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Abstract: In 2010, the Mediterranean diet was recognized by UNESCO as an Intangible Cultural
Heritage of Humanity. Olive oil is the most characteristic food of this diet due to its high nutraceutical
value. The positive effects of olive oil have often been attributed to its minor components; however,
its oleic acid (OA) content (70–80%) is responsible for its many health properties. OA is an effective
biomolecule, although the mechanism by which OA mediates beneficial physiological effects is not
fully understood. OA influences cell membrane fluidity, receptors, intracellular signaling pathways,
and gene expression. OA may directly regulate both the synthesis and activities of antioxidant
enzymes. The anti-inflammatory effect may be related to the inhibition of proinflammatory cytokines
and the activation of anti-inflammatory ones. The best-characterized mechanism highlights OA
as a natural activator of sirtuin 1 (SIRT1). Oleoylethanolamide (OEA), derived from OA, is an
endogenous ligand of the peroxisome proliferator-activated receptor alpha (PPARα) nuclear receptor.
OEA regulates dietary fat intake and energy homeostasis and has therefore been suggested to be a
potential therapeutic agent for the treatment of obesity. OEA has anti-inflammatory and antioxidant
effects. The beneficial effects of olive oil may be related to the actions of OEA. New evidence suggests
that oleic acid may influence epigenetic mechanisms, opening a new avenue in the exploration of
therapies based on these mechanisms. OA can exert beneficial anti-inflammatory effects by regulating
microRNA expression. In this review, we examine the cellular reactions and intracellular processes
triggered by OA in T cells, macrophages, and neutrophils in order to better understand the immune
modulation exerted by OA.

Keywords: oleic acid; oleoylethanolamide; macrophages; neutrophils; T cells

1. Introduction

Maintaining an optimal immune system is the best preventive medicine. The major
function of the immune system is defense against foreign and/or one’s own malignant
cells [1]. Although the immune system depends on genetic factors, other factors may
be modulated by lifestyle. These factors include physical exercise, a good emotional
state, relationships, meditation, and good nutrition [2], because the immune system is
interconnected with the nervous system and the endocrine system [3].

In 2010, the Mediterranean diet was recognized as an Intangible Cultural Heritage
of Humanity by UNESCO [4]. In addition, in 2012, it was included by the Food and
Agriculture Organization of the United Nations (FAO) in the group of the most sustainable
diets in the world [4]. It is considered the most recognized diet for disease prevention
and healthy aging, partially due to its demonstrated anti-inflammatory and antioxidative
properties, which may impact telomere length [5]. This dietary pattern is characterized by a
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high consumption of vegetables, olive oil as the main dietary fat, a moderate intake of fish,
a low-to-moderate intake of dairy products, a low consumption of meat, and a moderate
consumption of wine. Physical exercise is also recommended for the Mediterranean
lifestyle [6].

The olive tree (Olea europaea L.) is common in the Mediterranean Basin, and it is one of
the reasons for the name of this special diet [7]. Olive oil, which is extracted from its fruit,
is the most characteristic nutrient in this diet [8]. The beneficial effect of olive oil on health
is well-established [9–12]. The helpful aspects of olive oil have commonly been attributed
to its minor components, such as polyphenols, α-tocopherol, and other unsaponifiable
compounds [8,13,14], but little attention has been paid to oleic acid (OA) (18:1 n-9 cis-9).
This fatty acid is the main component of olive oil (70–80%) [15] and is responsible for many
healthy properties [16]. OA is produced via both diet and endogenous synthesis. OA
is the most abundant monounsaturated fatty acid (MUFA) in the human diet [17], and,
endogenously, it is the main type of monounsaturated omega-9 fatty acid that is formed by
stearoyl-CoA desaturase 1 (SCD1), principally from stearic acid (C18:0) by catalyzing ∆9

desaturation [18].
OA is the major MUFA in the human circulatory system [17]. In the brain, it is a great

component of membrane phospholipids and is highly plentiful in myelin [19]. A significant
decrease in OA has been observed in the brains of patients with major depressive disorders
and Alzheimer’s disease [20].

