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Abstract: As centenarians provide a paradigm of healthy aging, investigating the comprehen-
sive metabolic profiles of healthy centenarians is of utmost importance for the pursuit of health
and longevity. However, relevant reports, especially studies considering the dietary influence on
metabolism, are still limited, mostly lacking the guidance of a model of healthy aging. Therefore,
exploring the signatures of the integrative metabolic profiles of the healthy centenarians from a
famous longevous region, Bama County, China, should be an effective way. The global metabolome
in urine and the short-chain fatty acids (SCFAs) in the feces of 30 healthy centenarians and 31 elderly
people aged 60–70 from the longevous region were analyzed by non-targeted metabolomics com-
bined with metabolic target analysis. The results showed that the characteristic metabolites related to
longevity were mostly summarized into phosphatidylserine, lyso-phosphatidylethanolamine, phos-
phatidylcholine, phosphatidylinositol, bile acids, and amino acids (p < 0.05). Six metabolic pathways
were found significant relevant to longevity. Furthermore, acetic acid, propionic acid, butyric acid,
valeric acid, and total SCFA were significantly increased in the centenarian group (p < 0.05) and
were also positively associated with the dietary fiber intake (p < 0.01). It was age-accompanied and
diet-associated remodeling of phospholipid, amino acid, and SCFA metabolism that expressed the
unique metabolic signatures related to exceptional longevity. This metabolic remodeling is sugges-
tive of cognitive benefits, better antioxidant capacity, the attenuation of local inflammation, and
health-span-promoting processes, which play a critical and positive role in shaping healthy aging.

Keywords: centenarian; metabolomics; remodeling; phospholipid; amino acid; SCFA; dietary fiber;
longevous region

1. Introduction

Aging is a heterogeneous and complex process as many transformations happen to
human organisms, such as a general decline in physiological function, increasing chronic
low-grade inflammatory status, and increased risks of aging-related diseases. However,
as an accepted model of successful aging, centenarians avoid or delay major age-related
diseases, such as diabetes mellitus, Alzheimer disease, cardiovascular disease, and can-
cer [1]. Therefore, understanding the mechanism of exceptional longevity is of important
referential significance for allowing populations to live longer, disease-free, and have a
good quality of life. Decades of study on aging have found many genes and biological
processes associated with the aging process [2], but its exact biological mechanism is still
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unclear. In particular, a general molecular profile that encompasses the healthy aging
process as a result of multifactorial interactions is limited, and the data for centenarians are
especially lacking.

Today, metabolomic approaches have become extremely promising tools for capturing
overall metabolic changes associated with the normal aging process. Jové et al. found
monoacylglyceride (22:1), diacylglyceride (33:2), resolvin D6, and phosphoserine (40:5)
decreasing with the aging process by analyzing the metabolic profiles of healthy humans
ranging from 30 to 100 years of age [3]. Chak et al. identified significant ageing-associated
metabolites that are involved in several ageing processes, such as oxidative stress resistance,
autophagy, inflammation, lipid metabolism, and apoptosis [4]. Bunning et al. applied
random forest models to explore biological processes of aging in a cross-sectional cohort of
healthy individuals aged 6 months to 82 years, which highlighted established metabolites,
such as amino acids, steroids, and free fatty acids [5]. The above reports focused primarily
on the normal aging process itself rather than the extreme longevity. The relevant reports on
a comprehensive metabolic phenotype of centenarians are still relatively limited. Collino
and Montoliu et al. performed metabolic profiling of Italian centenarians using NMR
metabonomics and targeted analysis approaches and found that the centenarians possessed
a unique eicosanoid metabolism network and identified phospho- and sphingolipids as
markers of human longevity [1,6]. Nevertheless, as an important factor affecting metabolic
profiles, the dietary influence has not yet been considered in both the researches. Fur-
thermore, the exploration of integrative metabolic pathways closely related to extreme
longevity in humans is still in its infancy so far, which, however, could provide insights
into underlying molecular mechanisms and biological processes of healthy aging.

There is a remarkable phenomenon in Bama County, Guangxi Province, China. Based
on the Population Census of China in 2020, there were 102 centenarians in the population
of 236,152 in Bama County, a ratio of 43 centenarians per 1 × 105 persons [7]. To date,
the ratio of centenarians in this region is the highest in China, and is far above the world
longevity county standard defined by the United Nations (7.5/100,000) [8]. The rare and
amazing phenomenon of extreme longevity and healthy aging possesses distinctive local
features, and therefore, the centenarians from this longevous region provide a valuable
paradigm of healthy and successful aging for people to follow and imitate. Accordingly, we
have reported the characteristics of nutrient intakes, specific metabolites and elements in
nails of elderly people from the longevous region compared with a non-longevous region
in previous studies [9,10]. However, no work has focused on the comprehensive metabolic
profiles of centenarians living in Bama longevous region as a result of their traditional and
conservative lifestyle.

Since our centenarians well represent a model of healthy and successful aging, the
primary objective of this study is to discover the metabolic pattern of healthy aging by
portraying the integrative metabolic profiles and then further capturing the metabolic
signatures of the extreme longevity using the non-targeted metabolomics approach com-
bined with metabolic target analysis. To achieve the aim, the healthy centenarians in
the longevous region (LRC group) and the elderly people aged 60–70 in the longevous
region (LRE group) were enrolled according to strict screening criteria. The characteristic
metabolites and relevant metabolic pathways were identified based on the orthogonal
projections to latent structures discriminant analysis (OPLS-DA) model. Moreover, the
SCFA metabolism was analyzed. This will be very important for a better understanding
and pursuit of longevity from the perspective of comprehensive metabolic profiles.

