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Abstract: Diet is a modifiable risk factor for common chronic diseases and mental health disorders,
and its effects are under partial genetic control. To estimate the impact of diet on individual health,
most epidemiological and genetic studies have focused on individual aspects of dietary intake. How-
ever, analysing individual food groups in isolation does not capture the complexity of the whole
diet pattern. Dietary indices enable a holistic estimation of diet and account for the intercorrelations
between food and nutrients. In this study we performed the first ever genome-wide association study
(GWA) including 173,701 individuals from the UK Biobank to identify genetic variants associated
with the Dietary Approaches to Stop Hypertension (DASH) diet. DASH was calculated using the
24 h-recall questionnaire collected by UK Biobank. The GWA was performed using a linear mixed
model implemented in BOLT-LMM. We identified seven independent single-nucleotide polymor-
phisms (SNPs) associated with DASH. Significant genetic correlations were observed between DASH
and several educational traits with a significant enrichment for genes involved in the AMP-dependent
protein kinase (AMPK) activation that controls the appetite by regulating the signalling in the hy-
pothalamus. The colocalization analysis implicates genes involved in body mass index (BMI)/obesity
and neuroticism (ARPP21, RP11-62H7.2, MFHAS1, RHEBL1). The Mendelian randomisation analysis
suggested that increased DASH score, which reflect a healthy diet style, is causal of lower glucose,
and insulin levels. These findings further our knowledge of the pathways underlying the relationship
between diet and health outcomes. They may have significant implications for global public health
and provide future dietary recommendations for the prevention of common chronic diseases.

Keywords: DASH; genetic; GWA

1. Introduction

In 2016, the World Health Organization (WHO) estimated that more than 1.9 billion
adults were overweight or obese with alarming projections indicating that by 2030, nearly
60% of the worldwide population could be either overweight or obese [1]. Obesity is a
common metabolic disease and a major risk factor for other common chronic diseases,
including cardiovascular disease (CAD), type 2 diabetes (T2D), metabolic syndrome, and
cancer [2,3]. Moreover, obesity has been linked to common mental disorders [4]. Since both
chronic diseases and mental disorder present an enormous economic burden to society,
understanding the relationships between nutrition, lifestyle, and individual health has
become one of the highest priorities for public health organizations [5]. Indeed, diet
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interventions combined with physical activity have been shown to prevent or mitigate the
risk of developing common chronic diseases and mental health disorders [5–7].

To estimate the impact of diet on individual health, epidemiological and genetic studies
have so far focused on different aspects of dietary intake such as macronutrient composition,
curated measures of single food intake, multivariate dietary patterns described by principal
component analysis (PCA) and food liking. Five genome-wide association studies (GWAs)
have been conducted on macronutrient intake [8–11], two GWAs were performed on the
PCA derived from the average consumption of defined diet components (i.e., meat, fish,
vegetables) [12,13] and, more recently, a large scale GWA of food liking assessed food
preferences over 139 specific foods [14]. Moreover, the Neale Lab (http://www.nealelab.is/
uk-biobank/ accessed on 1 April 2022) conducted GWAs of thousands single food intakes
(i.e., wholemeal bread vs. all food intakes) in 361,000 unrelated individuals in UK Biobank
(UKB).

However, analysing individual food groups in isolation presents some limitations
since the complexity of the diet pattern as a whole is not considered [15]. Indeed, con-
sumption of certain food groups (e.g., fruit often with vegetables, or fat with sugar) is often
correlated [16] and the impacts of macronutrient composition on weight change have been
particularly controversial [17].

Over recent decades, the research has shifted towards the analysis of dietary patterns
(dietary indices). Dietary indices enable a holistic estimation of diet and account for
the intercorrelations between nutrients or foods and for the possible synergic effects of
nutrients [15]. We have recently reported that adherence to the Dietary Approaches to Stop
Hypertension (DASH) diet decreased cardiovascular risk phenotypes [18] and we found
that DASH is under strong genetic influence, with heritability estimates of 37% [19].

Following up on these findings [18,19], here we report the results of what, to our knowl-
edge, is the first GWA that seeks to identify putative genetic determinants of DASH. For this
purpose, we used available food questionnaire data and genotypes from 173,701 subjects of
European ancestry participating in the UKB collection [20]. We applied in silico functional
analyses on the identified loci to gain insights into the biological processes that potentially
regulate dietary intake and conducted a Mendelian randomization analysis to provide
evidence of the causal relationship between DASH and both cardiovascular risk factors
and mental health disorders.