OA, like all free fatty acids, has the main function of being an energy molecule and
an element of cell membranes. Moreover, since the identification of membrane receptors
for free fatty acids (FFAs), new cellular functions have been attributed to it [21]. OA is
therefore recognized as a versatile nutraceutical and effective biomolecule. One of its most
characteristic effects is its antioxidant capacity because it can directly regulate both the
synthesis and activities of antioxidant enzymes [22]. This antioxidant ability may be related
to the hypotensive effect attributed to the OA improvement of endothelial dysfunction.
Under oxidative stress, the vasodilator molecule oxide nitric is converted to peroxynitrite,
producing a hypertensive effect. Another beneficial property is its hypocholesterolemic
effect. OA diminishes the expression of cholesterol transport-related proteins, decreases
cholesterol absorption [23], and decreases the oxidation of low-density lipoprotein (LDL),
preventing atherosclerosis [24].

OA is also recognized as an anticancer molecule because of OA inhibition effects on
oncogenes overexpression and its apoptosis effects [25]. OA is generally considered to be
an anti-inflammatory molecule, although this quality is debated. Although several authors
have reported that OA has an anti-inflammatory effect caused by decreasing well-known
oxidative-stress-promoting mediators, for instance, lipopolysaccharides (LPSs), phorbol
esters, and cytokines [26,27], others have suggested that it has a proinflammatory effect
caused by generating reactive oxygen species (ROS) and by activating the phosphorylation
of mitogen-activated protein kinase (MAPK) and/or protein kinase C (PKC) [28–30]. The
interaction between nutrition and immunology—immunonutrition—is complex because
of the fine line between inflammation and anti-inflammation in the maintenance of home-
ostasis and the prevention of disease [31]. By our experience, we think that OA divergence
effects, described in the bibliography, are produced by difference experiment conditions,
different cells, concentrations, and time treatment. We results suggest that, OA has a low
pro-oxidant effects, but this produces an anti-oxidant response that may be the cause of OA
beneficial effects [32].

The aim of this review is to update the knowledge of the molecular mechanisms
of OA in the main cells that are part of innate and adaptive immune responses, such as
lymphocytes, neutrophils, and macrophages.

2. Oleic Acid and Immune Cells

The immune response is composed of a first line of defense, denominate innate
immunity, which is characterized by physical and biochemical barriers, together with
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non-specific cells, such as phagocytic cells (neutrophils and macrophages), dendritic cells,
natural killers, and humoral elements. The main mechanism in phagocytic cells is the
respiratory burst, which produces ROS to kill microbes in a reaction catalyzed by NADPH
oxidase [33]. Furthermore, an adaptive immunity is activated as a second line of defense
after the cell-mediated presentation of antigens to B lymphocytes, with the help of T
lymphocytes; then, B cells can mediate humoral immunity through the production of
high-affinity antibodies and can create immunological memory. Moreover, T lymphocytes
can mediate cellular immunity after activation by cytokines or chemokines liberated from
helper T cells. The interplay between innate and adaptive immunity is well-recognized [1].

Immunomodulates can induce negative and positive effects. Negative modulation
is important in organ transplantations and autoimmune disorders. The positive effect is
crucial for restoring and maintaining body homeostasis. Immunomodulatory agents, with
antioxidant and anti-inflammatory activities, have attracted great attention as possible
preventive agents due to their ability to neutralize chronic inflammation [34]. Long-chain
fatty acids (LCFAs) have been implicated in immune modulation [35]. In particular, OA has
attracted great attention in recent years as a possible nutraceutical. Preclinical studies have
demonstrated the ability of OA to modulate the immune system, affecting both innate and
adaptive immunity responses [35]. The effects of OA on signal transduction mechanisms at
the plasma membrane, cytoplasm, and nucleus levels are described below.

2.1. Oleic Acid and Signal Transduction Mechanisms
2.1.1. Oleic Acid and Cellular Membranes

The first effect of a dietary fatty acid is its incorporation into the lipid bilayer and the
changing of its composition, as well as membrane fluidity. This change affects the produc-
tion of lipid mediators and the interactions of membrane proteins and, thus, influences
the signal transduction mechanism [36]. The membranes of immune system cells play
important roles in the functions of these cells. In these membranes, the following occurs:
the respiratory burst of phagocytic cells, the presentation of antigens in antigen-presenting
cells, and the recognition of lymphocyte receptors and all secondary signals exerted by
membrane proteins [37].

