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Abstract: Whole food plant-based diets are gaining popularity as a preventative and therapeutic
modality for numerous chronic health conditions, including chronic kidney disease, but their role
and safety in end-stage kidney disease patients on peritoneal dialysis (PD) is unclear. Given the
general public’s increased interest in this dietary pattern, it is likely that clinicians will encounter
individuals on PD who are either consuming, considering, or interested in learning more about
a diet with more plants. This review explores how increasing plant consumption might affect
those on PD, encompassing potential benefits, including some specific to the PD population, and
potential concerns.
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1. Introduction

Whole food plant-based diets (WFPBD: a dietary pattern that focuses on unprocessed
foods derived from plant sources (fruits, vegetables, whole grains, and legumes) while
avoiding animal-based products (meat, fish, dairy, and eggs) and processed plant products
(including vegetable oils and most pre-cooked, pre-packaged products sold in grocery
stores)) are increasingly recommended for the prevention and management of conditions
such as obesity [1], hypertension [2,3], diabetes [4,5], and cardiovascular disease [6–8].
There is also increasing evidence that plant-based diets may be beneficial in the preven-
tion [9] and management of chronic kidney disease [10–12]. Whether plant-based diets are
advantageous in individuals with end-stage kidney disease (ESKD), particularly those on
peritoneal dialysis (PD), is unclear.

As of 2018, there were approximately 58,500 individuals on PD in the United States,
representing about 10.6% of the total dialysis population [13]. Those on PD have a high
mortality rate and a large burden of comorbidities, especially cardiovascular disease [13].
Data from the United States Renal Data System shows 1-, 3-, and 5-year mortality rates for
people on peritoneal dialysis to be 10%, 32.4%, and 53.1%, respectively, with cardiovascular
disease (CVD) accounting for 41% of deaths [13]. The predominance of CVD (amenable to
amelioration with a WFPBD), as a cause of mortality, and the high prevalence of risk factors
such as hypertension and diabetes (also amenable to amelioration with a WFPBD) in PD
patients [13,14] suggests that dietary intervention may be a strategy to reduce mortality in
the PD population.

To date, data on plant-based diets are limited in the PD population, and the interpreta-
tion of existing data in any population is complicated by a lack of consistency in the use of
the term “plant-based”. They may differ as to the degree of the plant-based component (i.e.,
totally vs. predominately plant-based, with varying amounts of animal products) and the
degree to which the diets consist of whole foods (some diets may be completely plant-based
or vegan but contain a large amount of processed foods). Nonetheless, PD patients have
several common comorbidities in which a WFPBD may theoretically be of benefit.
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Peritonitis is arguably the most concerning complication of PD. Despite a decreasing
incidence, peritonitis remains the most common cause of technique failure among individu-
als using PD [15], and it confers a significant risk of hospitalization and mortality [16]. One
potential source of peritonitis in PD patients is the enteric translocation of organisms. While
there are currently no data on the association between dietary patterns and peritonitis risk,
one can speculate that WFPBDs may offer some protection from this particular route of
infection due to beneficial effects on the gut microbiome and dysbiosis. Constipation, fiber
deficiency, and hypokalemia are common in PD patients, and eating more plants can help
ameliorate all of these, as will be discussed below.

As the popularity of and interest in plant-based eating increases [17,18], it is likely that
clinicians will encounter individuals using PD who are either consuming, considering, or
simply interested in this dietary pattern. This narrative review explores the current state
of knowledge and reviews the potential benefits and concerns of plant-based diets and
increasing plant intake in the PD population.

2. Potential Benefits of Plant-Based Diets in the Peritoneal Dialysis Population
2.1. Mortality

To date, no studies have examined the effect of eating a completely WFBPD compared
with other dietary patterns on mortality in the ESKD population. In hemodialysis (HD)
patients, an increased fruit and vegetable intake (although still within the context of
continued consumption of animal products) is associated with a decrease in all-cause
mortality [19].

