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Abstract: Vitamin D (VD) deficiency has been associated with cancer and diabetes. Insulin signaling
through the insulin receptor (IR) stimulates cellular responses by activating the PI3K/AKT pathway.
PTEN is a tumor suppressor and a negative regulator of the pathway. Its absence enhances insulin
signaling leading to hypoglycemia, a dangerous complication found after insulin overdose. We
analyzed the effect of VD signaling in a model of overactivation of the IR. We generated inducible
double KO (DKO) mice for the VD receptor (VDR) and PTEN. DKO mice showed severe hypo-
glycemia, lower total cholesterol and increased mortality. No macroscopic tumors were detected.
Analysis of the glucose metabolism did not show clear differences that would explain the increased
mortality. Glucose supplementation, either systemically or directly into the brain, did not enhance
DKO survival. Lipidic liver metabolism was altered as there was a delay in the activation of genes
related to β-oxidation and a decrease in lipogenesis in DKO mice. High-fat diet administration
in DKO significantly improved its life span. Lack of vitamin D signaling increases mortality in a
model of overactivation of the IR by impairing lipid metabolism. Clinically, these results reveal the
importance of adequate Vitamin D levels in T1D patients.

Keywords: hypoglycemia; diabetes; insulin overdose; fatty acids; lipolysis

1. Introduction

Type 1 diabetes mellitus (T1D) develops as a consequence of pancreatic beta-cell de-
struction and it is characterized by insulin deficiency, a tendency to ketosis and dependence
on exogenous insulin to sustain life. Glycemic control in type 1 diabetes is of paramount im-
portance, as it has been demonstrated to be clearly associated with long term complications.
Thus, there is unquestionable evidence of a very close relationship between hemoglobin
A1c (HbA1c) concentrations, maintained over the long term, and the onset or progression
of microvascular and macrovascular complications [1,2]. Therefore, insulin administration
is routinely used in T1D patients. There has been a dramatic increase in the types of insulin
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available (rapid, intermediate and long acting) to help with the management of glucose
levels. However, this has also led to an increase in dosing errors, which are considered to
be some of the most dangerous medication errors that can occur, occasionally leading to
profound hypoglycemia and death [3]. Indeed, conventional therapeutic management with
insulin leads to an average one or two episodes of symptomatic hypoglycemia weekly and
at least one episode of severe, temporarily disabling hypoglycemia per year [1,4].

Insulin signaling is mediated by the insulin receptor, which belongs to the superfamily
of receptor tyrosine kinases (RTKs) [5]. The pathway emanating from the insulin receptor
responsible for most metabolic effects of insulin is the phosphatidylinositol 3-kinase (PI3K)
pathway [6]. After pathway initiation, PI3K generates the second messenger (PIP3), which
subsequently activates the serine/threonine protein kinase B (PKB/AKT). This leads to
serine and/or threonine phosphorylation of a range of downstream substrates, which are
often kinase/phosphatases or other signaling molecules [7]. A critical upstream member of
the cascade is the phosphatase and tensin homolog (PTEN), a dual-specificity lipid and
protein phosphatase that efficiently dephosphorylates the 3′-group of PIP3, and therefore,
terminates propagation of the signal to AKT and other PIP3-effector targets [8]. The
presence and activation of PTEN at the cytoplasmic membrane are crucial to guarantee
controlled transduction of the PI3K signal, which is then transmitted to the cell. Thus,
PTEN deficiency in humans enhances insulin signaling [9], a similar situation to that seen
in individuals with repeated episodes of insulin-induced hypoglycemia.

Vitamin D, signaling through the vitamin D receptor (VDR), has well documented
effects on calcium homeostasis and bone metabolism but several studies suggest a much
broader role for this secosteroid in human health. Indeed, vitamin D deficiency has been
involved in many other conditions related to the immune, cardiovascular, endocrine,
respiratory and even reproductive systems [10–14]. The relationship between vitamin
D and glucose homeostasis has been a topic of growing interest in recent years. Low
vitamin D levels seem to be associated with insulin resistance disorders and it has been
suggested that vitamin D deficiency is one of the factors accelerating the development of
insulin resistance [15]. Furthermore, low levels of vitamin D have been implicated in the
development of T1D [16] and low levels of 25(OH)D3 predict increased risk of all-cause
mortality in T1D patients [17].

Although there are several studies linking vitamin D deficiency with T1D incidence
and outcomes, there is a lack of information regarding the mechanisms behind this associa-
tion. In the present study, we generated an inducible double KO mouse (PTEN/VDR) in
adulthood, and investigated its effects on survival and glucose/fat metabolism.

2. Materials and Methods
2.1. Ethical Statement

All animal procedures were approved by the University of Lleida Animal Ethics
Committee in accordance with the guidelines of the European Research Council and local
laws for the care and use of laboratory animals.

