *** p < 0.001; and **** p < 0.0001 vs. WT
or vs. APP/PS1 mice groups.

3.4. Moringa oleifera Improves p-Y1472 GluN2B by Decreasing STEP in APP/PS1 Mice

Synaptic dysfunction is one of the characteristics of AD and translates to behavioral
and cognitive deficits observed in different stages of AD [28] and Aβ oligomers aggre-
gation process negatively affects synaptic structure and function of neuronal networks
and synaptic plasticity [70–73]. NMDARs play a crucial role in synaptic plasticity and
thus learning and memory [30,74,75]; thus, we evaluated the expression of NMDAR sub-
units. We found that the protein levels of GluN1, GluN2A, and GluN2B were not different
(Figure 4A–D); however, the phosphorylated GluN2B at Tyr1472 (p-Y1472 GluN2B) was
found to be significantly downregulated in the APP/PS1 mice compared with the WT, and
MO supplement rescued this alteration (Figure 4A,E). To understand how the p-Y1472
GluN2B is decreased, we evaluated the phosphatase and kinase, STEP, and Fyn, that reg-
ulate the phosphorylation of GluN2B at this site. Our results showed an upregulation in
both total and non-phosphorylated (active) STEP at Ser221 (np-S221 STEP) in the APP/PS1
mice compared with the WT mice and this was abolished by MO treatment (Figure 4F–H).
Surprisingly, we found that the level of total Fyn, the main kinase of GluN2B, was sig-
nificantly increased in the APP/PS1 mice compared with the WT (Figure 4F,I), but the
phosphorylation level of Fyn at Tyr416 (p-Y416 Fyn) was tremendously reduced compared
with the WT mice (Figure 4F,J). Interestingly, both the increase in the total and the decrease
in the p-Y416 Fyn were recovered by the MO treatment. These data together suggest that
APP/PS1 mice exhibit synaptic plasticity dysfunction seen as decreased phosphorylation
of NMDA receptors due to the upregulation of both the level and activity of STEP.
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expression level of GluN1, GluN2A, GluN2B, and p-Y1472 from hippocampal lysates of WT and
APP/PS1 mice with or without MO treatment was evaluated by Western blotting. (B–E) The sta-
tistical analysis of Western blot bands from panel A. (F) The expression level of STEP, np-S221,
Fyn, and p-Y416 from hippocampal lysates of WT control and APP/PS1 mice with or without MO
treatment was examined. (G–J) The statistical analysis of Western blot bands from panel F. β-actin
serves as the loading control. The data are presented as Mean ± SEM, (n = 3). ** p < 0.01 and
*** p < 0.001 vs. WT or vs. APP/PS1 mice groups. p-Y1472 = phosphorylated GluN2B at Tyr1472;
np-S221 = non-phosphorylated STEP at Ser221; p-Y416 = phosphorylated Fyn at Tyr416.
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3.5. Moringa oleifera Modulates the PP2B/DARPP-32/PP1 Axis to Decrease STEP in
PP/PS1 Mice

We found that STEP is increased in the APP/PS1 mice and Aβ was reported to induce
intracellular calcium influx and lead to increased STEP activity via the PP2B/DARPP-
32/PP1 axis [40–42]. Therefore, in this study, we evaluated this axis. Our data showed
that the total levels of both DARPP-32 and PP1 were unchanged among all groups, but
their phosphorylation levels at Thr34 (p-T34 DARPP-32) and Thr320 (p-T320 PP1) were
significantly decreased in the APP/PS1 mice compared with the WT mice (Figure 5A–E).
Interestingly, the treatment with MO abolished these changes. Furthermore, we evaluated
the activity of the upstream phosphatase PP2B that dephosphorylates DARPP-32, and the
result revealed an increase in the activity of this enzyme in the APP/PS1 mice compared
with the WT and the MO-treated APP/PS1 mice (Figure 5F). These results suggest that
MO modulates the PP2B/DARPP-32/PP1 axis to downregulate STEP activity thereby
improving GluN2B Tyr1472 phosphorylation in APP/PS1 mice.