In peritoneal dialysis patients, the data are also limited to an analysis of the degree of
plant-based eating (within a dietary pattern that also contains animal products), rather than
a completely WFPBD per se. In a retrospective study of 884 Chinese peritoneal dialysis
patients, those in the highest tertile of plant protein intake (>57.5% of protein from plant
sources) had a 24% decrease in mortality compared to the lowest tertile (<47.7% of protein
from plant sources), despite their absolute total protein intake being lower (48.7 vs. 54.7 g
per day) [20]. A subgroup analysis in this study showed that not all subjects achieved this
benefit. Specifically, the mortality benefit was seen in females, those over 60 years old,
and those with a baseline albumin of >3.5 g/dL. This suggests that eating more plants
(and hence, more plant-based protein) may help mitigate mortality in the PD population.
Prospective (ideally randomized) studies would be needed to further test this hypothesis
and to determine which subgroups would derive this benefit.

2.2. Volume Overload and Sodium Intake

Volume overload is common in individuals on PD. The International Society of Peri-
toneal Dialysis cardiovascular and metabolic guidelines consider its assessment a “vital
component in the management of PD patients” [21]. Volume overload decreases survival.
In a cohort study of >1000 patients, Van Biesen et al. [22] demonstrated via bioimpedance
spectroscopy that volume overload was common upon starting PD and, although improved,
persisted even after three years of dialysis, with a mean degree of volume overload of 7.7%.
Further analysis showed that those above the 75th percentile of volume overload at one
month had a 59% increased risk of mortality [22].

One of the mainstays in controlling volume overload in the PD population is sodium
restriction. Günal et al. [23] demonstrated that many PD patients could improve volume
status and achieve blood pressure control via meticulous attention to sodium intake (via
a “salt-poor diet and not using ready-made food”). Plant-based diets are often lower in
sodium than other dietary patterns. Several studies have shown that vegans consume less
than half the amount of sodium than that of the reference group of either omnivores [24]
or the general population [25]. Given this, one can speculate that a nutritionally adequate
plant-based diet may be a beneficial strategy in controlling volume overload in individuals
on PD with the caveats that (a) it is possible to eat a high sodium plant-based diet if one
relies heavily on processed foods (including meat analogs, which are increasingly available
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in grocery stores) and (b) a lower sodium diet that comes at the expense of adequate
protein or energy intake, which should be avoided as it may increase mortality in the PD
population [26]. Finally, it should be noted that plant foods have a higher water content than
non-plant foods and may require a reduction in free fluid intake to maintain euvolemia.

2.3. Constipation/Fiber

Constipation is a common problem for those on PD and may have serious conse-
quences due to its effect on the dialysate flow and an increased risk of peritonitis [27].
Although constipation is a multifactorial process, a deficiency of dietary fiber is a major
contributing factor. People on PD on average consume between 8 and 9 g of fiber per
day [28,29], both well short of that recommended by the Institute of Medicine (25 or 38 g
for women and men 19–50 years old, respectively, and 21 or 30 g for those over the age of
50) [30], As such, increasing dietary fiber has been recommended as a first-line therapy for
patients with constipation on PD [27], and studies have shown improvement in constipation
with this approach [31–33].

Although the dietary fiber intake can be increased using supplements, plant-based
diets are naturally high in fiber and may also be used to treat constipation. Since fiber is
exclusively found in plant-foods, it is not surprising that those consuming plant-based
diets have significantly higher daily intakes of fiber compared to those not following
this diet plan [34,35], with one study showing that vegans consume 74% more fiber than
non-vegetarians [34].

In addition to its role in improving constipation, increased fiber intake may offer other
beneficial effects in individuals on peritoneal dialysis. A cross-sectional study showed that
those with dietary fiber intake >12.2 g per day had a lower concentration of inflammatory
markers in both serum and dialysate [28]. In a cohort study of 881 peritoneal dialysis
patients, those in the middle or highest tertile of dietary fiber intake (although still low at
7.8 and 11.8 g/day) showed an increase in albumin over time compared with the lower
group [29]. There was also a trend toward increased mortality in the lowest tertile, although
this did not achieve significance. From these studies, however, it is not possible to conclude
whether fiber per se was offering these benefits or another aspect of consuming higher fiber
diets, and further studies would be needed to determine this.