2. Materials and Methods
2.1. Participants

The study was carried out in Bama County, Guangxi Province, China. By means of
thorough community screenings according to the population census data, we enrolled
healthy centenarians in the longevous region (LRC group) and elderly people aged 60–70 in
the longevous region (LRE group). The age of volunteers was validated according to our
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previous report [10]. To guarantee that each participant was relatively healthy, the screen-
ing criteria including rigorous ineligibility criteria were adopted based on the previous
study [10]. During recruitment and screening, each volunteer was required to complete a
questionnaire on medical history to provide health information.

All study procedures were reviewed and approved by the Ethics Committee of
Guangxi University (approval no.: GXU-M-2019003). The study was conducted following
the guidelines of the Declaration of Helsinki. Written informed consent was obtained from
each participant.

2.2. Dietary Assessment

The dietary assessment was carried out by 4-season consecutive 7-day weighed dietary
records (28-day WDRs) as described previously [10], which were performed in January,
April, July, and October. According to the Chinese food composition tables, average daily
intakes of energy, macronutrients, and dietary fiber were calculated by multiplying the
quantities of food consumed (in g) or portion size by the contents of the above nutrients
per 100 g of food listed in the Chinese food composition tables [11].

2.3. Sample Collection and Preparation

Fresh morning urine samples and fecal samples were collected and maintained at 4 ◦C
for ≤5 h before processing, and then stored at −80 ◦C until analysis.

2.4. Non-Targeted Metabolomics Analysis Based on UPLC-MS

A 100 µL aliquot of each urine sample was thawed at room temperature, mixed with
400 µL ice-cold methanol, and vortexed for 30 s. Following centrifugation at 12,000 rpm for
15 min at 4 ◦C, the supernatant was filtrated by nylon syringe filters (0.22 µm pore size).
Subsequently, 200 µL supernatant was transferred to autosampler vials and UPLC-MS
analysis was performed.

The metabolomics analysis was conducted on an Ultimate 3000 LC coupled to an Orbitrap
Elite mass spectrometry (MS) system (Thermo). A Hypergod C18 column (4.6 × 100 mm,
3 µm) was used. The column oven was set at 40 ◦C. The autosampler temperature was
maintained at 4 ◦C. The gradient elution was performed using a mixture of solvent A
(0.1% formic acid in water) and solvent B (0.1% formic acid in acetonitrile) at a flow rate
of 0.3 mL/min. The starting conditions were 95% A and 5% B (v/v) for 2 min, shifting
to 5% A and 95% B at 12 min and then keeping constant for 3 min. Subsequently, the
solvent composition returned to the starting conditions at 17 min. A four-microliter sample
was injected. To eliminate the effect of sample order, the injected samples were alternated
between the LRC group and LRE group, and the sample sequence was random.

MS was performed in both the positive and negative ionization modes using an
electrospray ionization source interface. The spray voltages were 3.0 kV in the ESI+ mode
and 3.2 kV in the ESI− mode. The capillary temperature was 350 ◦C, and the heater
temperature was 300 ◦C. The sheath gas flow rate, aux gas flow rate, and sweep gas flow
rate were 45 arbitrary units, 15 arbitrary units, and 1 arbitrary units, respectively. The mass
scan range was set from 50 to 1000 m/z.

To ensure data quality of metabolomics analysis, quality control (QC) samples were used
for column conditioning and method validation [12]. A QC sample was prepared by mixing
equal amounts of each urine sample and processed using the same method used for sample
preparation. Before analyzing the sample sequence, the QC sample was run three times.
During the analysis of the sample sequence, 1 QC sample was run after every 10 injections.
The repeatability and stability of the metabolomics analysis were determined by principal
component analysis (PCA) of the whole dataset including all of the QC samples and were
examined using 20 ions from the extracted ion chromatogram (XIC) of the QC samples.
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2.5. Analysis of SCFAs in Feces

SCFAs including acetic acid, propionic acid, isobutyric acid, butyric acid, isovaleric
acid, and valeric acid in feces were analyzed with capillary GC (GC-2010 Plus, Shimadzu,
Kyoto, Japan) as described previously [10].

2.6. Data Processing and Statistical Analysis

The raw MS data were aligned using the SIEVE software package (Thermo) based on
the m/z value and the retention time (RT). All of the detected ions in each sample were
normalized to the sum of the peak areas. The data matrix including the sample name,
the RT-m/z pair, the molecular weight, and the ion intensity was used for multivariate
statistical analysis.

The data were imported into the SIMCA-P 16 program (Umetrics) for multivariate
analysis. Data were scaled and logarithmically transformed to minimize the impacts of both
noise and high variance of the variables. After these transformations, supervised OPLS-DA
was applied. A sevenfold (Leave-1/7th Samples-Out) cross-validation procedure was carried
out to avoid the risk of over-fitting. The parameters of the OPLS-DA model, such as the R2X,
R2Y, and Q2Y, were analyzed to ensure the quality of the multivariate model.

The value of variable importance in the projection (VIP) in OPLS-DA analysis was used
to identify the differential metabolites. The VIP statistics ranked the overall contribution of
each variable to the OPLS-DA model, and those metabolites with VIP > 1.0 and p < 0.05 in
Student’s t-test were considered as the significant differential metabolites. Furthermore,
combined with the fold change (FC), the characteristic metabolites closely related to cente-
narians were determined. The heat map of characteristic metabolites was plotted using the
R software package. Moreover, the Pearson correlation coefficients between metabolites
were calculated and correlation network was constructed using the R software package.

The metabolic pathway analysis was performed using the KEGG database and Metabo-
Analyst 5.0 (http://www.metaboanalyst.ca, accessed on 21 April 2022). As MetaboAnalyst
assigns metabolites to their pathways using a limited database, not all of the metabolites
can be analyzed to designate their pathways. However, MetaboAnalyst can provide valu-
able information of metabolic pathways by integrating two pathway analysis approaches,
including pathway topology analysis and pathway enrichment analysis. Additionally, the
results were visualized intuitively via a Google Maps-style visualization system.