3.6. Moringa oleifera Improves Synaptic Loss and Neurodegeneration in APP/PS1 Mice

Synaptic function is dependent on the structural integrity of the synapse which is
mediated by both pre-synaptic and post-synaptic elements such as synapsin1 and PSD95.
These synaptic proteins, together with NMDARs are critical for synaptic plasticity [30], thus
we evaluated their levels through Western blot. Our results showed that APP/PS1 mice
exhibit a significant decrease in the levels of PSD95 and synapsin1 that were improved to
WT mice levels in the APP/PS1 mice treated with MO (Figure 6A–C). To evaluate synaptic
structures, we performed Golgi staining and the results revealed a decrease in both the
total and mushroom-type spines in the APP/PS1 mice that were maintained at WT mice
level following treatment with MO (Figure 6D–F). Next, we examined neuronal integrity
by Nissl staining and found significantly decreased neurons in the CA3 hippocampal
region in the APP/PS1 mice that were improved to WT mice level in the APP/PS1 group
treated with MO (Figure 6G,H). Moreover, APP/PS1 mice exhibit a decrease in cortical
thickness that was also abrogated by MO treatment (Figure 6G,I). These data together
suggest that MO treatment can improve synaptic alterations and neuronal loss that occur in
APP/PS1 mice.

3.7. Moringa oleifera Improves Neuroinflammation in APP/PS1 Mice

More and more shreds of evidence are now clear that neuroinflammation is a signifi-
cant player in the pathogenesis of neurodegenerative diseases including AD. The major
inflammatory cells in the CNS include microglia and astrocytes and together with cytokines
such as TNF-α and IL-1β are critical to AD pathogenesis [76–81]. We, therefore, measured
the level of microglia (IBA1) and astrocyte (GFAP) markers, TNF-α, and IL-1β. The data
revealed that all evaluated proteins were significantly upregulated in the APP/PS1 mice
compared with the WT and the MO-treated APP/PS1 mice groups (Figure 7A–E). These
results confirm that neuroinflammatory processes occur in the APP/PS1 mice and that MO
can reduce these inflammatory markers to levels comparable with WT control mice.



Nutrients 2022, 14, 4284 13 of 24Nutrients 2022, 14, x FOR PEER REVIEW 14 of 26 
 

 

 
Figure 5. MO downregulates STEP by modulating the PP2B/DARPP-32/PP1 axis. (A) The expres-
sion level of DARPP-32, p-T34, PP1, and p-T320 from hippocampal lysates of WT control and 
APP/PS1 mice with or without MO treatment was evaluated by Western blotting, (n = 3). (B–E) 
The statistical analysis of Western blot bands from panel A. β-actin serves as the loading control. 
(F) The statistical analysis of the PP2B activity test from hippocampal lysates of WT control and 
APP/PS1 mice with or without MO treatment, (n = 4). The test was carried out using a PP2B activ-
ity kit. The data are presented as Mean ± SEM. ** p < 0.01 and **** p < 0.0001 vs. WT or vs. APP/PS1 
mice groups. p-T34 = phosphorylated DARPP-32 at Thr34; p-T320 = phosphorylated PP1 at 
Thr320. 

3.6. Moringa oleifera Improves Synaptic Loss and Neurodegeneration in APP/PS1 Mice 
Synaptic function is dependent on the structural integrity of the synapse which is 

mediated by both pre-synaptic and post-synaptic elements such as synapsin1 and 
PSD95. These synaptic proteins, together with NMDARs are critical for synaptic plastic-
ity [30], thus we evaluated their levels through Western blot. Our results showed that 
APP/PS1 mice exhibit a significant decrease in the levels of PSD95 and synapsin1 that 
were improved to WT mice levels in the APP/PS1 mice treated with MO (Figure 6A–C). 
To evaluate synaptic structures, we performed Golgi staining and the results revealed a 
decrease in both the total and mushroom-type spines in the APP/PS1 mice that were 
maintained at WT mice level following treatment with MO (Figure 6D–F). Next, we ex-