2.2. Animal Models

Mice carrying a tamoxifen inducible Cre-estrogen receptor driven by the chicken beta
actin promoter/enhancer coupled with the cytomegalovirus immediate-early enhancer
(Cre-ERTM) [B6.Cg-Tg(CAG-Cre/Esr1)*5 Amc/J] and floxed homozygous PTEN (C; 129S4-
Ptentm1Hwu/J) mice were crossed to generate Cre-inducible PTEN knockout mice (PTEN-
KO) as previously described [18]. Mice homozygous for the floxed VDR, generated by the
Geert Carmeliet laboratory in a Swiss background [19], were also mated with the Cre-ERTM
to generate inducible VDR knockout mice (VDR-KO). Additionally, a double-knockout
(DKO) mice was generated by crossing PTEN-KO mice with the mice homozygous for
the floxed VDR gene. Cre-negative littermates were used as controls (CNT). Twenty-one
days after birth, mice were weaned and genotyped as previously described [20,21]. Primer
sequences for genotyping are shown in Supplementary Materials, Table S1.
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To induce Cre-mediated PTEN and VDR ablation, a single intraperitoneal injection of
25 mg/kg tamoxifen solution per 4–5 weeks old mice was given as previously described [18].
Tamoxifen (Sigma-Aldrich) was dissolved in absolute 100% ethanol and then diluted in
corn oil (Sigma-Aldrich) to a 5 mg/mL concentration. All the in vivo experiments were
performed 4–5 weeks after tamoxifen-induced Cre activation.

Animals were kept in a 12-h light–dark cycle at 22 ◦C and ad libitum access to water
and regular mouse diet (Teklad Global 14% Protein 4% Fat Rodent Maintenance Diet—
Envigo. Harlan Teklad, Madison, WI, USA) or high-fat diet (HFD, Paigen Diet 10 MM
S9358-E030—1.25% cholesterol, 0.5% cholic acid, 15% cocoa butter, 1% corn oil). Then,
24 h before sacrifice, animals were moved to metabolic cages to quantify food intake. All
surgical procedures were performed under general anesthesia with isoflurane. On the day
of sacrifice, total body weights were measured. Animals were sacrificed and blood samples
were collected by cardiac puncture. Organs were perfused with a saline solution through
the left ventricle. Snap-frozen tissue samples were collected for molecular biology and 3H
glucose analysis and 4% paraformaldehyde-fixed samples for histological assessments.

2.3. Glucose Metabolism Analysis

Blood glucose levels were measured with a glucometer (Roche, Basel, Switzerland).
To analyze glucose metabolism during fasting, glycemia was analyzed at 2 and 7 h after
food removal. Overnight periods of fasting were also used. For the glucose tolerance test
(GTT), experiments started 3 h after fasting (time 0) by administration of a glucose (Sigma-
Aldrich, St. Louis, MO, USA) single-injection (4 g/kg; i.p.) and glucose measurements
were performed at 20, 40, 60 and 120 min. For the pyruvate tolerance test (PTT), the same
protocol was followed, replacing glucose with a dose of 2 g/kg sodium pyruvate (Life
Technologies, Paisley, UK).

2.4. 3H Glucose Detection

After 3 h of fasting, a single i.p. bolus of a mixed solution of normal and radioactive
glucose (3H glucose Perkin Elmer, Westerville, Ohio, USA) 20 µCi per mouse in 3 g/kg
glucose) was administered, and animals were sacrificed after 120 min. Then, different
tissues were collected and homogenized with stainless steel beads (Qiagen, Hilden, Ger-
many) using a TissueLyser LT (Qiagen). Subsequently, supernatants were mixed 1:1 with
7% HClO4 (Sigma-Aldrich), centrifuged and neutralized for 30 min with a 2.2 M KHCO2
(Sigma-Aldrich) solution. Then, samples were centrifuged at 14,000× g, the precipitate was
discarded and supernatant was mixed with 10 mL of scintillation liquid to determine total
3H radioactivity [22]. Radioactivity was measured using a scintillation counter (Packard
1900 TR).

2.5. Glucose Intraventricular Delivery in the CNS and Osmotic Implantation

Osmotic pumps (Alzet Mini-Osmotic pump model 2006, duration 42 days with a
0.15 µL/h pumping rate) were filled with a saturated solution of D-(+)-glucose or D-
mannitol (Sigma-Aldrich) and hydrated with saline at 37 ◦C for 60 h before surgery. Intrac-
erebroventricular infusion of glucose or mannitol was performed as previously reported by
DeVos and Miller [23].

2.6. Serum and Urine Biochemistry

Total cholesterol (TC), HDL-C and triglycerides (TG) were measured by colorimetric
methods according to standardized protocols with an AU5800 Analyzer (Beckman Coul-
ter Inc., Fullerton, CA, USA) in the Clinical Analysis Laboratory of Arnau de Vilanova
University Hospital, in Lleida, Spain. LDL-C was calculated by the Friedewald equation
if TG < 250 mg/dL or by a colorimetric method if TG > 250 mg/dL. In order to deter-
mine serum c-peptide concentrations, an ELISA kit (Millipore, Bedford, UK) was used
as indicated by the manufacturer. The blood urea nitrogen concentration was measured
using a colorimetric assay (Spinreact, Barcelona, Spain). Serum 25-hydroxy-vitamin D
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(25(OH)D3) and 1,25-dihydroxy-vitamin D (1,25(OH)2D3) levels were quantified with an
enzyme immunoassay (Immunodiagnostic Systems, Boldon Business Park, UK) following
the manufacturer’s instructions.