2. Materials and Methods
2.1. Study Population

We carried out a GWA analysis for DASH index that was calculated based on the UK
Biobank 24 h dietary recall questionnaire [21]. In the UK Biobank, dietary intake was based
on the average of a 24 h dietary recall of the previous day over 5 instances between 2009
and 2012 (Table 1) [21]. At the first instance, the questionnaire was completed on a touch
screen. For the remaining 4 instances, an on-line questionnaire was sent to the participants.
The average period between recalls was 6 months. Participants were questioned about
whether they had eaten or drunk any of the approximately 300 commonly consumed foods
and beverages in the previous 24 h, along with their amount and portion sizes.

A total of 203,581 individuals replied to one or more questionnaires. DASH diet scores
were computed using the individual food intakes for each food group included in the
DASH index [22] (Supplementary Materials Table S1). Scores range from 8 to 40 a higher
score indicating closer adherence to a DASH dietary pattern. A total of 105,930 (60%)
individuals replied to more than one questionnaire (Table 1).

For these subjects we computed the averages of their scores. We excluded from the
analysis subjects who fell in each of the following category: (i) incomplete diet questionnaire,
(ii) nutritional data not credible (UKB field 100,026) and (iii) low energy intake reported
(energy intake < 1.1 × resting metabolic rate (RMR), with the RMR calculated by Mifflin
St Jeor equation [23]). After the exclusions, we included in the GWA analysis a total of
173,701 individuals with both questionnaire and genotype data available (Table 1).

http://www.nealelab.is/uk-biobank/
http://www.nealelab.is/uk-biobank/
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Table 1. Baseline characteristics of the UK Biobank participants included in the GWA analysis.

Total Participants
(n = 173,701)

Age (years) (Mean (SD)) 56.420 (7.864)
Gender
Female 94,721 (54.5%)
Male 78,980 (45.5%)

BMI (kg/m2) (Mean (SD)) 26.462 (4.633)
Townsend Index (Mean (SD)) −1.519 (2.424)

Smoking
Yes 98,378 (56.6%)
No 75,323 (43.4%)

Alcohol (g/day per week) (Mean (SD)) 13.971 (21.439)
Instances of 24 h FFQ answered

1 67,771 (39%)
2 39,797 (22.9%)
3 35,567 (20.5%)
4 25,713 (14.8%)
5 4853 (2.8%)

Energy intake (kcal) (Mean (SD)) 2106.596 (595.421)
Fruit (Mean Servings (SD)) 3.16 (2.52)

Vegetables (Mean Servings (SD)) 3.49 (3.06)
Nuts and legumes (Mean Servings (SD)) 0.9 (1.06)

Whole grains (Mean Servings (SD)) 4.05 (3.12)
Low-fat dairy (Mean Servings (SD)) 0.66 (0.84)

Sodium (mg) (Mean (SD)) 2998.9 (3046.66)
Red and processed meat (Mean Servings (SD)) 1.66 (1.75)

Sweetened beverages (Mean Servings (SD)) 0.47 (0.89)
DASH (Mean (SD)) 24 (4.24)

SD, standard deviation; BMI, body mass index; FFQ, food frequency questionnaire; DASH, Dietary Approaches to
Stop Hypertension; GWA, genome-wide association study.

2.2. Genome Wide Association Analysis

UK Biobank is a large prospective cohort including genome wide genotyping, deep
phenotyping and molecular data on over 500,000 individuals recruited throughout the UK
between 2006–2010 [20]. Full details on genotyping, imputation and initial quality control
of the genetic dataset have been described previously [24]. Briefly, UK Biobank participants
were genotyped using two similar and mutually compatible SNP arrays platforms: the
Affymetrix UK Biobank Axiom array and the UK BiLEVE array [24] and the imputation
was performed combining Haplotype Reference Consortium (HRC) [25] and UK10K [26]
reference panels. We also excluded from further analyses individuals based on (1) high
SNP missingness (>2%); (2) extreme heterozygosity (±3 SD from mean heterozygosity
rate); (3) withdrew their consent at the time of analysis; and/or (4) were not of European
ancestry (flagged from the UKBB principal component analysis). Furthermore, we also
excluded SNPs because they had: (1) minor allele frequency (MAF) ≤ 5% and/or (2) info
score (imputation quality) ≤ 0.8.