Olive oil intake increases OA levels in membranes [38], and its twisted chain modifies
the interaction within the lipid bilayer, helps to maintain hydration levels, and increases
membrane fluidity [39]. Calder et al. described the incorporation of fatty acids into lym-
phocytes and the effect of fatty acid composition on membrane fluidity. Palmitic and stearic
acids decreased fluidity, whereas OA increased fluidity. OA was largely incorporated
into phosphatidylcholine [40]. A relatively elevated proportion of OA in membrane phos-
pholipids renders the cell less susceptible to oxidation by decreasing the generation of
proinflammatory molecules because arachidonic acid is replaced [41].

In phagocytic cells, membrane fluidity is especially important in determining its phago-
cytic capacity. Our group described an age-decreasing membrane fluidity in peritoneal rat
macrophages and human neutrophils [33,42,43]. Although the OA percentage in these mem-
branes was higher, there are other important fluidity membrane factors, such as increases in
the cholesterol/phospholipid ratio and decreases in the proportion of polyunsaturated fatty
acids (PUFAs). These factors should have an impact on the final fluidity. We also found an
impaired respiratory burst and decreased NADPH oxidase activity with age [44].

Advances have been made in the clarification of the importance of LCFAs in cellular
functions with the discovery of their specific membrane receptors (FFA 1–4) [21]. FFA1
and FFA4 are G-protein-coupled receptors for LCFAs, while FFA2 and FFA3 receptors bind
to short-chain fatty acids (SCFAs) [21]. FFA1 and FFA4 receptors have been examined
in intestinal cells and pancreatic cells due to their significance in obesity and diabetes.
Immune cells have been described in the functions of LCFAs and inflammatory processes.
Concretely, FFA1 receptor has been found expressed in neutrophils; however, this receptor
has not been found in lymphocytes or macrophages. The FFA4 receptor has been found
in macrophages and neutrophils but not in lymphocytes [21]. Direct interaction between



Nutrients 2023, 15, 224 4 of 16

OA and FFA1 is described in neutrophils. However, the direct interaction has not been
described in most immunology cells [21].

2.1.2. Oleic Acid and Cytoplasmatic Signaling Pathways

The effects of OA on signaling pathways and types of immune cells studied are
summarized in Table 1. Studies on signal transduction mechanisms have been performed
mainly in neutrophils. Hidalgo et al. reported that OA stimulates MAPK phosphorylation,
intracellular calcium mobilization, granule release, and superoxide production in bovine
neutrophils [30]. Moreover, Carrillo et al. suggested that OA-induced oxidative burst
may be a consequence of protein kinase C activation due to an increase in intracellular
calcium concentrations in an FFA1-receptor-dependent manner [45]. Thus, Manosalva et al.
identified the bovine FFA1 receptor and demonstrated its functional role in neutrophils
activated by OA [46]. OA-induced ROS and MMP-9 release are mediated by phospholipase
C through both Gq and Gi [30,46,47]. Mena et al. established that this OA-dependent MMP-
9 release is also induced by other intracellular signaling pathways, such as p38 MAPK,
ERK1/2, and PI3K/Akt [47]. Padovese et al. observed that OA-induced ROS production is
determined on NADPH oxidase stimulation, and this increased killing capacity (30%) and
phagocytosis (60%) in neutrophils.

Table 1. Effects of oleic acid (OA) on signaling pathways, and types of immune cells studied.

General Effects Specific Effects Pathways Cells References

Pro-inflammatory

↑ ROS PKC/Ca+2 Neutrophils [43,44]

↑ Granule release PKC/Ca+2 Neutrophils [30,45]

↑ MMP9 MAPK Neutrophils [45]

↑ Phagocytosis – Neutrophils [46]

↑ Proliferation Ca2+/calcineurin/
NFAT

Lymphocytes [48–50]

Anti-inflammatory

↑ M2 – Macrophages [51]

↓ COX2, TNFα, IL-6, IL-12, NF-κB,
iNOS, PGE2 AMPK/MAPK/PI3K

Macrophages/Caco
cells/Lung epithelial

cells
[52–55]

↑ HO-1, GPx, SOD, IL-10
↓ COX2, TNFα, IL-6, IL-12, NF-κB, MAPK/Nrf2/PPARγ Phagocytic cells [56,57]

↑ Treg Oxidative phosphorilation Lymphocytes [58]

↓ Nf-κB Lys 310 acetilated/SIRT1 Macrophages [59]

↑ Let7b Histone acetilated Macrophages/Caco
cells [60,61]

Apoptosis
↓ Apoptosis CD36 expression Macrophages [62]

↑ FOXO3, HSF-1 SIRT1 Neurons [63]

Neuroprotection
↓ ROS, IL-8, IL-6, TNFα HIF-1α deacetylate Neurons (Parkinson’s

disease) [63]

↑ Monoamino release, dendrites
and axon development PPARγ Neurons

(hypothalamus) [64]
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Table 1. Cont.