2.7. Histopathology Analysis

Paraffin blocks were cut at 5 µm, dried at 60 ◦C for 30 min and then dewaxed and
rehydrated for hematoxylin (PanReac AppliChem ITW Reagents, Barcelona, Spain) and
eosin (Master diagnostic MAD-109 1000) staining. For the periodic acid Schiff-alcian
blue (PAS-AB) staining, after rehydration, 5 µm slices were incubated with AB for 5 min,
followed by 15 min with PAS, and finally, 25 min in the Schiff solution.

2.8. Hepatic Glycogen Detection

Liver samples (100 mg) were homogenized with stainless steel beads (Qiagen) in
500 µL of homogenization buffer (50 mM TrisHCl pH 7.5, 5 mM EDTA, 1 mM DTT,
10 µL/mL PMSF, 5 µL/mL PIC, 5 µL/mL Na3VO4) using a TissueLyser LT. Then, liver
lysates were mixed with 100 µL of 50 mM TrisHCl buffer and 100 µL of 0.2 M perchloric
acid and subsequently centrifuged at 14,000× g for 5 min. Supernatant was transferred to a
new tube with 300 µL of 90% ethanol and maintained at −20 ◦C overnight. Then, samples
were centrifuged and pellets containing the glycogen were let to dry. Once dried, glycogen
pellets were mechanically suspended in 2 M HCl. Then, the solution was incubated at
100 ◦C for 20 min and subsequently the reaction was stopped by adding a 1 M NaOH and
1% 3,5-dinitrosalicylic acid solution. Finally, samples were incubated at 100 ◦C for 5 min
and absorbance was read at 546 nm.

2.9. RNA Isolation and Quantitative Reverse Transcription PCR (qRT-PCR)

A total of 20 mg of tissue was used for total RNA isolation from liver samples using
an RNA isolation kit (Macherey-Nagel, Allenton, PA, USA) following the manufacturer’s
instructions. RNA concentration was measured using a NanoDrop spectrophotometer and
stored at −80 ◦C.

Reverse transcription was performed with 1 µg of total RNA in a reaction buffer
(Roche Diagnostics, Mannhein, Germany) containing 5 mM MgCl2, 10 µM dNTPs (Biotools,
Jupiter, FL, USA), 5 µM random hexamers (Invitrogen, Waltham, MA, USA) and 1 unit
of AMV Reverse Transcriptase (Applied Biosystems, Waltham, MA, USA). Then, qPCR
reaction using a Taqman Universal PCR Master Mix (Applied Biosystems) was performed
as previously described [24]. Primers sequences for qPCR are shown in Supplementary
Materials, Table S2.

2.10. Western Blot Analysis

Liver tissue was dispersed into lysis buffer containing 20 mM Tris/HCl pH 7.5,
120 mM NaCl, 0.5% Igepal CA-630 (Sigma-Aldrich), 100 mM NaF, 5 µM PMSF, 5 µL/mL
protein inhibitor cocktail (Sigma-Aldrich) and 1 µM Na3VO4, using a TissueLyser. Protein
concentration was determined using a DC protein assay kit (Bio-Rad, Hercules, CA, USA)
and Western blot was performed as previously described [24]. Briefly, twenty micrograms
of proteins were electrophoresed on 10% SDS-PAGE gels, and transferred to PVDF mem-
branes (Millipore). Membranes were probed with antibodies against PTEN, VDR, AKT and
phospho-AKT overnight at 4 ◦C. Horseradish peroxidase (HRP)-conjugated secondary an-
tibodies (Jackson Immunoresearch, West Grove, PA, USA) and a chemiluminescent kit (EZ
ECL, Biological Industries, Kibbutz Beit-Haemek, Israel) or an enhanced chemiluminescent
kit (ECL Advanced, Amersham, UK), as appropriate, were used to visualize the amount of
each protein. Antibody data are described in Supplementary Materials, Table S3.

2.11. Statistical Analyses

All experiments were carried out at least three times. Statistical analyses were per-
formed with GraphPad Prism 8.02 software. Values are presented as mean ± SEM. Com-
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parisons were assessed using one-way ANOVA followed by Tukey’s test for multiple
comparisons with one categorical variable and two-way ANOVA followed by the Sidak
test for multiple comparisons with two categorical variables. Survival ratio analyses were
performed using the Mantel–Cox test. A p < 0.05 was considered to be significant.