Figure 5. MO downregulates STEP by modulating the PP2B/DARPP-32/PP1 axis. (A) The expression
level of DARPP-32, p-T34, PP1, and p-T320 from hippocampal lysates of WT control and APP/PS1
mice with or without MO treatment was evaluated by Western blotting, (n = 3). (B–E) The statistical
analysis of Western blot bands from panel A. β-actin serves as the loading control. (F) The statistical
analysis of the PP2B activity test from hippocampal lysates of WT control and APP/PS1 mice with
or without MO treatment, (n = 4). The test was carried out using a PP2B activity kit. The data are
presented as Mean ± SEM. ** p < 0.01 and **** p < 0.0001 vs. WT or vs. APP/PS1 mice groups.
p-T34 = phosphorylated DARPP-32 at Thr34; p-T320 = phosphorylated PP1 at Thr320.
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neurodegeneration in APP/PS1 mice. (A) The expression level of PSD95 and Synapsin1 from
hippocampal lysates of WT control and APP/PS1 mice with or without MO treatment was examined
by Western blotting, (n = 3). (B,C) The statistical analysis of Western blot bands from panel A. β-actin
serves as the loading control. (D–F) Golgi staining results. (D) The representative micrographs of the
Golgi staining experiment (scale bare = 5 µm, n = 3 per group, 3–4 dendrites per mouse). (E) Total
spines number per 10 µm area. (F) The mushroom-type spines per 10 µm area. (G–I) Nissl staining
results (scale bars = 100, 200, 400, and 500 µm, n = 3). (G) The representative micrographs of the Nissl
staining experiment. (H) The number of neurons per area. (I) The thickness (mm) of the cortex. The
data are presented as Mean ± SEM. * p < 0.05; ** p < 0.01; and *** p < 0.001 vs. WT or vs. APP/PS1
mice groups.
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pression level of GFAP and IBA1 from hippocampal lysates of WT control and APP/PS1 mice with 
Figure 7. Long-term MO treatment alleviates neuroinflammation in APP/PS1 mice. (A) The expres-
sion level of GFAP and IBA1 from hippocampal lysates of WT control and APP/PS1 mice with or
without MO treatment was evaluated by Western blotting, (n = 3). (B,C) The statistical analysis of
Western blot bands from panel A. β-actin serves as the loading control. (D,E) The statistical analysis
of TNF-α and IL-1β ELISA results from hippocampal lysates of WT control and APP/PS1 mice with
or without MO treatment was evaluated, (n = 4). The data are presented as Mean ± SEM. ** p < 0.01
and *** p < 0.001 vs. WT or vs. APP/PS1 mice groups.

4. Discussion

The burden of Alzheimer’s disease is increasing globally due to the increase in the
elderly population. Aβ initiates many cascades that result in Tau pathology, neuroin-
flammation, neurodegeneration, and synapse loss which clinically manifest as cognitive
deficits [81–83]. Despite decades of research, there is no cure for AD. In this study, we report
that a four-month MO treatment significantly alleviates AD-like pathologies in APP/PS1
mice thereby improving cognitive and behavioral deficits.

Increased production of Aβ was reported in the early stage of AD even before overt
toxicity [84,85] and this was shown to be associated with synaptic alterations and cognition
deficits [86,87]. APP/PS1 mice are an AD model that overproduces Aβ; therefore, we
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evaluated the Aβ load in these mice following MO treatment. Our results revealed an
increased Aβ load in the APP/PS1 mice that was tremendously alleviated by the MO
treatment as indicated by the western blot, thioflavin S, and ELISA experiments. This is
consistent with our previous study [21] and a recent study that showed that the component
of MO Niazimicin decreases Aβ in albino rate [27], confirming the ability of MO to reduce
Aβ burden.

The level of Aβ is a function of the production and clearance systems. Our results
revealed a decrease in BACE1, the Aβ production rate-limiting enzyme, in the APP/PS1
mice treated with MO to a level comparable with the WT control mice. BACE1 was
reported to be associated with a cascade in which oxidative stress can induce intracellular
calcium influx that activates calpain which results in the activation of BACE1 transcription
factors STAT3 and NFAT1 [88]. MO is known to have strong antioxidant properties and
this might explain the reduction in the BACE1 level in the MO-treated mice. Increasing
evidence shows that AEP, also known as delta secretase, is involved in the amyloidogenic
processing of the APP [64,66,67]. APP 586–695, a product of APP cleavage by AEP, was
found to increase the expression of AD-related genes and AD pathogenesis [66]. Clearance
of APP 586–695 in 5xFAD mice or blockage of AEP truncation of APP ameliorates Aβ

pathology and cognitive impairments [66]. Moreover, AEP can not only cleave Tau to
produce Tau 1–368, which activates STAT1 and increases the BACE1 production [65] but
also can cleave BACE1 at N294 and increase its protease activity [64], thereby upregulating
Aβ production. Interestingly, AEP can be activated by oxidative stress [89,90] and oxidative
stress is reported in APP/PS1 mice [91,92]. Our results revealed an increased level of AEP
in the APP/PS1 that was significantly abrogated by MO treatment. These results suggest
that AEP and BACE1 might crosstalk to increase Aβ production and that MO ameliorates
these alterations possibly via its antioxidative potential.