Furthermore, a Spearman correlation test was used to evaluate correlations between
dietary fiber intake and SCFAs in feces. The statistical significance was set at p < 0.01.

3. Results
3.1. Characteristics of the Participants

For this study, 49 centenarians and 56 elderly people from the longevous region were
enrolled in the LRC group and LRE group, respectively. Of these, 37 centenarians in the
LRC group and 45 elderly people in the LRE group met the screening criteria and then
started this study. Among these volunteers, 30 centenarians in the LRC group and 31 elderly
people in the LRE group completed the study protocol. As shown in Table 1, there is no
significant difference in sex ratio between the two groups (p > 0.05).

Table 1. Characteristics of the participants.

Characteristics LRC Group LRE Group

Age (year) 103 ± 3 63 ± 3
Sex (male/female) 11/19 12/19

Height (cm) 145.9 ± 10.6 153.7 ± 7.2
Weight (kg) 43.1 ± 10.0 49.4 ± 9.4

Body mass index (kg/m2) 20.0 ± 2.8 20.8 ± 2.9
Values are means ± standard deviation (SD). LRC, centenarians in the longevous region; LRE, elderly people
aged 60–70 years in the longevous region.

http://www.metaboanalyst.ca
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3.2. Validation of Stability and Repeatability of Metabolomics Analysis

In the metabolomics analysis based on UPLC-MS, QC samples were used to validate
the stability and repeatability of the metabolomics analysis. As shown in Figure 1, all of
the QC samples were tightly clustered in the center on the score plot from the principal
component analysis of the dataset containing all of the QC samples. Since the closer QC
samples cluster on a score plot, the more stable the analysis is [13], it was concluded that the
analysis in this study was stable and the differences between the samples were meaningful.
The ion intensity from the XIC of QC samples was examined (Table S1). The results showed
that no significant variation was detected during the analysis process. The repeatability of
ion intensity was satisfactory, with coefficients of variance (CV) in the range of 1.73–6.53%.
Consequently, it was confirmed that the data of this metabolomics analysis were suitable to
discover the metabolic pattern of healthy aging.
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Figure 1. Scores plot from the principal component analysis of the overall data set containing all of
the QC samples (9 replicates) (A) in the positive ionization mode; (B) in the negative ionization mode.
Blue crosses represent LRC group. Red squares represent LRE group. Green asterisks represent QC
samples. Their spatial distribution reveals the variations of the metabolic profiles. The closer the QC
samples cluster on the score plot, the more stable the metabolomics analysis. All of the replicates
of the QC samples within the analytical run are tightly clustered in the center, indicating that the
metabolomics analysis in this study is stable and the differences between the samples are meaningful.
QC, quality control; LRC, centenarians in the longevous region; LRE, elderly people aged 60–70 years
in the longevous region.

3.3. Global Metabolic Profiling of Urine

UPLC-MS data showed that a total of 2114 features and 7080 features were obtained
in positive mode and negative mode, respectively. To further obtain a direct overview
of the differences in global metabolic profiles between the two groups and discover the
characteristic metabolites of healthy aging, the supervised OPLS-DA model was applied
to the classification of the LRC group and LRE group, as the predictive components in
OPLS-DA model can describe the effect of the healthy aging excluding the variance among
samples in the same group. The OPLS-DA scores plots depicted a clear separation between
the LRC group and LRE group (Figure 2). This suggests that there are distinct differences
in the global metabolic profiles between the two groups.

The quality of the OPLS-DA models was examined using the R2Y and Q2Y values
to verify that the models were not over-fitted and to evaluate the predictive ability of the
models. R2Y represents the goodness-of-fit parameter, and Q2Y represents the predictive
ability parameter. The OPLS-DA models with R2Y and Q2Y values greater than 0.5 are
reliable mathematical models with satisfactory predictability. As shown in Table 2, in the
ESI+ mode, R2Y and Q2Y were 0.984 and 0.801 respectively. In the ESI− mode, R2Y and Q2Y
were 0.993 and 0.796 respectively. Therefore, the results reveal that the OPLS-DA models
were well-fitted and displayed a satisfactory predictive ability.
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Figure 2. Scores plot from the orthogonal projections to latent structures discriminant analysis of
the global metabolome in the LRC and LRE group (A) in the positive ionization mode; (B) in the
negative ionization mode. Blue crosses represent LRC group. Red squares represent LRE group.
Their spatial distribution reveals the variations of the metabolic profiles between the two groups.
The two groups exhibit a clear separation, indicating that there are distinct differences in the global
metabolic profiles between the two groups. LRC, centenarians in the longevous region; LRE, elderly
people aged 60–70 years in the longevous region.

Table 2. The parameters of the OPLS-DA model.

Component R2X (cum) R2Y (cum) Q2Y (cum)

ESI+ mode 4P+1O 0.329 0.984 0.801
ESI− mode 5P+1O 0.434 0.993 0.796

R2X (cum) and R2Y (cum) represent the cumulative modeled variation in X and Y matrices, respectively, and Q2Y
(cum) is the cumulative predicted variation. 4P+1O, four predictive components and one orthogonal component
for establishing the OPLS-DA model in the ESI+ mode. 5P+1O, five predictive components and one orthogonal
component for establishing the OPLS-DA model in the ESI− mode.

3.4. Identification of Characteristic Metabolites of the Centenarians

To extract potential variables contributing to the detected differences in global metabolic
profiles between the two groups, the two criteria VIP > 1.0 in the OPLS-DA models and
p < 0.05 in the t-test were applied to identify the differential metabolites. A total of 69 dif-
ferential metabolites were obtained. The numbers of up-regulated and down-regulated
metabolites in LRC group were 45 and 24, respectively. The differential metabolites were
mostly classified into amino acids, organic acids, carbohydrates, bile acids, phosphatidyl-
choline (PC), phosphatidylserine (PS), lyso-phosphatidylethanolamine (Lyso PE), and
phosphatidylinositol (PI).