The genome wide association analysis was performed in BOLT-LMM [27] using a
linear mixed model, in order to provide additional corrections for population structure and
cryptic relatedness. DASH diet score was used as the outcome variable in the regression
model, under the assumption of an additive model for allelic effects. In order to account
for confounding effects, the regression model was adjusted for age, sex, BMI, energy intake,
smoking status, age, alcohol intake as a categorical (0–5 g/d, 5–15 g/d, or >15 g/d) and the
first five principal components. We also included in the association model the Townsend
deprivation Index [28] (a composite measure of socioeconomic deprivation and household
income) to account for the socio-economic status of the participants. Sex chromosomes
were not included in the analysis.
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2.3. Mapping and Conditional Analysis

We used the Functional Mapping and Annotation of Genome-Wide Association
Studies (FUMA) web-based application (https://fuma.ctglab.nl/) [29] to identify single-
nucleotide polymorphisms (SNPs) associated with DASH at genome-wide significant
p-value (p < 5 × 10−8) that are in approximate linkage disequilibrium with each other at
r2 < 0.1. The independence of these signals was directly assessed using the imputed geno-
type dosage for the lead SNPs as a covariate along with the other covariates from the
primary GWA using a linear mixed model in BOLT-LMM (conditional analysis). We de-
fined a novel locus if all the variants and the genes mapping in the identified loci were not
previously reported associated with DASH by querying NHGRI-EBI GWAS Catalog [30],
PhenoScanner (v2.0) [31] and Open Target Genetics [32].

2.4. Pathway and Colocalization Analysis

We used Multi-marker Analysis of GenoMic Annotation (MAGMA) (Version 1.8),
implemented in FUMA web-based application, applying standard settings to identify the
most likely causal genes [33]. The statistical threshold for the most credible gene was
defined at p < 2.86 × 10−6 (0.05/17,460 analysed genes). To validate MAGMA results,
we also conducted gene analysis and gene set analysis using VEGAS2 (version 0.2) [34]
using the default options. In this case, the statistical threshold set at p < 2.55 × 10−6

(0.05/19,640 analysed genes). For each GWA locus, we performed a colocalization analysis
with the “coloc” R package (Version 3.2-1, R Core Team, Vienna, Austria) [35].

We performed the “coloc” analysis using the publicly available genome-wide expres-
sion quantitative trait locus (eQTL) data from 31,684 whole-blood samples deposited on
the eQTLgen portal [36,37]. We included in the analysis all cis-eQTLs (false discovery rate
(FDR) < 0.05) present in both DASH GWA and eQTLgen results and mapping 1 Mb across
the lead SNP of each locus. Analyses were performed using the recommended defaults
prior probabilities (PP) (PP for association in the GWA (P1): 1 × 10−4; PP for association in
the eQTL (P2): 1 × 10−4; and PP for association in both dataset (P12): 1 × 10−5).

To investigate the SNP functional relevance on DASH, we applied the Summary-
data-based Mendelian Randomization (SMR) (Version 1.03) approach [38], integrating the
summary results from eQTLGen Consortium [36,37] and DASH GWA. SMR applies the
principles of Mendelian randomization (MR) to test the association between gene eQTLs
and a trait using the most associated SNP as a genetic instrument [38]. A significant SMR
test indicates that a functional variant determines both gene expression and the trait of
interest via causality or pleiotropy.

The heterogeneity in dependent instruments (HEIDI) test evaluates the existence of
linkage disequilibrium (LD) in the observed association. Rejection of the null hypothesis
(PHEIDI < 0.05) indicates that the association might be due to two distinct variants in
high LD. We performed SMR using the recommended default options and utilised the
genotypes from 3601 independent TwinsUK samples to estimate the LD structures. To
account for multiple testing, SMR p-values were adjusted using the Benjamini and Hochberg
method [39]. Association tests with pSMRFDR < 0.01 were considered statistically significant,
while pSMRFDR < 0.05 and ≥0.01 were considered “suggestive”.

2.5. Shared Genetic Architecture with Disease

Genetic correlations (rg) between DASH and complex traits were estimated using
linkage disequilibrium score regression (LDSC) through LD-hub (Version 1.9.3) software
performed using the LD-Hub online portal (http://ldsc.broadinstitute.org/) [40] that
automates the computation of rg between one phenotypic trait of interest and 855 dis-
eases or other phenotypic traits whose summary-level GWAs results are deposited in the
database. To account for multiple testing, the significance for the LDSC analysis was set at
pLDSCFDR < 0.01.

https://fuma.ctglab.nl/
http://ldsc.broadinstitute.org/
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2.6. Mendelian Randomization