3. Results
3.1. Lack of VDR Reduces Lifespan in PTEN Knockout Mice

To investigate the role of VDR in hypoglycemia induced by overactivation of the
insulin receptor, we mated Cre-ERT:PTENfl/fl (PTEN-KO) mice with Cre-ERT:VDRfl/fl
(VDR-KO) knockout mice to generate double knockout mice (DKO). At the age of two
months, tamoxifen was administered, resulting in genetic excision of the floxed exons after
4–5 weeks (Supplementary Materials, Figure S1A) and a low or undetected PTEN protein,
and increased AKT phosphorylation in both, PTEN-KO and DKO mice (Supplementary
Materials, Figure S1B,C).

All the animals in the CNT group and in the VDR-KO group stayed alive after 65 days
of Cre-induced VDR ablation (Figure 1A), whereas animals in the PTEN-KO group showed
worse survival (76.2%). Of note, DKO mice presented notable, excessive mortality, starting
20 days after Cre-induced target genes ablation, and resulting in the death of all the animals
at 65 days. The patterns of the survival curves in the DKO mice were similar for both sexes
(Figure 1B).

3.2. Physiological and Biochemical Parameters

The physiological and serum biochemical parameters are shown in Table 1. All animal
had ad libitum access to chow, and food intake was increased in PTEN-KO and DKO
animals; however, total body weight decreased in both groups as compared with controls.

Table 1. Physiological and serum parameters.

CNT
(n = 11)

VDR-KO
(n = 9)

PTEN-KO
(n = 8)

DKO
(n = 13)

A. Physiological parameters

Food intake (g/24 h) 3.03 ± 0.28 3.87 ± 0.29 5.02 ± 0.35 ** 5.26 ± 0.31 ***
Total body weight (g) 27.0 ± 0.81 25.0 ± 1.01 22.7 ± 0.50 *** 22.6 ± 0.58 ***

B. Circulating parameters

BUN (mg/24 h) 20.6 ± 2.74 19.4 ± 1.83 20.4 ± 1.45 20.6 ± 2.41
Peptide-C (pM) 175.7 ± 25.3 140.9 ± 16.1 64.0 ± 3.61 *** ⊥⊥ 70.0 ± 6.50 *** ⊥⊥

Blood glucose (mg/dL) 148.4 ± 4.11 143.1 ± 15.2 83.5 ± 7.12 *** ⊥⊥⊥ 87.9 ± 9.03 *** ⊥⊥⊥

25(OH)D3 (ng/mL) 74.7 ± 10.2 65.04 ± 18.9 17.8 ± 3.15 *** ⊥⊥ 26.1 ± 7.05 **
1,25(OH)2D3 (pmol/L) 124.7 ± 39.7 376.3 ± 67.5 *** 70.10 ± 40.4 ⊥⊥⊥ 188.0 ± 41.5 ##

Total cholesterol
(mg/dL) 121.3 ± 6.05 142.0 ± 13.0 110.1 ± 6.44 ⊥ 101.3 ± 3.85 ⊥⊥

LDL cholesterol
(mg/dL) 16.9 ± 2.43 16.7 ± 3.77 16.0 ± 4.45 9.23 ± 2.50

HDL cholesterol
(mg/dL) 92.0 ± 4.86 111.4 ± 9.70 83.71 ± 5.55 ⊥ 79.4 ± 3.52 ⊥⊥

Triglycerides (mg/dL) 88.3 ± 12.7 69.4 ± 5.63 93.3 ± 9.11 64.7 ± 8.41

Values represent mean ± SEM. ** p < 0.01 vs. CNT; *** p < 0.001 vs. CNT; ⊥ p < 0.05 vs. VDR-KO; ⊥⊥ p < 0.01
vs. VDR-KO; ⊥⊥⊥ p < 0.001 vs. VDR-KO; ## p < 0.01 vs. PTEN-KO. BUN: Blood urea nitrogen. 25(OH)D3: 25-
hydroxy-vitamin D. 1,25(OH)2D3: 1,25-dihydroxy-vitamin D. LDL: Low-density lipoprotein. HDL: High-density
lipoprotein. CNT: Control. VDR-KO: Vitamin D receptor knockout. PTEN-KO: Phosphatase and tensin homolog
knockout. DKO: Double knockout.
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Figure 1. Survival rates after Cre-induced PTEN ablation. (A) The 65-day follow up after tamoxifen
injection showed a 98.2% survival rate in CNT (54 of 55), 100% in VDR-KO (42 of 42), 76.2% in
PTEN-KO (32 of 42) and 0% in DKO (0 of 59); long-rank test p < 0.001. (B) Survival rate was not
influenced by sex; Long-Rank test p = 0.472. CNT: Control. VDR-KO: Vitamin D receptor knockout.
PTEN-KO: Phosphatase and tensin homolog knockout. DKO: Double knockout.