To further investigate the characteristic metabolites closely related to centenarians from
the longevous region, the fold change (FC) of metabolites in the LRC group versus the LRE
group was used to screen the characteristic components. The variables with |log2FC| ≥ 1,
VIP > 1.3 and p < 0.05 were designated as the characteristic metabolites. Consequently,
28 characteristic metabolites were obtained. The normalized quantities of the identified
characteristic metabolites in the two groups were plotted in a heat map (Figure 3). The
molecular weight, retention time, VIP in OPLS-DA models, p value in t-test, and FC of the
characteristic metabolites are shown in Table 3. Among these metabolites, 6 metabolites
including citrulline, lysine, hydroxylysine, histidine, histamine and indole were signif-
icantly decreased in the LRC group (p < 0.05), while 22 metabolites were significantly
increased in the LRC group (p < 0.05). The up-regulated metabolites were mostly sum-
marized into PS, Lyso PE, PC, PI, and bile acids. Of the 28 characteristic metabolites, the
FC values of PS (O-18:0/19:0), PS (22:4/22:4) and PS (20:0/19:0) were highest, and were
12.892, 12.478, and 12.004, respectively. All of the three characteristic metabolites belong
to PS. Additionally, the up-regulated characteristic metabolite Lyso PEs included Lyso PE
(0:0/18:1), Lyso PE (0:0/22:5), Lyso PE (0:0/22:4), Lyso PE (0:0/20:4), Lyso PE (0:0/22:6),
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and Lyso PE (0:0/18:4). The up-regulated characteristic metabolite PC and PI were PC
(16:0/17:1) and PI (20:2/18:3), respectively. The up-regulated characteristic metabolite bile
acids included cholic acid, deoxycholic acid, glycocholic acid and nutriacholic acid. Among
the down-regulated characteristic metabolites, the |FC| values of histamine, citrulline,
hydroxylysine and L-histidine were highest, with FC values of −1.471, −1.449, −1.419, and
−1.227, respectively. The heat map more obviously displayed a marked difference between
the LRC group and LRE group. Overall, the results indicate that the specific metabolic
profile of the centenarians from the longevous region reveals some unique and complex
remodeling of amino acid metabolism and lipid metabolism, compared with the elderly
people aged 60–70 years.
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Table 3. Characteristic metabolites of the centenarians from the longevous region.

Metabolites Molecular Weight Retention Time VIP p FC Change Trend

PS(22:4(7Z,10Z,13Z,16Z)/22:4(7Z,10Z,13Z,16Z)) 887.5598 11.82 2.361 <0.001 12.478 ↑
PS(20:0/19:0) 833.6138 12.50 2.922 <0.001 12.004 ↑

PS(O-18:0/19:0) 791.6030 7.77 2.641 <0.001 12.892 ↑
PS(22:0/18:3(6Z,9Z,12Z)) 841.5833 8.48 3.275 <0.001 4.824 ↑

LysoPE(0:0/18:1(11Z)) 479.3020 8.02 3.044 <0.001 1.154 ↑
LysoPE(0:0/22:5(7Z,10Z,13Z,16Z,19Z)) 527.3031 7.83 3.062 <0.001 2.630 ↑

LysoPE(0:0/22:4(7Z,10Z,13Z,16Z)) 529.3183 8.12 3.255 <0.001 2.189 ↑
LysoPE(0:0/20:4(5Z,8Z,11Z,14Z)) 501.2858 7.31 3.005 <0.001 1.066 ↑

LysoPE(0:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) 525.2857 7.27 2.949 <0.001 1.948 ↑
LysoPE(0:0/18:4(6Z,9Z,12Z,15Z)) 473.2537 4.31 1.588 0.004 3.118 ↑
PI(20:2(11Z,14Z)/18:3(6Z,9Z,12Z)) 884.5386 8.26 1.416 0.010 10.920 ↑

PC(16:0/17:1(9Z)) 745.5593 9.96 1.612 0.003 9.817 ↑
Deoxycholic acid 392.2937 5.76 1.673 0.002 3.204 ↑
Glycocholic acid 465.3101 4.33 1.424 0.010 1.709 ↑

Cholic acid 408.2888 4.74 1.447 0.009 2.910 ↑
Nutriacholic acid 390.2742 4.74 1.397 0.006 1.987 ↑

PG(12:0/0:0) 428.2236 6.35 1.444 0.009 2.348 ↑
MG(0:0/20:4(5Z,8Z,11Z,14Z)/0:0) 378.2778 6.25 1.908 <0.001 3.062 ↑

Niacin 123.0325 1.24 2.013 <0.001 1.059 ↑
Caffeic acid 180.0418 1.86 3.143 <0.001 1.134 ↑
Orotic acid 156.0172 0.90 1.384 0.012 1.012 ↑
Urothion 324.1676 3.45 1.655 0.001 1.770 ↑

Histamine 111.0801 0.82 2.233 <0.001 −1.471 ↓
L-Histidine 155.0702 0.77 2.340 <0.001 −1.227 ↓
Citrulline 175.0965 0.86 1.869 0.001 −1.449 ↓
L-Lysine 146.1060 0.86 1.691 0.002 −1.199 ↓

Hydroxylysine 162.1011 0.75 1.348 0.015 −1.419 ↓
Indole 117.0543 0.86 2.338 <0.001 −1.057 ↓

Variable importance in the projection (VIP) is obtained from OPLS-DA with a threshold of 1.3. The p values are
obtained by t-test. The fold change (FC) is calculated by logarithmic value of the ratio of the LRC group to LRE
group. Change trend represents change trend of the metabolite in the LRC group as compared to the LRE group.
The ↑ and ↓ represent that the metabolites are increased and decreased in the LRC group compared with the LRE
group, respectively.