2.4. Gut Microbiome

The human gut microbiome contains trillions of bacteria, along with viruses, fungi,
and archaea [36]. The microbiome exists in symbiosis with the host, and it provides many
key functions, including those related to immunity; endocrine function; energy biogenesis;
biosynthesis of vitamins, steroid hormones, and neurotransmitters; and the metabolism
of dietary components, drugs, and branched chain aromatic amino acids [36]. While
there is no “gold standard” as to what constitutes a healthy gut microbiome, differences
have been noted between healthy individuals and those with a variety of disease states,
including chronic kidney disease, and those on dialysis [36,37]. These differences include
a decrease in overall diversity and a change in the composition of the microbiome, with
different phyla being either more or less represented [37–39]. Collectively, this imbalance
in the composition and function of the intestinal microbiota is known as dysbiosis, and
it is associated with negative consequences to the host [36]. One hypothesized negative
effect of dysbiosis is an alteration of the gut epithelial integrity (“leaky gut” or “leaky
mucosa”), which may lead to the translocation of bacteria or inflammatory products such
as endotoxins [38]. This is directly relevant to individuals on peritoneal dialysis. PD
patients have high plasma levels of bacterial-derived fragments [40] and endotoxins [41,42],
and some studies have shown an association between these factors and higher rates of
inflammation [42,43] and pointedly cardiovascular disease [40,42], which, as noted, earlier
is the number one cause of mortality in this population. Changes in gut epithelial integrity
are also a concern given the not uncommon occurrence of PD-related enteric peritonitis.
Dysbiosis also leads to increased production of the uremic toxins indoxyl sulfate (IS) and
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p-cresol/p-cresyl sulfate (PCS) [44], which have been associated with progression of kidney
disease [45] in those with chronic kidney disease (CKD). Prospective studies have not been
done evaluating the role of IS and PCS in individuals on PD, but these data are concerning
given the importance of residual kidney function (RKF) in this population. IS and/or PCS
have been shown to rise concurrently with RKF loss in those on PD [46] and have been
associated with other deleterious outcomes, including technique failure, cardiac events,
and mortality [47].

Diet is one of many factors which can affect the microbiome. Vegans have distinctly
different microbiomes than due omnivores, whereas the data comparing vegans and
vegetarians are less clear [48]. It has not been definitively demonstrated that switching
diets to change microbiome composition leads to lasting health benefits. Short term,
the microbiome appears to be resilient to dietary intervention, reverting back to its core
composition once the intervention ends [49]. Nonetheless, there are data which suggest that
a consistent plant-based diet may confer benefits via the microbiome. A small interventional
study in which obese subjects ate a vegan diet demonstrated (in addition to improvement
in weight, triglycerides, total cholesterol, low-density lipoprotein (LDL)-cholesterol, and
hemoglobin A1c) a reduction in the number of pathobionts (organisms that cause harm only
under certain circumstances (such as Enterobacteriaceae) [50]. Again, this may be directly
relevant in PD, where this class of bacteria may cause peritonitis. The investigators also
found a decrease in inflammatory markers [50].

Another postulated benefit of plant-based diets mediated by the microbiome is a
decreased production of trimethylamine-N-oxide (TMAO), which mediates atherosclerosis.
Vegetarians and vegans have decreased baseline levels of TMAO compared with omni-
vores, and they produced less of it when challenged with L-carnitine [51]. The potential
implication of this is suggested by a recent study showing an association between TMAO
with all-cause (all subjects) and cardiovascular mortality (male subjects) in individuals on
PD [52].

The microbiome also produces short chain fatty acids (SCFA), including acetate, pro-
pionate, and butyrate [53]. Previous research has shown that children consuming a more
traditional, plant-based diet produce more SCFA than those on a more Western diet [54].
SCFAs are anti-inflammatory and have a host of beneficial effects, including improved gut
epithelial integrity, blood pressure regulation, and improved lipid and glucose homeosta-
sis [53], all of which would be beneficial to the PD population.