NEP [93,94] and IDE [95] are some of the critical players in the extracellular and intra-
cellular degradation of Aβ and thus its clearance. IDE regulates the Aβ level in vivo [96]
and is found in most cellular compartments and can degrade β-structure forming peptides
that are associated with neurodegeneration [97]. IDE is reported to decrease with age
and in the early stage of AD [95], and genetic alterations associated with a higher risk of
AD were reported in IDE and NEP genes [98,99]. Another protein associated with Aβ

clearance is LRP1 which is normally reduced with increasing age and is further decreased
in AD [100–102]. Interestingly, studies have revealed that both pharmacologic and genetic
inhibition of LRP1 resulted in the buildup of Aβ42 [103,104]. In line with these studies,
we found that IDE, NEP, and LRP1 were significantly reduced in APP/PS1 mice while
MO treatment helped to prevent these losses. Altogether, these data suggest that MO
downregulates the amyloidogenic processing of APP as well as improves Aβ clearance to
decrease the Aβ burden in these mice.

Synaptic plasticity is the basic process via which new memories are formed and
NMDARs are critical for synaptic plasticity and thus learning and memory [30,74,75].
The GluN2B subunit of NMDAR is the most significantly tyrosine-phosphorylated protein
in the PSDs [105], and its synaptic expression is significantly regulated by its
phosphorylation [106]. Moreover, the activity-dependent subunit-specific phosphorylation
of NMDARs significantly impacts their synaptic localization and function [107,108]. Here,
we observed a decrease in p-Y1472 GluN2B in the APP/PS1 mice, and the MO treatment res-
cued it to the WT control level. In addition, consistent with previous reports [37,109–111],
our data revealed an increase in the total level of STEP as well as the np-S221 STEP. In
line with this, a decrease in the p-Y416 Fyn was observed; however, unexpectedly an
increase in the level of total Fyn was observed in the APP/PS1 mice, possibly indicating
a feedback mechanism from the mouse system to compensate for the decreased level of
the active p-Y416 Fyn. Alterations in the PP2B/DARPP-32/PP1 axis including increased
activities of PP1, the major STEP phosphatase, and PP2B, a Ca2+/calmodulin-dependent
phosphatase that can be activated by oxidative stress-mediated intracellular calcium influx,
were observed in the APP/PS1 mice. These changes were prevented by MO in the treated
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mice. Interestingly, calcium overload has been reported in the brain of APP/PS1 mice with
plaques [70,71], and increased Aβ plaques which were ameliorated by MO were observed
in our study. These together indicate that MO prevented the loss of p-Y1472 GluN2B by
downregulating STEP which can directly or indirectly (via decreasing p-Y416 Fyn) decrease
the GluN2B phosphorylation. In turn, the decreased STEP activity might at least in part be
due to the MO-mediated decrease in oxidative stress resulting in decreased calcium influx
and PP2B activity downregulation.

APP/PS1 mice are reported to exhibit significant downregulation of synaptic proteins
such as PSD95 and synapsin1 [62,112,113]. In line with these studies, the protein levels of
PSD95 and synapsin1 were found to be downregulated in the APP/S1 mice. Interestingly,
consistent with our previous study [21], MO significantly recovered these alterations in
the treated mice. The scaffolding protein and PSD organizer PSD95 is the major compo-
nent of PSD and is central to the glutamatergic synaptic signaling [114]. PSD95 is a key
player in synaptic transmission and LTP by favoring the surface expression of GluN2B-
containing NMDARs via direct interaction and by inducing STEP’s ubiquitination and
degradation [115–118]. Moreover, it was recently demonstrated that PSD95 can protect
synapses against Aβ toxicity [119], suggesting that a decrease in synaptic PSD95 is an
indication of synaptic vulnerability to Aβ in AD. Interestingly, the downregulation of
neuronal PSD95 is believed to be mediated by calpain [120], a calcium-dependent protease
that can be activated under oxidative stress conditions [88]. Synapsin1 is known to play
roles in neurogenesis, synapse formation, and synaptic transmission [121]. These together
further suggest the role of MO in maintaining normal synaptic function via upregulating
the level of PSD95 and synapsin1.