Serum peptide C concentration was decreased in PTEN-KO and DKO animals as
compared with the CNT and VDR-KO groups, indicating decreased insulin secretion,
which is associated with lower blood glucose levels. As expected, serum 1,25(OH)2D3
levels were increased in both the VDR-KO and DKO groups due to the absence of VDR,
but decreased in PTEN-KO mice. The serum concentrations of 25(OH)D3 were reduced in
both PTEN-KO and DKO mice. Total cholesterol (TC) and HDL cholesterol (HDLC) were
significantly reduced in PTEN-KO and DKO mice as compared with the VDR-KO group
and LDL cholesterol (LDLC) showed a tendency to be reduced in DKO.

3.3. Blood Glucose Tests Reveal a Disruption of Glucose Metabolism in PTEN-KO and DKO Mice

Glucose levels were lower in the PTEN-KO and the DKO group, even with unrestricted
access to food (Fed state, Figure 2A). Furthermore, after 7 h of food restriction, levels of
glucose in the DKO mice had a tendency to be lower than in the PTEN-KO mice. Overnight
food restriction led to a 100% mortality in DKO animals.
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Figure 2. Administration of glucose did not increase survival in DKO. (A) Blood glucose levels in
fed and fasting states. (B) Sucrose supplementation in drinking water or (C) intracerebroventricular
infusion of glucose did not extend DKO survival, Long-Rank test p = 0.91 and 0.57 respectively.
(D) Tissue glucose accumulation in PTEN-KO and DKO mice. 3H-Glucose radioactivity was measured
in 10 mg of different tissues. Data are represented as mean± SEM. *** p < 0.001 vs. CNT; ⊥⊥⊥ p < 0.001
vs. VDR-KO. CNT: Control. VDR-KO: Vitamin D receptor knockout. PTEN-KO: Phosphatase and
tensin homolog knockout. DKO: Double knockout.

The results from the glucose and pyruvate tolerance tests are shown in Table 2. In-
traperitoneal administration of glucose (Table 2A) produced a significant increase in blood
glucose levels in both CNT and VDR-KO mice, which returned to basal values after 2 h.
In PTEN-KO animals, the peak was also present, but was smaller and returned to basal
values after 60 min. Animals in the DKO group showed a very small increase in glucose
levels 20 min after glucose administration, which returned to basal levels at 40 min. Ad-
ministration of pyruvate (Table 2B) showed similar traits in CNT and VDR-KO mice with
glucose peaks that returned to normal values after 2 h. PTEN-KO mice and DKO mice
showed a smaller peak in glucose after 20 min, which returned to basal values after 40 min.
Therefore, all these results point to a higher utilization of glucose in DKO mice with respect
to PTEN-KO mice.
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Table 2. Glucose and pyruvate tests.

CNT
(n = 11)

VDR-KO
(n = 9)

PTEN-KO
(n = 8)

DKO
(n = 13)

A. Glucose tolerance test

Time (min)
0 145.4 ± 6.3 134.0 ± 5.3 61.5 ± 6.7 *** ⊥ ⊥ ⊥ 68.0 ± 4.7 *** ⊥ ⊥ ⊥

20 190.1 ± 7.3 202.2 ± 8.8 96.7 ± 17.0 *** ⊥ ⊥ ⊥ 72,7 ± 6.9 *** ⊥ ⊥ ⊥

40 180.7 ± 7.7 197.2 ± 11.8 68.2 ± 9.0 *** ⊥ ⊥ ⊥ 64.8 ± 5.8 *** ⊥ ⊥ ⊥

60 175.0 ± 9.0 195.9 ± 11.9 58.8 ± 8.6 *** ⊥ ⊥ ⊥ 65.3 ± 6.7 *** ⊥ ⊥ ⊥

120 148.3 ± 7.5 155.5 ± 16.9 54.8 ± 7.0 *** ⊥ ⊥ ⊥ 51.2 ± 6.2 *** ⊥ ⊥ ⊥

B. Pyruvate tolerance test

Time (min)
0 157.1 ± 7.3 149.1 ± 7.2 62.1 ± 10.5 *** ⊥ ⊥ ⊥ 68.4 ± 9.2 *** ⊥ ⊥ ⊥

20 212.3 ± 8.9 196.2 ± 14.6 74.3 ± 11.2 *** ⊥ ⊥ ⊥ 78.6 ± 9.9 *** ⊥ ⊥ ⊥

40 204.6 ± 17.2 175.0 ± 20.6 62.9 ± 11.7 *** ⊥ ⊥ ⊥ 54.1 ± 6.6 *** ⊥ ⊥ ⊥

60 204.1 ± 18.4 180.8 ± 20.0 61.5 ± 14.0 *** ⊥ ⊥ ⊥ 49.8 ± 6.7 *** ⊥ ⊥ ⊥

120 145.3 ± 10.7 148.9 ± 19.4 59.8 ± 7.9 *** ⊥ ⊥ ⊥ 60.3 ± 12.9 *** ⊥ ⊥ ⊥

Time 0 is 3 h after food removal. Values represent mean ± SEM. *** p < 0.001 vs. CNT; ⊥ ⊥ ⊥ p < 0.001 vs. VDR-KO.
CNT: Control. VDR-KO: Vitamin D receptor knockout. PTEN-KO: Phosphatase and tensin homolog knockout.
DKO: Double knockout.