Further research on the effects of diet on the microbiome and the microbiome in
general is needed in PD patients.

2.5. Hypertension

Hypertension is common in those with ESKD, although the exact prevalence is difficult
to determine given the different definitions, techniques, and settings of measurements.
Several studies demonstrate that 70–80% of individuals on dialysis (including both HD and
PD) are hypertensive and that the majority are uncontrolled [14,55,56]. Plant-based diets
are effective in treating hypertension in the general population [2,57], and there is evidence
that they benefit hypertensive CKD patients as well. In two separate randomized controlled
trials, Goraya et al. [10,11] studied the effect of adding fruits and vegetables to the diets of
individuals with CKD 3 and 4 and acidosis. In hypertensive patients with CKD 3 or CKD 4,
those whose acidosis was treated with fruits and vegetables had the added benefit of blood
pressure reduction when compared with those treated with bicarbonate (CKD 3 and CKD 4
patients) or placebo (CKD 3 patients). As noted above, Günal et al. [23] were able to achieve
good hypertension control with a salt-restricted diet, but the dietary pattern(s) consumed
were not clear. There have been no randomized controlled trials or cohort studies to date
examining the relationship between fruit and vegetable intake or a diet higher in plants
and hypertension in individuals on PD.
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2.6. Metabolic Acidosis

Metabolic acidosis is common in patients with CKD, and its prevalence increases
with CKD severity [58]. The consequences of metabolic acidosis include bone disease,
muscle protein catabolism, decreased albumin synthesis, and increased inflammation [59].
Retrospective cohort studies have demonstrated an association between the dietary acid load
or degree of metabolic acidosis and worsening kidney function in those with CKD [60–62].

Treating metabolic acidosis with sodium bicarbonate preserves kidney function in
individuals with CKD [63], but one concern with using pharmacologic bicarbonate is the
sodium load. Adjusting the acid content via changes in diet can mitigate this problem.
Dietary manipulation requires an appreciation of the acidogenic potential of different
foods. On the whole, animal-derived foods such as cheese, meat, and fish tend to be highly
acidogenic, whereas plant-based foods tend be less so, with some grains (particularly if
highly processed) being an exception [64]. Fruits and vegetables deserve special mention,
as they are not only less acidogenic than animal-based foods, but are actually alkaline or
acid consuming [64].

In CKD patients, the treatment of metabolic acidosis with fruits and vegetables (in the
context of a diet still containing animal protein) leads to a decrease in net acid excretion [65],
a reduction in blood pressure and weight, and, in CKD 3 patients, a decrease in the rate of
progression of kidney disease similar to that seen with bicarbonate [11].

The relationship between bicarbonate concentration to adverse outcomes is less well-
defined in PD patients. A prospective study of >400 PD patients showed that those with a
time-averaged serum bicarbonate <24 mEq/L had a higher risk of becoming anuric and
of residual kidney function decline compared with those >24 mEq/L [66]. Two small
randomized trials have examined using bicarbonate in PD patients with a bicarbonate
level <24 mEq/L [67,68]. Both showed an improvement in acidosis. One trial showed
a preservation of residual kidney function [67], whereas the other did not, although it
did note improvement in nutritional status via the subjective global assessment score [68].
Studies comparing either a plant-based diet or the selective enhancement of fruit and
vegetable consumption on acidosis correction and residual kidney function preservation as
done in the CKD population have not been done in those on PD.

3. Potential Disadvantages of Plant-Based Diets in the Peritoneal Dialysis Population
3.1. Potassium/Hyperkalemia

One major concern with advocating plant-based diets in those on dialysis is the
risk of hyperkalemia. Fear of hyperkalemia often results in advice to reduce dietary
potassium, potentially depriving those with kidney disease of the cardiovascular benefits
associated with increased potassium intake [69]. Several considerations may help mitigate
this concern.