General Effects Specific Effects Pathways Cells References

Lipid metabolism
And energy

↓ Lipotoxicity —– INS-1 cells [65]

↑ Membrane fluidity Membrane composition Hep G2 cells [32]

↑ AMPK —- Macrophages [53]

↑ β oxidation PGC1α/SIRT1 Skeletal muscle cells [66]

↓ Lipotoxicity ER
stress/pyroptosis/caspase1 Hep G2 cells [67]

↑ Apo E secretion Glycosylation Macrophages [68]

↓ Atherosclerosis lesion Hipomethylation THP-1 cells [69,70]

↑ LXRα, ABCA1
↓SREBP1c MAPK Neutrophils [71]

Glycemic
Metabolism ↓ IR ER stress HFD rats β cells [65]

In macrophages, OA has an anti-inflammatory action. Karasawa et al. reported that sat-
urated fatty acids induced NLRP3 inflammasome activation in macrophages and induced
IL-1β release, whereas OA failed to induce IL-1β release [62]. Oleate protects macrophages
from palmitate-induced apoptosis through the downregulation of CD36 expression [51].
Camell and Smith stated that dietary OA increases M2 phenotypic macrophages in the
mesenteric adipose tissue of mice [68].

In a previous study, the treatment of J774 cells with non-toxic concentrations of OA
had a sustained stimulatory effect on ROS production and increased the fungicidal ac-
tivity of the cells, suggesting that the enrichment of diets with OA may be beneficial for
pathogen elimination. Another study reported that OA in macrophages modulates the
post-translational glycosylation of apoprotein E (apoE) in the Golgi apparatus, increasing
its secretion [52]. A recent study found that OA decrease, TNFα, IL-6, COX-2, and IL-12
expressions in LPS-stimulated macrophages, showing anti-inflammatory and antifungal
properties [53]. Hou et al. reported that OA supplementation increased the AMP/ATP ratio
and AMP-activated protein kinase (AMPK) activation and inhibited the NFκB pathway
during the inflammatory response to the LPS stimulation of macrophages [54]. These
authors suggested that OA might be used for the treatment of sepsis-caused acute liver
injury. In the same cells, Hong and Lee found that OA treatments exert anti-inflammatory
effects by inhibiting proinflammatory mediators, including PI3K, Akt, MAPKs, NFκB,
NOS2, and COX2 [55]. These findings suggest that OA is a potential chemokine-based
therapeutic substance for the treatment of the lungs and airway inflammation in allergic
disorders. Muller et al. found that OA attenuated LPS-induced prostaglandin E2 (PGE2)
release. OA significantly diminished the LPS-induced expressions of NOS2, COX2, and
IL-6 mRNA. In addition, significant decreases in COX2 and NOS2 protein expressions were
also reflected [56].

Recently, Zhang et al. reported that, in phagocytic cells, OA reduced LPS-induced acute
kidney injury, improving inflammation and oxidative stress via the Ras/MAPKs/PPARγ
signaling pathway [48]. Interestingly, it was demonstrated that OA significantly enhanced
the expression of nuclear factor erythroid-2 related factor (Nrf-2), which plays a key role
in enhancing cytoprotective genes and antioxidants. Similar to the above, the activities of
glutathione peroxidase, superoxide dismutase, and hemooxygenase-1 (HO1) were enhanced
in this inflammation disease model after OA treatment. This research demonstrated that OA
reduced the expressions of NOS2, COX2, p-p65/p65, and proinflammatory factors (namely,
TNF-α, IL-6, and IFN-γ) and elevated the content of IL-10 in the acute kidney injury model.
This research found that OA decreased the levels of neutrophils and macrophages in mice
with this inflammatory disease [48].
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Few studies have been published on OA effects and their signaling pathways in T
cells. OA stimulated the proliferation of human lymphocytes isolated from peripheral
blood, while other saturated or omega-3 fatty acids decreased it [49]. Similar findings in
lymphocytes from tissue adipose have been described [72]. In contrast, Verlengia et al.
reported a reduced proliferation of Jurkat T cells treated with this fatty acid [50]. Carrillo
et al. showed that OA increased intracellular calcium, a crucial second messenger involved
in proliferation and IL-2 expression via the calcineurin/NFAT pathway [58]. The same
authors showed that this effect is mediated by an extracellular calcium influx through
econazole-insensitive channels [58].