We performed a two-sample bidirectional Mendelian randomization analyses utilising
the Generalised Summary-data-based Mendelian Randomization (GSMR)
(Version 1.0.9) [41] implemented in the Genome-wide Complex Trait Analysis (GCTA)
(Version 1.93.2) suite [42]. The GSMR estimate the effect and its standard error from mul-
tiple SNPs associated with the analysed traits at a genome-wide significance level. To
perform the GSMR analysis we utilised the following summary statistics from genetic
studies not overlapping UK Biobank: Body mass index (BMI) [43], high-density lipopro-
tein (HDL), low-density lipoprotein (LDL), triglycerides (TAG), total cholesterol (TC) [44],
Glucose, Insulin [45], Homeostatic Model Assessment-Insulin Resistance (HOMA-IR) [46],
coronary artery disease (CAD) [47] and Body Fat percentage [48]. In light of the results
observed in the LDSC and the gene-enrichment analyses, we also included neuroticism [49]
and educational attainment (years spent in formal education) [50] in the GSMR analysis. We
included in the GSMR analysis data from the most recent meta-analyses (not including UK
Biobank individuals). The summary statistics were downloaded either from the original
consortia or from NHGRI-EBI GWAS Catalog [30] webpages and harmonized utilising the
“snp_match” command implemented in the bigsnpr (Version 1.6.1) [51] package in R (R
Core Team, Vienna, Austria). We only used SNPs on autosomal chromosomes and available
in the HRC reference panel, which allowed us to estimate the linkage disequilibrium among
the instrument SNPs and prune them.

The HEIDI test implemented in GSMR was used to detect and remove variants show-
ing independent effects on both exposure and outcome (i.e., horizontal pleiotropy), because
they do not satisfy the assumptions for valid instruments. The HEIDI test is more conserva-
tive than excluding SNPs that have an outlying association likely driven by locus-specific
pleiotropy. GSMR is more powerful than other MR methods (i.e inverse-weighted MR
(IVW-MR) and MR-Egger) because it takes account of the sampling variation of both the
exposure and outcome effects [41]. GSMR also accounts for LD between the clumped SNPs.
We used the genome-wide significant p-value threshold (p < 1 × 10−8) to select a minimum
number of instrument SNPs (n > 5) to perform the GSMR analysis. Genotypes of unrelated
TwinsUK cohort participants were used as reference to estimate the LD structures. To
further validate the GSMR results we also conducted IVW-MR and MR-Egger analyses [52]
using the TwoSampleMR (Version 0.5.5) [53] package in R (R Core Team, Vienna, Austria).

3. Results

We accessed the 24 h dietary recall records for 203,581 individuals from UKBiobank
(Supplementary Materials Figure S1) and, after the quality controls exclusions, we calcu-
lated a DASH score for 173,701 subjects with genotype available. Full characteristics of the
study population are reported in Table 1. The participants included in the final analysis
had an average age of 56.4 ± 7.9, were overweight (BMI mean = 26.5 kg/m2 ± 4.6 kg/m2),
had average daily energy intake of 2106.6 kcal ± 595.4 kcal and a mean DASH score of
24 ± 4.2. Half of the samples were females (54.5%) and smokers (56.6%) (Table 1). Some
of the values for the food consumption reported in Table 1 reflect the typical skewed
distribution observed when collecting food group data. However, the skewed distribu-
tion did not affect the DASH score because, using a point score based on the quintiles
of the distribution of each food component, it has been specifically designed to address
this issue [22].We tested over 12 million autosomal SNPs for association with DASH. A
genomic inflation factor [54] of λDASH = 1.2 and the linkage disequilibrium score regression
(LDSC) intercept of 0.997 ± 0.0099 is consistent with the expectations of polygenicity and
large sample sizes [55] and indicate adequate population structure control. We observed
641 genome-wide significant associations (p < 5 × 10−8) (Figure 1), clustered within
7 distinct genomic regions (Table 2 and Supplementary Materials Figure S2).
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MAGMA and VEGAS2 analyses. No genes were associated with DASH on chromosome 18q21.32. 

Figure 1. Manhattan plot of the DASH genome wide association study in UK Biobank. The x axis
represents the position on each chromosome (represented with alternate colours), while the y axis
represents the −log10(P) of SNPs. The dotted line indicates the genome-wide significance threshold
(p < 5 × 10−8). Only SNPs with p < 0.1 are represented in the figure. Independent genome-wide
significant variants (in red) are annotated with the genes associated with DASH based on both
MAGMA and VEGAS2 analyses. No genes were associated with DASH on chromosome 18q21.32.
DASH, Dietary Approaches to Stop Hypertension; SNPs, single-nucleotide polymorphisms; MAGMA,
Multi-marker Analysis of GenoMic Annotation; n/a, no genes present.

To investigate the presence of multiple independent sources of associations within
the respective associated regions, we performed conditional analyses on each of the seven
regions, adjusting for the effect of the lead SNPs that were included in models as covariates.
We did not detect any additional independent SNP with either significant (p < 5 × 10−8) or
suggestive (p < 1 × 10−7) p-value.