The loss of dendritic synaptic plasticity is a key neurobiological basis of dementia and
occurs in the brains of AD patients [122,123]. Dendritic spines are key players in synaptic
plasticity mainly because they contain post-synaptic elements and have an inherent ability
to undergo dynamic changes in response to incoming synapses stimuli [124,125]. In
our study, we observed a decrease in the total number and the mushroom-type spines
in APP/PS1 mice compared with the WT control, and these changes were prevented
by the MO treatment. NMDARs are implicated in the structural regulation of spines,
suggesting that the MO-mediated STEP downregulation which helps maintain the surface
expression of GluN2B might contribute to the improved dendritic spine density in the MO-
treated APP/PS1 mice. Moreover, PSD95 was reported to regulate dendritic arborization
and spine number by interacting with cysteine-rich PDZ-binding protein and neuronal
cytoskeleton [126]. Interestingly, the decreased PSD95 in APP/PS1 mice was rescued by
MO treatment further implying the role of MO in maintaining dendritic spine density.
Recently, results from a study suggest that mushroom-type spines are more liable to
respond to dynamic changes during synaptic transmission, and their content correlates
more with synaptic strength [127]. This further suggests that MO maintains synaptic
strength and normal functions by preserving mushroom-type spines. Nissl staining data
indicate a decrease in the number of neurons in the CA3 region of the hippocampus and
a decreased cortical thickness in the APP/PS1 mice, suggesting neurodegeneration. This
was rescued in the MO-treated mice. It was shown that acute depletion of PSD95 leads
to hippocampal neuron death [128], and neurons lacking PSD95 exhibit neuronal damage
as a result of NMDARs-mediated excitotoxicity [129]. This suggests that upregulating
PSD95 might play a role in the MO-mediated improvement of neurodegeneration and
this is in line with our previous data [21]. Moreover, a recent study also showed that
Niazimicin, one of MO’s active components, has a neuroprotective effect via decreasing
malondialdehyde, cholinesterase, nitric oxide, Aβ, caspase-3, and inducible nitric oxide
synthase enzymes [27]. Other components of MO such as ferulic acid, quercetin, and
linalool have been demonstrated to exert neuroprotective effects [130–132].

Apart from Aβ, Tau, and synapses loss, neuroinflammation is another important
player in the pathogenesis of AD [133–136] and MO has been proven to possess anti-
inflammatory effects [137,138]. Consistent with this, we found that treatment with MO
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in the APP/PS1 mice resulted in a significant decrease in the GFAP and IBA1 markers
of astrocytes and microglia activation, as well as the cytokines TNF-α and IL-1β. The
interrelation of Aβ, Tau, and glial cells in space and time in the brain results in the Aβ

induction of neuroinflammation which then influences the generation of the Aβ [139].
Clear evidence highlights that TNF-α is increased and centrally involved in the AD [76–78],
while IL-1β inhibits the hippocampal LTP [140]. Moreover, TNF-α functions as a glio-
transmitter that regulates synaptic function and strength and directly affects the glutamate
transmission [77,141,142]. The component of MO, ferulic acid, was reported to inhibit Aβ-
induced microglial activation in mice [143]. Therefore, by improving neuroinflammation
MO might play a role in the management of AD.

Aβ induces behavioral deficits, including hyperactivity, impaired new object recogni-
tion, spatial working, and reference memories [143–145]. Synaptic plasticity and synapse
integrity are critical for learning and memory [30,74,75]. In this study, MO was found to
improve Aβ load, synaptic proteins, neurodegeneration, and neuroinflammation which
together might explain the amelioration of behavioral, cognitive, learning, and memory
impairments in APP/PS1 mice treated with MO. This is in line with previous reports where
MO extract or components in MO were demonstrated to improve cognitive and behavioral
impairments [21,57,130].

It should be noted that our experiment presents some limitations which include:
(i) the use of male animals only in the experiment; (ii) no MO-treated WT animal group
to explore the effect of MO in these animals; and (iii) no vehicle (methanol) control treat-
ment in both the WT and APP/PS1 animals. These deficiencies will be considered in
our future studies for better reliability of data, more originality, and standardization of
experimental research.

5. Conclusions

MO is a compound with multiple biological functions. We here report that treatment
with MO prevented the increase in Aβ load in APP/PS1 mice via decreasing the enzymes
that promote Aβ production including BACE1 and AEP, as well as increasing the proteins
responsible for Aβ clearance including IDE, NEP, and LRP1. Moreover, MO maintained
the phosphorylation status of GluN2B via decreasing STEP activity, improved the level
of synaptic plasticity-related proteins such as PSD95 and synapsin1, and prevented den-
dritic spine loss and neurodegeneration. These together result in improved behavioral
and cognitive deficits. The data from our study provides insight into the use of MO as
a nutraceutical agent in the management of AD.
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