3.4. Glucose Supplementation Did Not Increase Survival in DKO Mice

As the DKO group showed severe hypoglycemia, we investigated whether a sucrose
supplementation in the drinking water could result in increased survival or extended
lifespan. We observed a 100% mortality approximately 100 days after Cre-induced PTEN
and VDR ablation, with no differences between the sucrose and vehicle group (Figure 2B).

As severe hypoglycemia leads to functional brain failure and hypoglycemic coma, we
also studied whether direct intracerebroventricular infusion of glucose could be beneficial
in DKO mice (Figure 2C). We observed that direct infusion of glucose into the cerebral
ventricle did not increase animal survival.

We also studied whether glucose consumption was higher in DKO mice that in PTEN
mice in a particular organ, as a way to explain the increased utilization of glucose. As
shown in Figure 2D, there was a higher intake of glucose in many organs (p < 0.01 in the
genotype comparison in two-way ANOVA), but the profile of each organ was not modified
by the genotype (the interaction was not significant).

3.5. Faster Reduction in Glycogen Pool in Fasting DKO Mice

To determine the glycogenic hepatic capacity, total glycogen levels from mouse liver
lysates were measured (Figure 3A). In a fed state, all groups showed similar levels of liver
glycogen; however, lower glycogen concentration was observed after two hours of fasting
in the DKO group as compared with the CNT and VDR-KO groups at the same time point,
pointing to a faster use of glycogen stores. However, after 7 h of fasting, all groups showed
similar levels of glycogen in liver. Hematoxylin–eosin and PAS staining demonstrated
hepatocellular ballooning in the PTEN-KO and DKO mice as compared with the CNT and
VDR-KO groups after 7 h of fasting (Figure 3B).
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Figure 3. Abnormal glycogen metabolism in PTEN-KO and DKO mice. (A) Hepatic glycogen in the
fed state and after 2 h and 7 h of fasting. (B) Representative microphotographs of liver hematoxylin-
eosin and PAS staining for the groups of study. Data are represented as mean ± SEM. ** p < 0.01 vs.
CNT; ⊥⊥ p < 0.01 vs. VDR-KO. 100× magnification. Scale bar: 100 µm. CNT: Control. VDR-KO:
Vitamin D receptor knockout. PTEN-KO: Phosphatase and tensin homolog knockout. DKO: Double
knockout.

3.6. Delayed Gluconeogenesis in PTEN-KO and DKO Mice

In order to study the glucose metabolism in livers, we analyzed the genetic expression
of PEPCK and G6PC, genes involved in gluconeogenesis. In CNT and VDR-KO mice, the
expressions of PEPCK (Figure 4A) and G6PC (Figure 4B) were increased after 2 h of fasting
and were subsequently restored after 7 h of fasting. This fact points to an early induction
of glucose generation in the liver that could be already enough to re-establish glycemia.
However, in PTEN-KO and DKO PEPCK and G6PC, gene expression reaches a peak after
7 h of fasting, indicating delayed gluconeogenesis.
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Figure 4. Expression of genes involved in glycogen metabolism in liver. mRNA expres-
sion of (A) Phosphoenolpyruvate carboxykinase (PEPCK), (B) Glucose-6-phosphatase (G6PC),
(C) CCAAT/enhancer-binding protein alpha (CEBPA), (D) Peroxisome proliferator-activated receptor
gamma coactivator 1-alpha (PGC1α) and (E) Glucose transporter 2 (GLUT2) using TATA-binding
protein (TBP) as the housekeeping gene. Data are represented as mean ± SEM. * p < 0.05 vs. CNT;
** p < 0.01 vs. CNT; *** p < 0.001 vs. CNT; ⊥ p < 0.05 vs. VDR-KO; ⊥⊥ p < 0.01 vs. VDR-KO; VDR-KO;
⊥⊥⊥ p < 0.001 vs. VDR-KO; ## p < 0.01 vs. PTEN-KO. CNT: Control. VDR-KO: Vitamin D receptor
knockout. PTEN-KO: Phosphatase and tensin homolog knockout. DKO: Double knockout.

Additionally, we analyzed the CEBPA and PGC1α gene expression, both genes that
are implicated in the transcriptional regulation of PEPCK and G6PC, among other liver
metabolism genes. We observed similar liver CEBPA gene expression in the CNT and
VDR-KO groups in fed and fasting states, whereas in the PTEN-KO and DKO mice it was
downregulated throughout fasting (Figure 4C). PGC1α gene expression also remained
similar in CNT and VDR-KO animals in fed and fasting states, however it increased
by approximately 3-fold after 7 h of fasting in PTEN and DKO mice, showing earlier
upregulation in the DKO group (Figure 4D).

We also measured the gene expression of GLUT2, a glucose transporter found in
hepatocytes that mediates glucose diffusion across cell membranes. We observed that
GLUT2 gene expression was slightly increased in fasting CNT and VDR-KO mice, whereas
it remained similar in the PTEN-KO and DKO groups (Figure 4E).