Most associated loci point towards a shared genetic background between DASH and
behaviour, food related or metabolic traits. In particular, the strongest association was
detected within a 445 Kbp region on chromosome 1p31.1 (rs66495454, p = 7.6 × 10−18)
(Supplementary Materials Figure S2A). The 1p31.1 locus harbours the neuronal growth
regulator 1 (NEGR1) gene, which has previously been associated with psychiatric [56], be-
havioural [57], nutritional [13] and metabolic disorders [43]. We also identified one locus on
chromosome 16q12.2 (rs56094641, p = 1.3 × 10−14) harbouring FTO (Supplementary Materials
Figure S1F), best known genes influencing both nutrition and obesity [44]. Another vari-
ant (rs56331918, p = 6.9 × 10−10) mapping on chromosome 3p22.3 in the intronic re-
gion of CAMP Regulated Phosphoprotein 21 (ARPP21)) gene (Supplementary Materials
Figure S2B) which has been associated with neuroticism [58] and BMI [59]. Our results showed
a significant association between DASH and a ~3 Mb region (Chr8: 8,088,230–11,463,015;
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rs73195303, p = 5.3 × 10−10) on chromosome 8p23.1 (Supplementary Materials Figure S1D).
Chromosome 8p23.1 locus comprises numerous genes performing functions important to
the nervous system and associated with cancer and developmental neuropsychiatric disor-
ders [60]. Finally, three additional loci were identified on chromosome 5q12.1 (rs544711163,
p = 1.9 × 10−8), 12q13.12 (rs1054442, p = 7.7 × 10−9) and 18q21.32 (rs35614134,
p = 6.3 × 10−9), (Supplementary Materials Figures S2C, S2E, S2F and S2G, respectively).

Using MAGMA [33], we performed a gene-based analysis including the complete
GWA results. This analysis identified nineteen genes associated (p < 2.66 × 10−6) with
DASH. While most of these genes (15 out of 19) mapped within the identified loci, MAGMA
analysis also found four genes which are physically distant (>250 kb) from the lead SNPs.
Supplementary Materials Table S2 lists the fifteen most likely causal genes (reported by
MAGMA analysis) in or near the lead SNP at each locus. Similar results were obtained
when the analysis was performed using VEGAS2 (Supplementary Materials Table S3).

In order to annotate these genes in a biological context, we used the function
GENE2FUNC included in FUMA online platform [29]. We observed that our GWA
results were enriched for genes participating in the Activation of AMPK downstream
of N-methyl D-aspartate receptors (NMDARs) pathway, even after Bonferroni multiple
testing correction (padjusted = 2.8 × 10−2) (Supplementary Materials Table S4). We also
find significant enrichment for genes participating in another 40 gene-sets selected from
the GWA catalogue (padjusted ranging from 2.7 × 10−17 to 4.4 × 10−2), in particular, the
“general factor of neuroticism” which was one of the most significantly enriched entries
(padjusted = 2.7 × 10−17) (Supplementary Materials Table S4 and Figure S3).

Next, we proceeded with a functional characterisation of genomic variants within or
near genes harboured by the identified loci. We performed a Bayesian test [35] to examine
whether GWA loci co-localize with the gene eQTLs in blood. To this end, we utilised
publicly available expression data from the large eQTLgen consortium meta-analysis [37].
We identified 111 genes mapping in the 8 identified loci. Seventy-two genes were excluded
from the analysis because they were not available in the eQTLgen dataset (Supplementary
Materials Table S5). Our COLOC-estimated posterior probabilities (PP) [35] suggested
that two eQTL effects (ARPP21 and RHEBL1) were probably sharing the same common
causal variant (PPH4 ranging from 1 to 0.80) with the associated loci (Supplementary
Materials Table S5). Twenty-six eQTLs overlapped with their corresponding locus, without
necessarily sharing the same causal variant (PPH3 ranging from 1 to 0.80). The COLOC-PP
for NEGR1 (PPH4 = 0.68), PRKAG1 (PPH4 = 0.65) and FTO (PPH4 = 0.74) eQTLs showed
a suggestive probability for a causal variant shared with chromosome 1p31.1, 8p23.1
and 16q12.2 loci, respectively. Finally, the analysis of eight eQTL transcripts showed
no colocalization (PPH0 or PPH1 ranging from 1 to 0.80) or failed to support any tested
hypotheses (All PPs < 0.80) (Supplementary Materials Table S5).