It is important to note that hypokalemia is not uncommon in those on PD [70–72].
An observational cohort study of >100,000 dialysis patients (including >10,000 on PD)
found a 4.7-fold increased risk in hypokalemia for those on PD compared to those on
HD [72]. Hypokalemia was shown to be a risk factor for all-cause, cardiovascular, and
infection-related mortality in individuals on PD, and the increased risk for mortality with a
K+ < 3.5 mEq/L was comparable to that with a K+ of 5.5 mEq/L or higher [72]. The increase
in mortality, cardiovascular mortality, and infection-related mortality with hypokalemia
was also demonstrated in a cohort of Brazilian individuals on PD, in which the authors
used a propensity-matched score analysis as an attempt to reduce confounding [73].

Hypokalemia was shown to be a risk factor for peritonitis in a cohort of PD patients
in Taiwan, particularly with bacteria of enteric origin [74]. The authors hypothesized that
hypokalemia may lead to bowel dysmotility, may be a sign of overall malnutrition, and may
be responsible for altering the immunologic defense, leading to translocation of bacteria
from the gut into the peritoneum [74].

Whether or not correcting hypokalemia in PD patients leads to improved outcomes
has not been evaluated, but it has been estimated that 10–29% of hypokalemic PD patients
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use potassium supplements [72]. In these patients, diets high in plant-based foods and
rich in potassium may be an appropriate (albeit unproven) strategy to help improve serum
potassium, while providing benefits such as fiber, alkali, and phytochemicals not found
in supplements.

While augmenting dietary potassium in frankly hypokalemic patients, even if not
helpful, is unlikely to be harmful, concern may remain for those with a normal serum
potassium. Although the safety of plant-based diets has not be evaluated in individuals on
PD with normal potassium, some data suggest that these concerns may be unwarranted.

While a plant-based diet is potassium rich, it is often overlooked that animal proteins,
such as dairy and meat (especially organ meats), also are high in potassium [69]. Several
studies show that the difference in the amount of potassium consumed by vegans and
those following other dietary patterns (in the general population) is either not very large
or non-existent [24,25,34]. Food additives may be a hidden source of potassium in animal
products, surreptitiously increasing its intake, often dramatically [75]. Additives may be
a particular concern in low sodium processed foods [76]. Another consideration is the
method of cooking and consumption. Boiling fruits or vegetables decreases potassium
content, whereas drying them or processing them into juices or sauces increases it [12,69].

Potassium bioavailability may be a consideration. The relationship between potassium
intake and serum potassium levels in patients with ESKD on HD does not seem to be linear
or robust. In a study of more than 8000 hemodialysis patients, dietary potassium was not
associated with serum potassium levels, hyperkalemia, or either cardiac or all-cause mortal-
ity [77]. Similarly in a secondary analysis of the Nutritional Inflammatory Evaluation Study,
pre-HD potassium levels were not significantly different between quartiles of K+ intake,
and when potassium intake was examined as a continuous variable, the absolute difference
in serum K+ between the highest and lowest dietary levels was only 0.4 mEq/L [69,78].

For those on PD, there are no studies specifically examining dietary potassium intake
and serum potassium. In the study by Liu et al. noted above, there were no differences
in serum potassium between the highest and lowest tertile of plant protein intake (again
in the context of a diet containing animal products), although dietary potassium was not
specifically assessed [20].

Importantly, the bioavailability of potassium changes with the form of potassium in
the diet. In those with normal kidney function, eating foods processed such that cell walls
are disrupted led to a 25% increase in potassium bioavailability [79]. Several studies in
CKD suggest a differential bioavailability of potassium from plant protein and animal
protein [80,81].

Again, studies in PD are limited. Blumenkrantz and colleagues [82] reported the
results of metabolic balance studies in PD patients consuming diets differing in the amount
of protein (1 g/kg/day vs. 1.4 g/kg/day) and potassium (64 mEq/day vs. 84 mEq/day).
While the serum potassium values were not reported in the study, the authors commented
in the discussion that “Serum potassium levels were normal or in the lower-range of
normal in most patients. These findings were present despite the rather high potassium
intake, particularly with the higher protein diet.” [82]. Taken together, the available data
suggest that in CKD and ESKD patients, including those on PD, consuming a diet high in
unprocessed plant foods may not lead to as great an increase in serum K+ as one might
initially expect.