3.7. High-Fat Diet Increased DKO Survival

As fatty acid β-oxidation is used as an alternative source of energy if glucose is
not available, we investigated the expression of enzymes related to that process. First,
we observed a total absence of abdominal adipose tissue in PTEN-KO and DKO mice
(Figure 5A). Second, we investigated several genes involved in fatty acid oxidation. Thus,
expression of PPARA was increased after 2 h of fasting, but contrary to the rest of the
groups, levels decreased in DKO animals after 7 h of fasting (Figure 5B). Levels of CPT1
were almost unresponsive to starvation in the DKO group, in contrast to the rest of the
groups (Figure 5C). Regarding ACOX1 and FGF21, the expression of the genes in the DKO
group was attenuated with respect to the PTEN-KO group (Figure 5D,E respectively).
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Figure 5. A high-fat diet extends lifespan in DKO mice. (A) Abdominal adipose tissue was absent in
PTEN-KO and DKO mice. Liver mRNA expression of (B) Peroxisome proliferator-activated receptor
alpha (PPARA), (C) Carnitine palmitoyltransferase I (CPT1), (D) Peroxisomal acyl-coenzyme A
oxidase 1 (ACOX1) and (E) Fibroblast growth factor 21 (FGF21) using TATA-binding protein (TBP) as
housekeeping gene. (F) Survival rates of DKO mice fed on a normal or high fat diet after cre-induced
PTEN ablation. Log-rank p-value < 0.01. Data are represented as mean ± SEM. n.d: not detected.
* p < 0.05 vs. CNT; ** p < 0.01 vs. CNT; *** p < 0.001 vs. CNT; ⊥ p < 0.05 vs. VDR-KO; ⊥⊥ p < 0.01 vs.
VDR-KO; VDR-KO; ⊥⊥⊥ p < 0.001 vs. VDR-KO; # p < 0.05 vs. PTEN-KO. CNT: Control. VDR-KO:
Vitamin D receptor knockout. PTEN-KO: Phosphatase and tensin homolog knockout. DKO: Double
knockout.

As fat metabolism seems to be involved in the pathological features, we studied the
effects of a high-fat diet in the survival rate of DKO mice. Thus, a high-fat diet significantly
extended the DKO lifespan (Figure 5F).
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4. Discussion

In the present study, we generated inducible double KO mice for PTEN and VDR. The
animals with deletion of both genes showed an increased mortality, which was partially
reverted when animals were placed on a high-fat diet.

PTEN was identified as a tumor suppressor gene on chromosome 10q23 [25]. Vita-
min D, signaling through VDR, is also known to have a protective effect against some
cancers [26]. Thus, a first possibility is that the elimination of VDR could increase the
susceptibility of the animals to develop some kind of cancer. The embryonic lethality of
mice with biallelic excision of PTEN has limited the study of complete PTEN ablation in the
development of cancer. However, the generation of PTEN conditional-KO mice has solved
that problem. Mirantes et al. [18], showed that the use of CREER to delete PTEN-generated
mice with a tendency to develop cancer in the thyroid gland, prostate and endometrium.
In our case, no macroscopical tumors were detected in the necropsies. Furthermore, the
results of the 3H glucose uptake showed that the interaction term in the ANOVA analysis
was not significant, so a different effect of the phenotype in tissular uptake of 3H is ruled
out, and an aggravation of the cancer is unlikely to be the cause of death. The differences
between our results and those of Mirantes et al. may be explained by two reasons. First,
our animals were used 4–5 weeks after the administration of tamoxifen, contrary to the
experiments of Mirantes et al. in which they waited 8 weeks for the sacrifice of the animals.
Furthermore, to generate our crossings we introduced the SWR/J background into the
C57BL6;129S4 mixed background used in the experiments from Mirantes et al., which could
change the susceptibility to cancer.

The first important result in PTEN-KO and DKO mice is the lower body weight and the
total absence of body fat with respect to the rest of the groups. As animals in these groups
had a higher food intake, the results point to an increase in energy expenditure. Previous
results have shown conflicting results regarding PTEN and energy expenditure. Thus,
the deletion of PTEN in the liver decreases adiposity [27], but systemic overexpression of
PTEN has been also shown to increase energy expenditure and decrease adiposity [28].
Constitutive VDR-KO mice also show an increase in energy expenditure and a higher
food intake with a lower body weight [29,30]. Our inducible VDR-KO mice also showed a
tendency to eat more and have a lower weight. However, those differences did not reach
statistical significance with respect to the controls, probably due to the fact that in our case
the deletion of VDR was performed in adulthood.