To further evaluate whether any of the cis-eQTLs mediated the association between
genetic variants and DASH, we applied SMR [38] on the GWA results. Nine genes did
not have any significant eQTL SNP (p < 5 × 10−8) to be utilised as a genetic instrument
and therefore were excluded from the analysis (Supplementary Materials Table S6). We
observed statistically significant associations (pSMRFDR <0.01) for fifteen genes (pSMRFDR
ranging from 1.03 × 10−20 to 2.06 × 10−3) with eight genes showing a suggestive SMR
(0.05 < pSMRFDR ≤ 1 × 10−2) (Table S6). The SMR test was not significant for seven genes
(Supplementary Materials Table S6). We obtained similar results when using a SMR multi-
SNP approach (pSMRFDR ranging from 3.15× 10−19 to 3.34× 10−3) (Supplementary Materials
Table S6). Next, we performed the HEIDI test to distinguish pleiotropy/causality from
linkage. The HEIDI results suggested that four genes (ARPP21, RP11-62H7.2, MFHAS1,
RHEBL1) were consistent with either pleiotropy or causality (Supplementary Materials
Table S6) while for eleven genes it was not possible to distinguish between pleiotropy/causality
and linkage disequilibrium (HEIDI p ranging from 6.8 × 10−13 to 4.4 × 10−2).



Nutrients 2022, 14, 4431 8 of 15

Table 2. GWA summary results. Seven independent genomic regions associated with DASH at genome-wide significance (p Value < 5 × 10−8).

Locus Chromosome Locus Starts Locus End Top SNP Top SNP
Position Effect Allele Non-Effect

Allele
Effect Allele
Frequency Beta Standard Error p Value

1 1 72,511,514 72,956,535 rs66495454 72,748,567 GTCCT G 0.38 0.126 0.01 7.60 × 10−18

2 3 35,778,773 35,913,342 rs56331918 35,801,168 G C 0.28 −0.1 0.02 6.90 × 10−10

3 5 60,613,826 60,844,213 rs544711163 60,775,743 CT C 0.38 −0.082 0.01 1.90 × 10−8

4 8 8,088,230 11,463,015 rs73195303 10,200,253 T C 0.23 −0.105 0.02 5.30 × 10−10

5 12 49,385,679 49,479,968 rs1054442 49,389,320 C A 0.37 0.085 0.01 7.70 × 10−9

6 16 53,797,908 53,845,487 rs56094641 53,806,453 G A 0.40 0.111 0.01 1.30 × 10−14

7 18 57,732,418 57,912,226 rs35614134 57,832,856 AC A 0.24 0.097 0.02 6.30 × 10−9

SNPs, single-nucleotide polymorphisms.



Nutrients 2022, 14, 4431 9 of 15

To compute the amount of shared genetic correlation (rg) between DASH and other
complex traits, we performed LD score regression (LDSC) analyses on 855 other pheno-
typic traits or diseases [40] and observed significant genetic correlations (pLDSCFDR < 0.01)
with 193 of them (Supplementary Materials Table S7). Among traits with strong positive
genetic correlations with DASH the most significant was educational attainment (“Qualifi-
cations: College or University degree”, (rg = 0.44, pLDSCFDR = 4.7 × 10−41). We also found
significant positive genetic correlations with other measures of educational attainment
(Supplementary Materials Table S7 and Figure 2). “Average weekly red wine intake” was
the trait with the strongest genetic correlation (rg = 0.53, pLDSCFDR = 2.6 × 10−39). Among
the strongest negative correlations (rg < −0.35), “Time spent watching television (TV)”
was the trait showing the strongest and most significant genetic correlation with DASH
(rg = −0.50, pLDSCFDR = 2.3 × 10−56) (Supplementary Materials Table S7 and Figure 2)
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Figure 2. Genetic correlations (rg). Pairwise genome-wide genetic correlations between DASH
and 855 other phenotypic traits or diseases were estimated using LD score regression (LDSC). In
the figure are represented only the strongest genetic correlations (rg < −0.35 and rg > 0.35) (see
ESI Supplementary Materials Table S7 for the report of the full results). Error bars show 95%
confidence intervals, while colours represent the different categories. LD, linkage disequilibrium;
ICD10, International Statistical Classification of Diseases and Related Health Problems 10th Revision;
A, Advanced; AS, Advanced Subsidiar; CSE, Certificate of Secondary Education.

We previously described the association between DASH and cardiometabolic traits [18]
and next sought to explore the evidence of causality versus pleiotropy between DASH
and these traits using bidirectional a GSMR [41]. In light of the newly observed LDSC
and gene-enrichment evidence implicating neuroticism and educational attainment, both
phenotypes were also included in the GSMR analyses.