How might individuals with potentially severely compromised kidney function main-
tain normal potassium levels despite increased dietary intake? Alkalemia and insulin tend
to promote the cellular uptake of potassium, and the consumption of plant food, particu-
larly fruits and vegetables, may induce both insulin secretion and a more alkalemic (or at
least less acidemic) environment [83]. Although the cellular uptake of K+ may temporize,
absorbed K+ must eventually be excreted to maintain balance. In individuals without CKD,
the kidneys excrete most of the absorbed potassium. In individuals with dialysis-dependent
ESKD, dialysis obviously is a major source of K+ removal. CKD patients (receiving dialysis
or not) can also augment colonic K+ loss. Early balance studies by Hayes et al. showed that
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as kidney function worsens, the ability of the colon to excrete potassium in the face of an
increased dietary load was higher in those with kidney disease than those without [84].
HD patients were able to increase stool potassium by 3-fold or more compared with normal
controls [84]. It is not clear whether PD patients can augment fecal potassium excretion
similarly to those on HD, although Blumenkrantz et al. [82] found that PD patients do seem
to increase stool K+ excretion to some degree in the face of increased dietary intake, noting
that “High fecal potassium losses . . . in all patients probably helped maintain normal serum
potassium concentrations.” A plant-based diet, which is high in fiber, may also augment
K+ excretion via increased stool volume, further attenuating a potential rise in serum K+,
whereas diets high in potassium from animal sources or chemical additives may not have
this effect. Further research is needed to investigate this speculative benefit.

3.2. Phosphorus

As with other CKD patients, hyperphosphatemia is a concern in those on PD, al-
though data regarding phosphorus levels and outcomes are surprisingly scant. Several
large epidemiologic studies have shown that phosphorus levels ≥6.4 mg/dL (PD and
HD) [85], ≥6.5 mg/dL (PD only) [86], or ≥7 mg/dL (PD only) [87] are associated with
all-cause mortality, although no studies have shown that intervention improves outcomes.
Despite this, most nephrologists do treat hyperphosphatemia, and the 2017 Clinical Practice
Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic
Kidney Disease–Mineral and Bone Disorder (CKD-MBD) guidelines recommend (albeit
with weak evidence) “lowering elevated phosphate levels toward the normal range” for all
CKD patients, including those on dialysis [88]. In an effort to control serum phosphorus,
dialysis patients are often advised to restrict their dietary intake of phosphorus [88] and
prescribed phosphorus binders. The Peritoneal Dialysis Outcomes and Practice Patterns
Study (PDOPPS) showed that approximately 75% of individuals using PD worldwide use
phosphorus binders [87]. In addition to the risk of adverse events [89] (mainly gastroin-
testinal or, in the case of calcium binders, hypercalcemia), phosphorus binders account for
almost half of the pill burden for those on PD [90]. Concurrently, people on dialysis are
also often counselled to eat high-protein foods, which tend to contain a lot of phosphorus,
leading to potential confusion about what to eat and frustration at receiving conflicting
information. Despite these efforts, serum phosphorus remains 5.5 mg/dL or above in
approximately 37% of PD patients [87].

Over the last decade, the source of phosphorus in CKD patients has received significant
attention. The recent Kidney Disease Improving Global Outcomes (KDIGO) guidelines
also recommend that the source of phosphorus be considered [88]. It is clear that plant-
based phosphorus, by virtue of its inclusion in phytate (which humans cannot readily
digest due to the absence of the degrading enzyme phytase), is less absorbable than animal
protein, whereas inorganic phosphate added during food processing is nearly completely
absorbed [91], although phosphorous bioavailability in plant-based foods can increase
depending on processing and preparation methods [92].