In a previous study by our group, we determined that inducible PTEN-KO mice had
alterations in the glucose metabolism that caused hypoglycemia [31]. In addition, vitamin
D signaling has been reported to regulate insulin secretion. Thus, vitamin D deficiency
inhibits pancreatic secretion of insulin [32] and it is associated with insulin resistance [33].
Furthermore, mice lacking a functional vitamin D receptor show impaired insulin secretory
capacity [34] together with insulin resistance [35]. The results of the fasting experiments
reported that, although not significant with respect to the PTEN-KO mice, glucose levels
had a tendency to be lower in the DKO mice after 7 h of fasting. Thus, it seemed that either
glucose was used faster or produced in a lower rate in those mice. The glucose tolerance test
results showed that although a smaller peak of glucose could be seen 20 min after glucose
administration in the DKO mice with respect to the PTEN-KO mice, the levels dropped fast,
achieving similar values in both groups after 40 min. Therefore, a significant effect due to a
higher uptake of glucose in the tissues of DKO mice seems unlikely, as it was also shown
in the 3H-glucose experiments. The PTT also showed no significant differences in the rate
of gluconeogenesis between both phenotypes. Furthermore, and although DKO animals
seemed to decrease glycogen storage at a faster rate after 2 h of fasting, the differences were
not significant after 7 h. Interestingly, after an overnight fasting period, 100% of the DKO
animals died. When glucose levels in blood achieve a lower threshold, symptoms and signs
of encephalopathy result. The blood glucose level at which cerebral metabolism fails and
symptoms develop varies, but in general, confusion occurs at levels below 30 mg/dL and
coma below 10 mg/dL [36]. Thus, it is possible that hypoglycemic coma in our animals,
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induced by an overactivation of the insulin receptor similar to an insulin overdose, can
cause unresponsiveness and inability to feed and drink, causing the death of the animals.
However, supplementation with sucrose in the drinking water was also unable to decrease
the mortality observed in the DKO group. Furthermore, the experiments in which glucose
was infused directly into the cerebral ventricles with an osmotic pump were also unable to
reduce the excess mortality in the DKO mice.

The mechanisms by which insulin-induced hypoglycemia causes sudden death are
not well characterized. It has been previously shown that fatal arrhythmias and seizures
are involved in this fatal complication [37]. The influence of high cholesterol levels on
cardiovascular mortality has been known for decades. However, recent results point
to a deleterious effect of low lipid levels on cardiovascular events, especially in atrial
fibrillation (AF). Thus, a study on 15 million Chinese participants showed that low HDLC
was independently associated with a higher risk of atrioventricular block, whereas high TC
was a protective factor [38]. The protective effect of high levels of TC against AF has been
demonstrated in many other studies in different populations in Korea, Japan, USA, China
and Sweden [39–43]. Low HDLC has been also found to be associated with increased risk
of AF [39,44–46]. In our mice, lower levels of TC and HDLC were found in PTEN-KO mice
after 7 h of fasting, and showed a tendency to be even lower in DKO mice. Furthermore,
the maintenance of the animals on a high-fat diet was the only strategy able to increase its
lifespan.

In fasting adult mammals, 60–80% of cardiac energy metabolism relies on the oxida-
tion of fatty acids (FAs) with glucose, lactate, and ketones providing substrates for the
remainder [47]. Both PTEN and vitamin D show effects on hepatic lipid metabolism. Thus,
liver specific PTEN-KO mice show increased fatty acid synthesis, accompanied by hep-
atomegaly and fatty liver phenotype [48]. In contrast, VDR deletion induces lipid oxidation
and fat consumption in hepatocytes [12]. In our inducible PTEN-KO mice, we observed
that fasting-mediated induction of PPARA, a regulator of hepatic metabolism activated
by fatty acids [49], was not as elevated as in CNT and VDR-KO mice. This induction
was further reduced in the DKO mice, reaching basal levels after 7 h of fasting. PPARA
controls gene expression levels of the rate-limiting enzymes of peroxisomal β-oxidation,
including ACOX1 [49], which showed a similar profile to PPARA. Another gene implicated
in fatty acid metabolism is CPT1. The protein encoded by CPT1 is responsible for the
carnitine-dependent transport of fatty acids across the mitochondrial inner membrane. In
our model, CPT1 expression was increased by starvation in all the groups except in the
DKO animal. Finally, another PPARA-mediated target, FGF21, was increased in PTEN-KO
animals but it did not show the same profile in DKO animals. The effects of FGF21 on the
liver are not completely understood but reports show that it stimulates the oxidation of
fatty acids [50]. Therefore, it seems that in the DKO mice, together with the alterations in
glucose metabolism leading to hypoglycemia, alterations in lipid metabolism leading to
delays in the fatty acid oxidation pathways can increase the mortality rate.

5. Conclusions

Taken together, the results shown in the present paper point to the paramount role of
an adequate vitamin D signaling pathway in hypoglycemia induced by overactivation of the
insulin receptor. Thus, in T1 diabetic patients, especially in the lean phenotype, maintaining
correct levels of vitamin D could support proper lipid metabolism and decrease deaths
induced by insulin dosing errors.
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antibodies and Supplementary Figure S1. Mouse genotypes and target protein expressions.
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