Nutrients 2022, 14, 4431 10 of 15

Bidirectional GSMR strongly suggested that high DASH scores causally lower insulin
(Beta DASH->Insulin (standard error (SE)) = −0.041 (0.01); pGSMR = 3.86 × 10−4) and glucose
levels (Beta DASH->Glucose (SE) = −0.036 (0.01); pGSMR = 8.82 × 10−3) (Supplementary Mate-
rials Table S8 and Figure S4A,B). Our results also provided evidence of a causality of high
DASH score on increased educational attainment (Beta DASH->Educational Attainment (standard
error (SE)) = 0.101 (0.02); pGSMR = 2.15 × 10−8) (Supplementary Materials Table S8 and
Figure S4C). We did not find evidence for a causal role for insuli
(pGSMR = 7.82 × 10−2) and glucose (pGSMR = 0.821) levels on DASH score (Supplementary
Materials Table S8). We could not test reverse causality of educational attainment on DASH
because there were not enough independent instrument variants (n < 5) to perform the
GSMR analyses. For CAD, neuroticism score, body fat percentage, HOMA-IR, triglycerides,
LDL, HDL and total cholesterol levels the GSMR analyses were not significant when con-
sidering DASH as exposure (pGSMR = 0.123, pGSMR = 0.451, pGSMR = 0.634, pGSMR = 0.127,
pGSMR = 0.854, pGSMR = 0.397, pGSMR = 0.517 and pGSMR = 0.059, respectively)
(Supplementary Materials Table S8). We also observed a causal relationship between lower
HDL levels (Beta HDL->DASH (SE) = −0.066 (0.03) pGSMR = 2.32 × 10−2), high LDL levels
(Beta LDL->DASH (SE) = 0.112 (0.03) pGSMR = 1.75 × 10−5), increased levels of total choles-
terol (Beta TC->DASH (SE) = 0.071 (0.03) pGSMR = 8.65 × 10−3), increased CAD risk (Beta
CAD->DASH (SE) = 0.081 (0.03); pGSMR = 2.57 × 10−3) and increased body fat percentage
(Beta BODY FAT%->DASH (SE) = 0.426 (0.15); pGSMR = 4.83 × 10−3) when considering DASH
as outcome (Supplementary Materials Table S8 and Figure S4D–G). We could not test
reverse causality of neuroticism and HOMA-IR on DASH because there were not enough
independent instrument variants (n < 5) to perform the GSMR analyses. Finally, for BMI,
we found significant bidirectional effect with DASH (Supplementary Materials Table S8).
This result may reflect the presence of shared biological pathways (vertical pleiotropy).
The GSMR results are reported in full in Supplementary Materials Table S8. We obtained
qualitatively similar results with other MR methods implemented in the two-sample MR
R library (Supplementary Materials Table S8). As different MR methods rely on different
assumptions and models of horizontal pleiotropy, the consistency of the results across
different methods builds confidence in the obtained estimates.

4. Discussion

In this first GWA, we investigated the genetic influences on DASH on over
170,000 subjects of European ancestry and identified seven associated loci, which pro-
vide new insights into the genetic basis of this dietary pattern. By leveraging these genetic
findings, we performed Mendelian randomization analyses to assess the causal relationship
between DASH and health outcomes. Our results indicate that a healthy diet style may
causally lead to reduced levels of glucose and insulin. The gene-based analysis revealed
nineteen genes associated with DASH. We identified four genes (ARPP21, RP11-62H7.2,
MFHAS1 and RHEBL1) whose expressions were potentially associated with DASH due to
causality or pleiotropy. Interestingly, most of these genes have been consistently associated
with cardiometabolic diseases [59,61], educational attainment [50], cognitive abilities [62],
neuroticism [58] and major depressive disorder [60]. These findings support the hypothesis
that genes influencing dietary choice may also influence the liability to psychiatric and
cardiometabolic disorder [13].

A recent UK Biobank study defined two independent diet component (DC) intakes
based on the principal component (PC) of UK Biobank generic diet questionnaire and
identified a number of genetic loci associated with either DC1 (a meat-related diet) or
DC2 (a fish/plant-related diet) [13]. Moreover, utilising the same UK Biobank generic diet
questionnaire, May-Wilson et al. identified the genetic determinants of food liking [14].
Two markers reported in our study overlap with the variants associated with either DC1
(rs66495454 on chromosome 1p31.1) or DC2 (rs56094641 on chromosome 16q12.2). Specif-
ically, the rs66495454 A allele that is associated with a lower DASH score, indicating a
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propensity to lower diet quality also increased processed meat intake [13] as well as red
meat and beef steak liking [14] (all negative components of the DASH diet).