OA is involved in the maintenance of regulatory Treg (T) lymphocyte function. The
suppressive function of Treg cells is critical for controlling immune responses and pre-
venting autoimmunity. A recent study found that OA partially restored defects in the
suppressive function of Tregs isolated from patients with multiple sclerosis, improving its
oxidative phosphorylation metabolism [73].

The best-characterized mechanism highlights OA as a natural activator of Silent In-
formation Regulator 1, sirtuin 1 (SIRT1). This protein is a ubiquitously expressed NAD+

deacetylase, with a significant role in preventing inflammation and oxidative stress. Both
processes are strongly linked to pathophysiological disorders, such as diabetes, neurode-
generative diseases, and cardiovascular events, and many chronic disorders [74]. SIRT1 is
highly expressed in the thymus, supporting the notion that it is associated with immune
function regulation [75]. In dendritic cells and macrophages, SIRT1 reduces the formation
of inflammatory cytokines [76], and Gao et al. reported that SIRT1 inhibits lung inflam-
masome activation in a sepsis murine model [66]. The activation of this enzyme has great
therapeutic value.

Lim et al. reported that OA stimulates SIRT1 deacetylase activity via the elevation of
cAMP intracellular levels and PKA signaling. SIRT1 phosphorylation at Ser-434 elevates
its catalytic activity [59]. SIRT1 has numerous targets that may explain its therapeutic
potential. SIRT1 deacetylates the NFκB p65 subunit at lysine 310, inhibiting NFκB activity
and affecting the nuclear translocation of NFκB and its DNA binding ability [77] (Figure 1).
Similar effects have been described for resveratrol, another Mediterranean diet-associated
compound and a classic SIRT1 agonist [63].
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Figure 1. Role of oleic acid (OA) in response to inflammatory stimuli, inhibiting NF-κB signaling
pathway by promoting SIRT1 activity on immune cells. Legends: Blunt arrows (⊥) indicate inhibition
while sharp arrows (→) indicate stimulation.

A direct SIRT1 substrate is the transcriptional coactivator peroxisome proliferator-
activated receptor γ coactivator 1-α (PGC1α), which becomes deacetylated and hyperactive
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after OA treatment but not after treatment with other LCFAs, such as palmitate. This sub-
strate increases genes associated with fatty acid oxidation in an SIRT1-PGC1α-dependent
mechanism. OA can therefore be useful in lipid disorders [59].

SIRT1 plays a protective role in Parkinson’s disease [67]. SIRT1 inhibits oxidative
stress by maintaining hypoxia inducible factor (HIF-1α) in a deacetylated state. SIRT1
upregulates the expression of forkhead box O3 (FOXO3a) and heat shock factor 1 (HSF-1),
inhibiting apoptosis. SIRT1 also reduces the levels of IL-8, IL-6, and TNF-α, inhibiting
neuroinflammation. The authors who described the above also investigated the efficacy
of a oleic/albumin complex on neuroprotection, suggesting that it is a novel therapeutic
molecule that could ameliorate neuronal cell damage in Parkinson’s disease [67].

A novel mechanism proposed for OA is the suppression of the reticulum stress path-
way and pyroptosis. OA is able to improve hepatocellular lipotoxicity both in vivo and
in vitro via the inhibition of endoplasmic pyroptosis and reticulum stress. Pyroptosis is
a new programmed cell death recognized as being caspase-1-dependent and described
by plasma membrane rupture and the delivery of proinflammatory intracellular contents,
including IL-1β and IL-18. OA substantially alleviated induced endoplasmic reticulum
stress and pyroptosis in HepG2 cells [65]. OA alleviated palmitate-induced lipotoxicity in
INS-1E cells and enhanced insulin sensitivity in HFD rats. The enrichment of PA-generated
ER stress may be responsible for its beneficial consequences in β cells [78].