3.5. Correlation Relationships of Differential Metabolites in Urine

To gain insight into how the above differential metabolites were coordinated in healthy
aging, a chord diagram was constructed to investigate the latent relationships of the 69 differ-
ential metabolites. A connection was established between 2 metabolites when their Pearson
correlation coefficient was higher than 0.7 in absolute value, as shown in Figure 4. The
pink circular arc represented up-regulated metabolites, and the blue circular arc represented
down-regulated metabolites. Interestingly, more correlations between metabolites trended
toward positive correlations. The most conspicuous correlations were lipid-lipid connections
and amino acid-amino acid connections, which revealed unique functional clusters of co-
regulated metabolites including lyso-phosphatidylethanolamine, phosphatidylserine, bile
acids, and amino acids. Among these correlations, the correlation coefficient of N-acetyl-α-
neuraminic acid and inosine was highest (R = 0.9989, p = 3.7× 10−80), followed by L-histidine
and histamine (R = 0.9847, p = 1.7 × 10−46), nutriacholic acid and cholic acid (R = 0.9816,
p = 3.8 × 10−44). Among the negative correlations, the absolute value of correlation coefficient
of PG(15:1(9Z)/0:0) and 5-hydroxy-L-tryptophan was highest (R = −0.6977, p = 4.1 × 10−10).

3.6. Discovery of Metabolic Pathways Relevant to Healthy Aging

To identify the most relevant pathways of the above 69 differential metabolites,
metabolic pathway analysis was performed using MetaboAnalyst 5.0, as well as the KEGG
pathway database (http://www.genome.jp/kegg/, accessed on 26 April 2022), as shown
in Figure 5A. The results of the pathway analysis are summarized in Table 4. By means
of the pathway topology analysis, the results showed that the pathway impact values
of eight metabolic pathways, including alanine, aspartate and glutamate metabolism; β-
alanine metabolism; histidine metabolism; tryptophan metabolism; ascorbate and aldarate
metabolism; arginine biosynthesis; pyruvate metabolism; and phenylalanine, tyrosine
and tryptophan biosynthesis, were higher than 0.2, which was the cutoff value for rel-
evance. Meanwhile, through the enrichment analysis, the results showed that alanine,
aspartate and glutamate metabolism; β-alanine metabolism; histidine metabolism; tryp-

http://www.genome.jp/kegg/
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tophan metabolism; ascorbate and aldarate metabolism; and arginine biosynthesis were
significantly enriched, with adjusted p-values < 0.05. Thus, the above 6 metabolic pathways
were considered to be the significantly relevant pathways in terms of impact values and
adjusted p-values, which were closely related to centenarians from the longevous region.
Among the significantly relevant metabolic pathways, the pathway impact value of his-
tidine metabolism was highest (impact value 0.53), followed by ascorbate and aldarate
metabolism (impact value 0.50); and alanine, aspartate and glutamate metabolism (impact
value 0.42).

Nutrients 2022, 14, x FOR PEER REVIEW    3 of 19 
 

 
Nutrients 2022, 14, x. https://doi.org/10.3390/xxxxx  www.mdpi.com/journal/nutrients 

 

Figure 4. The pink circular arc represented up‐regulated metabolites, and the blue circular 

arc  represented  down‐regulated metabolites.  Interestingly, more  correlations  between 

metabolites trended toward positive correlations. The most conspicuous correlations were 

lipid‐lipid connections and amino acid‐amino acid connections, which revealed unique 

functional clusters of co‐regulated metabolites including lyso‐phosphatidylethanolamine, 

phosphatidylserine, bile acids, and amino acids. Among these correlations, the correlation 

coefficient of N‐acetyl‐α‐neuraminic acid and inosine was highest (R = 0.9989, P = 3.7 × 

10−80), followed by L‐histidine and histamine (R = 0.9847, P = 1.7 × 10−46), nutriacholic acid 

and cholic acid (R = 0.9816, P = 3.8 × 10−44). Among the negative correlations, the absolute 

value  of  correlation  coefficient  of  PG(15:1(9Z)/0:0)  and  5‐hydroxy‐L‐tryptophan  was 

highest (R = −0.6977, P = 4.1 × 10−10). 

 

Figure 4. Chord diagram of the correlations between differential metabolites. When Pearson corre‐

lation coefficient between two metabolites is higher than 0.7 in absolute value, a connection is es‐

tablished. Colors denote the classification of metabolites. The pink circular arc represents up‐regu‐

lated metabolites, and the blue circular arc represents down‐regulated metabolites. More correla‐

tions between metabolites  trend  toward positive correlations. The most conspicuous correlations 

are  lipid–lipid connections and amino acid‐amino acid connections,  revealing unique  functional 

clusters of co‐regulated metabolites including lyso‐phosphatidylethanolamine, phosphatidylserine, 

bile acids, and amino acids. 

3.6. Discovery of Metabolic Pathways Relevant to Healthy Aging 

Figure 4. Chord diagram of the correlations between differential metabolites. When Pearson correla-
tion coefficient between two metabolites is higher than 0.7 in absolute value, a connection is estab-
lished. Colors denote the classification of metabolites. The pink circular arc represents up-regulated
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lipid–lipid connections and amino acid-amino acid connections, revealing unique functional clusters
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analysis. These significantly relevant metabolic pathways reflect a specific remodeling of amino acid metabolism in centenarians.
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Table 4. Metabolic pathways of differential metabolites.