In a crossover feeding study in individuals with non-dialysis dependent CKD,
Moe et al. [93] showed that for a given load of dietary phosphorus, plant protein leads to
lower phosphorus levels than animal protein, although this type of metabolic study has not
been conducted in those on PD. In their cohort study of the PD population, Liu et al. [20],
found no difference in serum phosphorus in the highest tertile of the plant protein intake
compared with the lowest. To date there have been no interventional trials comparing the
effects of animal vs. plant protein on serum phosphorus levels in individuals on PD.

3.3. Energy and Protein Intake

PD patients are at high risk for protein energy wasting and undernutrition. A recent
meta-analysis found that the median prevalence of protein energy wasting in those on PD
was 36% [94]. There are concerns that plant-based diets will not supply enough protein,
high quality protein, and/or energy, particularly for those who are strictly vegan.
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A recent meta-analysis found that in the general population, while strict vegans did
have the lowest total energy intake when compared with other dietary patterns, typically
they do meet the recommended daily intake [95]. On average, those consuming a vegan
diet also meet their recommended daily protein intake, defined as 0.8 g/kg [96] or >10% of
total calories [97], with mean protein intakes averaging approximately 13–14% of the total
caloric intake [95,98]. Studies out of Denmark and Belgium showed that vegans consume a
mean of 75.5 and 82 g of protein per day compared with 94 and 112 g/day in the general
population and meat eaters, respectively, although it must be noted that a small percentage
of vegans may not achieve their daily recommended protein intake [24,25].

Another common concern is that plant-based protein is of a lesser biologic value
compared with animal protein and that those consuming a primary plant-based diet may
not ingest adequate amounts of essential amino acids. While this may be true if the diet
does not provide adequate energy or is extremely restrictive and limited to just one or
two food sources, this is not an issue in those consuming a varied plant-based diet with
an adequate number of calories [98,99]. To date, there are no data showing that those
consuming a vegan diet providing adequate energy experience any adverse effects from a
protein deficiency or deficiency of any specific amino acid.

Data regarding protein intake and albumin levels in predominantly plant eaters are
limited in those on dialysis. Some studies have noted lower albumin levels in vegetarians
vs. non vegetarian dialysis patients [100,101], whereas others have not shown a relationship
between plant protein intake and serum albumin [20,102]. In their cohort study of 884 PD
patients, Liu et al. found that those in the highest tertile of the percent of protein intake
from plants had higher albumin levels than those in the lowest tertile, despite lower total
protein intake. Interestingly, they also had a higher energy intake as well [20]. Whether
diets high in plant protein and those high in animal protein provide equivalent nutrition
for those on PD deserves further study.

Protein homeostasis is of particular importance in PD, where there is the added issue
of peritoneal protein loss. Albumin loss across the PD membrane averages approximately
5–8 g per day [103], and normally, this loss would be compensated by increased albumin
synthesis by the liver, a process which is suppressed by inflammation [104] and chronic
acidosis [105]. It is possible (but unproven) that the decrease in inflammation and improve-
ment in acidosis afforded by more plant-based diets may compensate for, or even outweigh,
the potential decrease in total protein intake. This deserves further investigation as well.

3.4. Other Considerations

Vitamin D deficiency is common in those on PD [106], and this may be an additional
concern in strict vegans [107]. This concern is not trivial, as vitamin D deficiency in
the PD population has been associated with numerous adverse consequences [108–110],
including peritonitis [111]. Since Vitamin D deficiency is so common, careful monitoring
and intervention are required in all individuals on PD, irrespective of dietary patterns.
Vitamin B-12 is absent from a plant-based diet, and any individual consuming such a diet
should take a supplement. Studies have also shown that vegans may have lower selenium,
vitamin A, and iodine levels than non-vegans, although the clinical significance of this is
not certain [25].

Figure 1 summarizes the potential advantages and disadvantages of plant-based diets
in peritoneal dialysis.
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Figure 1. Potential benefits and concerns of increased plant consumption in peritoneal dialysis. 
CKD: Chronic kidney disease, PD: Peritoneal dialysis, HD: hemodialysis, TMAO: trimethylamine-
N-oxide, IS: indoxyl sulfate, and PCS: p-cresol/p-cresyl sulfate. 
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