2.1.3. Oleic Acid and Nuclear Receptors

Peroxisomal proliferator-activated receptors (PPARs) are the main cellular receptors for
fatty acids. These nuclear receptors have three isoforms (PPARα, PPARγ, and PPARβ/δ),
which are expressed in oxidative tissues to regulate energy homeostasis. In addition, they
have also been described in immune cells, playing anti-inflammatory and antiatherogenic
roles [79].

The functions of anti-inflammatory PPARs are mediated by several mechanisms, in-
cluding NFκB inhibition. First, these receptors stimulate the expression of antioxidant
enzymes (HO, catalase, and superoxide dismutase); this reduces the intracellular concentra-
tion of ROS, which are second messengers in the inflammatory response to activate NFκB.
Second, PPARs increase the expressions of IκBα (NFκB inhibitor) and SIRT1. Third, they
can directly bind NFκB and induce its proteolytic degradation [80].

Many of the beneficial effects attributed to OA may be exerted via PPAR binding. Not
all fatty acids have the same affinity for PPARs. Only fatty acids with 14 or more carbon
atoms are able to trigger PPARs [57]. These authors described that, OA has a higher bind
affinity with PPARα than PPARγ and δ and higher affinity that other similar fatty acids
such as linoic and palmitoleic acid [57]. Additionally, saturated fatty acids (SFAs) with 20
or more carbon atoms do not adjust in the ligand binding domain (LBD) and, consequently,
are not activators of PPARs [57]. Double bonds have an essential function in structures
with a fatty acid as a ligand. MUFAs in a cis configuration present a better LBD pair than
SFAs and fatty acids in a trans configuration of the similar size [80].

Medeiros-De-Moraes et al. found a helpful anti-inflammatory role of OA treatment
in sepsis, probably through a PPARγ-related mechanism. OA therapy increased IL-10
concentrations and diminished IL-1β and TNF-α. Furthermore, neutrophil migration
from circulation to the peritoneal cavity and leukocytes rolling on the endothelium were
decreased [81].

Although dietary fatty acids do not cross the blood–brain barrier (BBB), it is important
to highlight the role of this fatty acid in the brain. Song et al. demonstrated OA neuro-
protective effects in rodent models of cerebral ischemia [82]; these neuroprotective effects
of OA might be attributable to its anti-inflammatory actions via PPARγ activation [64].
OA is released from brain phospholipids after cerebral ischemia. In the brain, it is a main
component of membrane phospholipids and is very concentrated in myelin [19]. OA
is a neurotrophic factor, and it stimulates dendrite and axonal development, increases
neuronal migration, and promotes synapses. Interestingly, OA levels are decreased in the
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brains of patients with Alzheimer’s disease and major depressive diseases. Another OA
effect is monoamine efflux activation (norepinephrine, dopamine, and serotonin) in the
hypothalamus via PPARα [83].

Other nuclear receptors activated via ligands related to lipid metabolism are liver
X receptors (LXRs). These receptors, such as those encoding the ATP-binding cassette
(ABC) transporters A1 and G1 and SREBP1c, are crucial for cholesterol homeostasis, regu-
lating gene expression. Furthermore, LXR ligands have considerable anti-inflammatory
activities, having a vital function in innate immunity [84]. Additionally, LXR ligands de-
crease atherosclerosis risk by inhibiting inflammatory agents (COX2, IL-6, IL1b, monocyte
chemoattractant proteins, and iNOS) in the artery wall [71].

Our group examined the effect of OA in human neutrophils on the mRNA synthesis of
both LXRα and ABCA1 (a reverse cholesterol transporter), and, interestingly, this fatty acid
augmented the effects of LXRα ligands on ABCA1 and LXRα expressions but inhibited
SREBP1c mRNA levels (a transcription factor that regulates the synthesis of triacylglyc-
erides). In our discovery, the main physiological effect was that OA decreased intracellular
lipid levels and inflammation markers, such as ERK1/2 and p38 mitogen-activated protein
kinase phosphorylation. Additionally, OA decreased the migration of human neutrophils,
another marker of the inflammatory state [32].

Another anti-inflammatory mechanism proposed for OA is glucocorticoid receptor
mediation. Pegorano et al. demonstrated that OA-containing semisolid dosage forms
exhibit anti-inflammatory effects in vivo via glucocorticoid receptors in a UVB-radiation-
induced skin inflammation model. OA anti-inflammatory effect is similar to dexamethasone
but without adverse effect. Glucocorticoids (GC) are therapeutic agents widely used to
treat many pathologies with inflammatory actions. Its effects are mediated by its binding
to the glucocorticoid receptor (GR), which regulates the transcription of different genes,
controlling changes in the chromatin structure, the transrepression of pro-inflammatory
genes, and the transactivation of anti-inflammatory genes. However, the mechanisms
that regulate its effects are not sufficiently known, nor is it how it regulates its undesired
effects [85]. This natural compound could be a potential option to treat inflammatory skin
disorders without undesired effects [86].