Similarly, the variant (rs56094641) on chromosome 16q12.2 is associated with lower
DASH score as well as lower non-oily fish intake/liking [13,14]. Similar results were
also reported by Cole et al.’s analyses [12] of measures of single food intake (FI) in UK
Biobank (1p31.1 and 16q12.2, harbouring NEGR1 and FTO genes, respectively). These
two genes have been consistently associated with BMI [43,63] obesity and cardiometabolic
diseases [43]. Although we were not able to distinguish between causal effect and linkage
disequilibrium, the SMR analysis on chromosome 1p31.1 locus showed that decreased
NEGR1 expression levels are associated with lower DASH score. Decreased expression
level of Negr1 in murine periventricular hypothalamic areas lead to an increase in body
weight [64]. Altogether, these results are consistent with previous observation that increased
red/processed meat consumption is mostly responsible for the association between DASH
and increased cardiometabolic disease risk [18] and may indicate a very complex genetic
relationship between DASH and obesity.

Gene-set enrichment analyses provide evidence that the genes annotated to the vari-
ants associated with DASH participate in the “Activation of AMPK downstream of NM-
DARs” pathway. The AMP-dependent protein kinase (AMPK) is highly expressed in the
hippocampus [65] and is activated when AMP and ADP levels in the cells rise due to
a variety of physiological stresses, such as increased ghrelin levels, glucose deprivation
and exercise [66]. AMPK is one of the signalling components of the Neuropeptide Y
(NPY) network, which is the master regulator of the appetite signal in the arcuate nucleus-
paraventricular nucleus (ARC-PVN) of the hypothalamus [67]. Intracerebroventricular
administration of a pharmacological AMPK activator (AICAR) in murine experiments
stimulates food intake and weight gain [68].

Our study should be interpreted in the context of the following limitations. First,
our SMR analyses is based on cis-eQTL effects estimated in peripheral blood because the
currently available brain eQTL studies have very limited statistical power due to their small
sample sizes. However, Ting Qi et al. demonstrated that, when the genes are expressed
in both brain and blood, then using cis-eQTL effects estimated in blood as proxies of
those in brain increase the power to identify putative functional genes for brain-related
complex traits and diseases [69]. Additionally, similar to other UK Biobank dietary stud-
ies [12–14], we calculated the DASH score using the self-reported questionnaire data. Single
24-hr recalls are unlikely to capture episodic food of some items included in the DASH
score (nuts, legumes). However, more than 60% of the participants included in this study
answered to two or more questionnaire. Therefore, by averaging multiple recalls from
participants, it is more likely that they represent the individual habitual intake. Finally,
large biobanks are well powered to discover common variant associations. However, repli-
cating their findings is one of the main issue that has been recently discussed [70]. Indeed,
while using data derived from the same biobank, studies analysing similar traits (same
phenotype but different modelling and phenotype definition) have solved this problem
adopting different solutions [71,72]. As suggested by Huffman [70] we performed a range
of secondary analyses (functional annotation, pathway analysis, eQTL and colocalization)
utilizing publicly available datasets. We presented a number of orthogonal biological
evidences which may be considered in the same vein as statistical validation [70]. Using
different phenotype definition and analysis model, some of the findings described in this
study overlap with previous observations [12–14]. The consistency of the results across dif-
ferent studies builds confidence in our findings and may represent a form of validation [70].
However, although our secondary analyses pointed towards plausible genes/pathways
and some of the loci identified in this study overlap with previous observations in UK
Biobank, our findings need to be further tested in functional and interventional studies
in animal models and humans to fully determine the biological mechanisms underlying
DASH.
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5. Conclusions

In conclusion, this study provides novel insights into the genetic architecture of DASH
and highlighted its putative causal relationship with health outcomes. These findings
extend our knowledge of the genetic pathways underlying DASH and may have significant
implications for global public health providing future dietary recommendations for the
prevention of common chronic diseases and mental health disorders.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu14204431/s1, Figure S1: Study design and analysis workflow;
Figure S2: Regional associations plots; Figure S3: Gene enrichment analysis results; Figure S4:
Mendelian randomization analyses (GSMR); Table S1: Food groups included in the computation of
DASH score; Table S2: Genes significant in MAGMA gene-wise analysis; Table S3: Genes significant
in Vegas2 gene-wise analysis; Table S4: Gene-set Enrichment analysis (GENE2FUNC); Table S5:
Co-localization analysis; Table S6: SMR results; Table S7: Linkage Disequilibrium Score Correlation
analysis; Table S8: Mendelian randomization results.
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