Pathway Name Total Hits Raw p Holm Adjusted p Impact

Alanine, aspartate and glutamate metabolism 28 4 4.96 × 10−6 0.0002 0.42
β-Alanine metabolism 21 3 6.75 × 10−6 0.0003 0.40
Histidine metabolism 16 4 6.85 × 10−6 0.0003 0.53

Tryptophan metabolism 41 2 3.14 × 10−5 0.0010 0.27
Ascorbate and aldarate metabolism 8 3 0.0003 0.0089 0.50

Arginine biosynthesis 14 6 0.0003 0.0089 0.30
Pyruvate metabolism 22 1 0.0059 0.0828 0.21

Phenylalanine, tyrosine and tryptophan
biosynthesis 4 1 0.0060 0.0828 0.50

Total denotes the total number of metabolites in the pathway. Hits denotes the actually matched number of
metabolites in the pathway. Raw p is the original p value calculated from the enrichment analysis. Holm-adjusted
p is the p value adjusted by Holm–Bonferroni method. Impact represents the pathway impact value calculated
from pathway topology analysis.

The schematic representation of integrative metabolic pathways including the above
6 significantly relevant pathways is shown in Figure 5B. Ascorbate and aldarate metabolism
included myo-inositol, D-glucuronic acid and D-glucarate, in which all three metabolites
significantly increased in the LRC group (p < 0.05). L-histidine, histamine, and urocanic
acid belonged to histidine metabolism, in which L-histidine and histamine significantly de-
creased (p < 0.05) while urocanic acid significantly increased in the LRC group (p < 0.05), and
urocanic acid was eventually converted to glutamate. In the pathway of alanine, aspartate
and glutamate metabolism, L-glutamine, γ-aminobutyric acid, L-aspartate and pyruvate
significantly increased in the LRC group (p < 0.05). L-aspartate, β-alanine and L-histidine
were included in β-alanine metabolism, in which β-alanine also increased significantly in
the LRC group (p < 0.05). Citrulline, L-arginine, N-acetyl-ornithine, and urea belonged to
arginine biosynthesis, in which all of the four metabolites significantly decreased in the
LRC group (p < 0.05). In the pathway of tryptophan metabolism, L-tryptophan and indole
significantly decreased in the LRC group (p < 0.05). These significantly relevant metabolic
pathways reflect a specific remodeling of amino acid metabolism in centenarians.

3.7. Diet-Associated Remodeling of SCFA Metabolism

The contents of the SCFAs in feces are presented in Figure 6. The concentrations of
acetic acid, propionic acid, isobutyric acid, butyric acid, valeric acid, and total SCFA in the
LRC group were significantly higher than those in the LRE group (p < 0.05). The contents
of acetic acid, propionic acid, isobutyric acid, butyric acid, valeric acid, and total SCFA
increased 1.3-fold, 1.2-fold, 1.3-fold, 2.0-fold, 1.2-fold, and 1.4-fold, respectively, for the
LRC group, compared with those for the LRE group. Consequently, the results revealed the
unique remodeling of SCFA metabolism in the LRC group, indicating that higher contents
of the SCFAs have a positive influence on health and longevity of the centenarians from the
longevous region.

In order to investigate why the above SCFAs were increased in the LRC group, the
relationships between SCFAs and diet were further assessed. The intakes of macronutrients
and dietary fiber in the LRC group and LRE group were obtained by 28-day WDR method
coupled with the Chinese food composition tables, as shown in Figure 7. The dietary fiber
intake of the LRC group was significantly higher than that of the LRE group (p < 0.01),
which increased 1.4-fold for the LRC group compared with that for the LRE group. The
carbohydrate intake of the LRC group was significantly lower than that of the LRE group
(p < 0.05). There was no significant difference in protein and fat intake between the LRC
group and LRE group. The energy intake and macronutrients-calorie percent composition
were further calculated (Table 5). The results showed that energy intake of the LRC group
was significantly lower than that of the LRE group (p < 0.01), whereas there were no
significant differences in the energy supply ratios of protein, fat, and carbohydrate between
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the LRC group and LRE group. Therefore, this suggests that decreased energy intake and
increased dietary fiber intake may be conducive to health and longevity.
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are significantly different. LRC, centenarians in the longevous region; LRE, elderly people aged 60–70 years in the
longevous region.

Thus, the Spearman correlation test was performed to analyze the relationships be-
tween dietary fiber intake and SCFAs in feces, as shown in Table 6. Significant positive
correlations were observed between the contents of acetic acid (R = 0.548, p < 0.01), pro-
pionic acid (R = 0.571, p < 0.01), butyric acid (R = 0.930, p < 0.01), valeric acid (R = 0.408,
p < 0.01), and total SCFA (R = 0.724, p < 0.01) and the dietary fiber intake, which indicates
that higher intake of dietary fiber makes for the elevated SCFAs in the feces of centenarians.
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Table 6. Correlations between dietary fiber intake and short chain fatty acids in feces.

Acetic Acid Propionic Acid Isobutyric Acid Butyric Acid Isovaleric Acid Valeric Acid Total SCFA

R 0.548 ** 0.571 ** 0.219 0.930 ** 0.112 0.408 ** 0.724 **
p <0.001 <0.001 0.089 <0.001 0.392 0.001 <0.001

R denotes the Spearman correlation coefficient. ** represents p < 0.01, correlations are statistically significant at the
0.01 level.