3. Oleoylethanolamide

Oleoylethanolamide (OEA), a bioactive lipid, is produced postprandially from di-
etary oleic acid in the small intestine [87]. It may play an important role in food intake
regulation through PPAR signaling and vagus nerve stimulation of the appetite center
in the brain. It activates the hedonic pathways of dopamine, histamine, and brain oxy-
tocin [88]. OEA can also be formed in mammalian tissues in two enzymatic steps catalyzed
by N-acyltransferase and N-acylphosphatidylethanolamine phospholipase D [89]. This
bioactive lipid regulates lipid uptake, lipolysis, and beta-oxidation. A deficiency of N-
acylphosphatidylethanolamine phospholipase D in adipocytes leads to obesity [90]. Its role
in lipid metabolism makes it a potential therapeutic agent for obesity treatment [91].

OEA is a biomolecule with antioxidant and anti-inflammatory properties (Table 2). It
can modulate the immune response at two levels. First, it induces IκB and enhances IL-10
expression via PPARα receptor mediation [91]. Second, OEA, interestingly, can modulate
the relationship between PPARα and Toll-like receptors (TLRs). TLR pathway activation
can diminish PPAR expression [92]. Nevertheless, OEA PPARα mediation reduces the
expression of TLR4 [93]. Payahoo et al. conducted a clinical study and found that OEA
supplementation decreased inflammation in patients with obesity by decreasing the serum
levels of inflammatory molecules, such as TNF-α and IL-6 [94].
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Table 2. Effects of oleoylethanolamide (OEA) on signaling pathways, and types of immune cells
studied.

General Effects Specific Effects Pathways Cells References

Anti-inflammatory

↑ SOD, GPx Nrf2/HO-1 Hepatic cells [92,94]

↓ Macrophages activation – Macrophages [94]

↓ IL-6, TNFα, MCP1, IL-1β NRLP3/caspase
1 Liver/plasma [93,94]

↑ IκB, IL-10
↓ TLR4 PPARα PBMCs [89]

Apoptosis ↓ Bax, Bcl2 Caspase 3 Hepatic cells [94]

Glycemic Metabolism
↓ IR PPAR Plasma [95]

↓ Food intake – – [89]

Neuroprotection

↓ Alcohol damage TLR4 Neurons [96]

↓ Pro-inflammatory
Cytokines/oxidative/nitrosative stress – – [97]

↓ Neuronal damage, NF-κB, iNOS, COX2,
NO, lipid peroxidation PPAR Frontal cortex

cells [98,99]

The antioxidant properties of OEA are multifaceted, acting as a scavenger for ROS,
as well as increasing the activity of antioxidant enzymes [96]. OEA protects plasma
lipoproteins against lipid peroxidation and preserves paraoxonase (PON) activity and
plasma antioxidant enzymes [98]. Hu et al. found that OEA protects against acute liver
injury via Nrf-2/HO1 activation pathways in mice, suggesting that OEA pretreatment
significantly reduces hepatic malondialdehyde (MAD) levels and increases superoxide
dismutase (SOD) and glutathione peroxidase (GSH-PX) activities [97]. Additionally, OEA
reduced the levels of Bax, Bcl-2, and cleaved caspase-3 expressions, suppressing hepatocyte
apoptosis. However, OEA reduced the number of activated intrahepatic macrophages
and alleviated the mRNA expressions of proinflammatory factors, including IL-6, TNF-α,
and MCP1. Furthermore, OEA obviously reduced the expression of IL-1β in the liver and
plasma by inhibiting NLRP3 and caspase-1, which indicates that OEA can suppress the
NLRP3 inflammasome pathway [97].