4. Discussion

Through the systematic analysis of comprehensive metabolic profiles of the healthy
centenarians by the non-targeted metabolomics approaches coupled with the metabolic
target analysis, we captured the unique metabolic signatures of the exceptional longevity,
which achieved initial aim of this study and expanded our previous investigation on
longevity characterization [10]. As centenarians provide an excellent paradigm of healthy
aging, the exploration of metabolic patterns of healthy centenarians from the longevous
region opens a window into extreme longevity. The relevant studies have elucidated some
important metabolic alterations related to the aging process [1,3–6,14,15]. However, most
of the reports lacked the guidance of a successful model of healthy aging. Only Collino and
Montoliu et al. described the metabolic phenotype of Italian centenarians [1,6]. Despite
these findings, the underlying metabolic pathways associated with these phenotypes as
well as the dietary influence on the metabolism of centenarians have remained poorly
understood. Nevertheless, we discovered the 28 characteristic metabolites and 6 metabolic
pathways closely related to the centenarians for the first time, reflecting distinctive re-
modeling of phospholipid and amino acid metabolism. Moreover, we also demonstrated
diet-associated remodeling of SCFA metabolism. These specific metabolic remodeling may
play a critical role in shaping healthy aging.

It has been reported that phospholipids metabolism changed with aging, whereas
there were some differences in individual phospholipid molecules among different stud-
ies [1,6,14–16], which could be attributed to the differences in geographic areas, genetic
background, race, living environment, lifestyle, and dietary habits of the subjects. PC
(14:0/18:1), PC (16:0/18:1), PC (16:0/18:2), PC (14:0/18:2), PC (16:0/18:3), PC (18:0/22:5),
PE (16:0/20:4), PE (18:0/20:2), PE (18:0/20:3), PE (18:0/20:4), PI (18:0/18:1), PI (18:1/16:0),
PI (20:3/18:0) were increased in Italian centenarians [6]. However, we found that the
characteristic metabolites PS (O-18:0/19:0), PS (22:4/22:4), PS (20:0/19:0) and PS (22:0/18:3)
were significantly increased in the LRC group (p < 0.05), especially PS (O-18:0/19:0), PS
(22:4/22:4) and PS (20:0/19:0) with the highest FC. PSs have some potential cognitive bene-
fits, which have been shown to increase memory performance in the elderly [17,18]. PSs are
also widely involved in some important physiological processes, including phagocytosis by
macrophage, and activation of protein kinase C [19]. This indicates that given the cognitive
benefits, higher PSs should be beneficial to health and longevity, which also reflects the
specific remodeling of phospholipids metabolism of the healthy centenarians from the
longevous region.

The four bile acids, including cholic acid, deoxycholic acid, glycocholic acid, and
nutriacholic acid, were significantly increased in the LRC group (p < 0.05), which were also
characteristic metabolites closely related to the centenarians. Studies have demonstrated
that bile acids act as metabolic regulators and nutrient sensors to regulate glucose and lipid
metabolism, and immune response [20]. As signaling molecules, in mammals, bile acids
specifically bind to and activate some receptors, hence stimulating many vital longevity-
promoting and healthspan-promoting processes, such as anti-inflammatory processes [21].
Therefore, our finding suggests that the above four up-regulated bile acids may be beneficial
to healthy aging. Notably, Zhang et al. found that the level of glycocholic acid was
significantly decreased with age ranging from 20 to 74 years old [22]. In turn to see the
discovery of this study, it is reasonably speculated that the bile acids metabolism of the
healthy centenarians may revert to a more youthful state with respect to the elderly people
aged 60–70 years, which also represents the unique metabolic signatures of the healthy



Nutrients 2022, 14, 4420 14 of 18

centenarians from the longevous region, and a path to health and longevity by means of
appropriately up-regulated bile acids metabolism.

The metabolic fate of the characteristic metabolite L-histidine has three possible routes.
The first pathway is its conversion to the biogenic amine histamine. As a neurotransmitter,
histamine is also involved in local immune responses [14]. The second pathway is its
metabolism to urocanic acid. The third metabolic pathway that consumes L-histidine
produces carnosine that is a dipeptide from β-alanine and L-histidine. Owing to its
antioxidant characteristics, carnosine is considered to be a natural anti-aging substance
capable of suppressing oxidative damage, glycation of proteins, and scavenging toxic
age-related molecules [23]. From this point of view, the lower L-histidine levels in our
study (p < 0.05) owing to its consumption by carnosine biosynthesis with advancing age
might to some extent reflect a response to oxidative stress. A previous study showed that
histidine decreased in serum with age (participants aged 32–81) [14]. However, we found
that L-histidine and histamine significantly decreased in the urine of healthy centenarians
(p < 0.05), displaying the unique and effective remodeling of histidine metabolism in
centenarians to counteract oxidative stress.

We also discovered that the characteristic metabolite citrulline was significantly de-
creased in the LRC group (p < 0.05), which was involved in urea cycle that was down-
regulated as well. In urea cycle, arginine level was also lower in the LRC group (p < 0.05).
It has been shown that arginine was significantly decreased in ageing participants of KORA
and CARLA [4]. Moreover, arginine level was recently shown to be significantly positively
correlated with dietary carbohydrate intake (R = 0.79, p < 0.05) [24]. As for this study, we
found that the carbohydrate intake was also significantly lower in the LRC group (p < 0.05),
with a similar trend with that in the above report. Intriguingly, aspartate was significantly
increased in the LRC group (p < 0.05). The relevant studies in cells and mammals have
shown that aspartate supplementation reduces ROS production in neuroblastoma cells and
reduces oxidative stress and increases antioxidant levels in the blood [25,26]. In fact, de-
creased ROS is believed to be a critical mechanism behind the extended lifespan and health
span [27]. However, we have found no available data on relationships between aspartate
and human longevity so far. Based on the discovery of this study, it is reasonable to assume
that aspartate metabolism plays an important and positive role in human longevity.

As a nitrogen shuttle, glutamine takes up excess ammonia and forms urea, thereby
reducing toxic build-up in the brain and improving brain functions [28]. Glutamine also
plays an important role in NF-κB signal transduction pathways, contributing to the attenua-
tion of local inflammation [6]. Montoliu et al. found that glutamine was increased in serum
of Italian centenarians by 1H-NMR [6]. However, interestingly, we discovered a significant
increase in glutamine in the urine of healthy centenarians from Bama County (p < 0.05).
Given the physiological functions of glutamine metabolism, higher glutamine should have
a positive influence on the health and longevity of centenarians.

In the pathway of ascorbate and aldarate metabolism, we observed a significant in-
creased level of myo-inositol in the LRC group (p < 0.05). Myo-inositol promoted healthspan
and prevented age-related decline in physiological functions in worm and mouse [29,30].
However, the relevant studies in humans have not been reported. Our finding suggests
that increased myo-inositol may be conducive to longevity of centenarians.

As to tryptophan metabolism, a previous study showed that the tryptophan and
indole concentrations in feces progressively decreased with age (volunteers aged 2 to
85 years) [31]. It has also been reported that tryptophan decreased in serum with increasing
age [1]. Nevertheless, we found that tryptophan and its degradation product indole in
urine of healthy centenarians were significantly down-regulated (p < 0.05) for the first time,
indicating the characteristic remodeling of tryptophan metabolism of healthy centenarians
from the longevous region. Additionally, their energy (p < 0.01) and carbohydrate (p < 0.05)
intakes were significantly lower. Other work showed that tryptophan decreased with
caloric restriction in an intervention study including eight subjects [32]. It was also reported
that very low-carbohydrate ketogenic diet also decreased tryptophan levels in mice [33].
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The above intervention study and mice experiment have similar trends with our results,
suggesting that the specific remodeling of tryptophan metabolism may be associated with
diet of centenarians.

We also discovered a particular remodeling of SCFA metabolism of healthy centenarians
associated with dietary fiber intake (p < 0.01). It has been shown that oldest-old adults
had greater potential for SCFA production [34]. Our previous study also found that SCFAs
were increased in feces of the elderly people in Bama County, compared with the elderly
people from a non-longevous region [10]. SCFAs perform various physiological functions
in the gut, including anti-inflammatory, antimicrobial, and antitumorigenic effects [35],
associated with lower risks for some diseases [36], especially butyric acid and propionic acid,
promoting metabolic benefits via gut-brain neural circuits [37]. It is therefore concluded that
the relatively higher levels of SCFAs may be conducive to longevity of the centenarians, and
appropriate increased dietary fibers in daily diets should be a path toward the longevity.

This study has several strengths. First, the two complementary strategies, non-targeted
metabolomics and metabolite target analysis were used. Non-targeted metabolomics is a
valuable approach to obtaining a comprehensive depiction of the metabolic status closely
related to the phenotypic outcome of interest in an unbiased manner [38]. Meanwhile,
targeted metabolomics, which is an accurate quantitative method to analyze biochemically
known and annotated metabolites, provides information that is more precise on specific
metabolites and metabolic pathways [39]. Second, the two kinds of different biological
samples, including urine and feces, were analyzed to comprehensively assess the metabolic
features of healthy centenarians from different perspectives. To date, most of the relevant
reports primarily focus on metabolites in serum and plasma [3–6,14–16,40]. Collino et al.
explored the metabolic changes in serum and urine of Italian centenarians [1]. However,
the investigation on the signatures of global metabolic profiles of the exceptional longevity
using two kinds of biological samples—urine and feces—by means of the two complemen-
tary metabolomics approaches has not been reported yet so far. Third, the four-season
consecutive 7-day WDR method was used to assess the usual habitual nutrient intakes,
which reflects real-life nutrient intakes and minimizes variances in dietary intakes accord-
ing to seasons and days. Among available nutrition assessment approaches, the WDR
method is the most accurate and robust and is accepted as a gold standard [41], though
it is expensive, time-consuming, and generally requires considerable commitment on the
part of volunteers [42]. Fourth, characteristic metabolites and metabolic pathways closely
related to centenarians from the longevous region were discovered based on the OPLS-DA
model that is reliable and robust for a small sample size.

Nevertheless, some limitations of this exploratory study need to be noted. First, healthy
aging also depends on many other factors, such as hereditary and environmental factors [43],
while this study is limited by its cross-sectional design, and therefore a causal relationship
between metabolism and longevity cannot be concluded directly. However, the unique
metabolic signatures of the centenarians from the longevous region discovered in this study
provided new clues for further exploration of the relationship between metabolism and
longevity. Future studies are needed to investigate the metabolic mechanisms affecting
healthy aging. Second, the detailed data on the smoking history and amount were unavail-
able, and therefore, it is necessary to exclude the influence of smoking in future work. Third,
the strict screening criteria of participants, as well as an extremely limited number of healthy
centenarians, resulted in a relatively small sample size. In addition, due to the tedious process
of the 28-day WDR method and the complicated protocols of the sample collection, many
volunteers withdrew from the study. Nevertheless, we applied the OPLS-DA method to
construct the classification model of the LRC group and LRE group and identify character-
istic metabolites. As a pattern recognition approach, OPLS-DA has distinct advantages in
solving the classification problem of a very small number of samples [44], which overcomes
the limitation of sample size. Further studies including additional cohorts from different
longevous regions are required to validate these findings.
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5. Conclusions

The unique age-accompanied and diet-associated remodeling of phospholipid, amino
acid, and SCFA metabolism in healthy centenarians from the longevous region opens
a window into the extreme longevity. Given the specific physiological functions of the
characteristic metabolites and the relevant metabolic pathways, this metabolic remodeling
is suggestive of the cognitive benefits, better antioxidant capacity, attenuation of local
inflammation, and health-span-promoting processes, which plays a critical and positive
role in shaping healthy aging. These findings help to pave a new avenue for further
understanding human longevity from a metabolic point of view.
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