This OEA bifunctional property is essential for the treatment of inflammatory diseases
with oxidative stress. Preclinical studies have shown that OEA is a potent anti-inflammatory
and antioxidant compound that exerts neuroprotective effects in alcohol abuse. OEA
is administered intra-parenterally, entering through the BBB and exerting this action
rapidly [100]. Treatment with OEA inhibits the alcohol-induced TLR4-mediated proinflam-
matory cascade, decreasing proinflammatory cytokines and oxidative and nitrosative stress
and, finally, preventing neuronal damage in the frontal cortex. OEA decreases NFκB levels,
iNOS, and COX-2 expressions, NO accumulation, and lipid peroxidation in the frontal
cortex [99]. Similar to that described above for the liver, OEA anti-inflammatory events
could be associated with the inhibition of NFκB PPARα mediation [95] (Figure 1). OEA
plays analogous neuroprotective roles in numerous models of neurological disorders and
brain injuries [101].

OEA is also effective in other inflammatory diseases. It may be helpful in attenuating
inflammation and oxidation in patients with coronavirus infection. It has been proposed
that the exogenous administration of OEA could be a homeostatic signal to reduce COVID19
infection and improve patients’ inflammatory status [99]. Additionally, OEA therapy with
a restricted diet could decrease inflammation in patients with non-alcoholic fatty liver disor-
der [91]. Furthermore, OEA treatment improves the glycemic index and insulin resistance,
and it may be a helpful supplement to control pre-diabetes status [102]. Moreover, OEA
use has been indicated to alleviate dysmenorrhea pain in girls by reducing oxidative stress
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and inflammatory biomarkers [103]. Interestingly, OEA therapy influences gut microbiota
composition and the expression of intestinal cytokines in Peyer’s patches [104].

In conclusion, OEA molecules may be a promising therapeutic agent for weight manage-
ment and obesity treatment, alcoholism, COVID-19, and many other inflammatory disorders.

Recently the anti-inflammatory effects of another OA metabolite, cis-7-hexadecenoic
acid (16:1n-9). This is synthesized by human phagocytic cells via β-oxidation of oleic
acid and its levels are elevated in lipid droplet-laden monocytes, suggesting that it may
constitute a biomarker for foamy cell formation [105–107].

4. Oleic Acid and Epigenetics

Epigenetics is described as heritable variations in DNA and histones without as-
sociated modifications in the nucleotide sequence. The central epigenetic mechanisms
include DNA methylation, histone alterations, and noncoding RNAs (such as microRNAs
(miRNAs)), and disorders of these may be associated with susceptibility to developing a
disease [108]. Epigenetic changes are flexible genomic procedures that can potentially be
propagated from one generation to another. This is called “transgenerational epigenetic
inheritance”, and it may justify how a person’s health and development can be influenced
by the experiences of their parents and grandparents [69]. Diet is the most studied environ-
mental factor in epigenetics. Nutriepigenomics is an emergent scientific area that researches
the relationships between nutrition and epigenetics [109]. Fatty acids can regulate gene
expression by changing epigenetic mechanisms, consequently having positive or negative
impacts on metabolic outcomes [70]. However, the mechanisms underlying the effects
of diverse types of fatty acids on epigenetic landmarks have still not been completely
identified. Various investigations have shown the results of omega-3 and omega-6 PUFAs
on DNA methylation [60,110] and butyric acid associated with histone deacetylation [111].

First, to appreciate the roles of fatty acids in epigenetics diseases, Silva-Martínez
et al. evaluated the DNA methylation outline particularly induced by arachidonic acid
or OA in cultured cells. In THP-1 monocytes treated with either arachidonic acid or OA,
DNA hypermethylation or hypomethylation was induced, respectively [112]. The hy-
pomethylation caused by OA improved the inflammation profile. DNA hypermethylation
characterizes atherosclerosis in its initial phases and during the progression of stable vas-
cular lesions, and it may be associated with proinflammatory agents, such as arachidonic
and palmitic acids [113]. However, hypomethylating agents can slow the progression of
vascular lesions [61].

A second epigenetic mechanism is the acetylation of histones. Fatty acids could serve
as an alternative source of acetyl-CoA, thereby affecting epigenetic histone marks, such
as histone 3 lysine acetylation. Recently, Schuldt et al. demonstrated that OA-related anti-
inflammatory effects in fibroblasts are mediated by histone 3 lysine acetylation associated
with increased expressions of anti-inflammatory cytokines [114]. These results suggest that
OA effects could be exerted by different mechanism by histone acetyltranferase activation
and SIRT-1-independence [115].

A third epigenetic mechanism is exerted by microRNAs (miRNAs), which are single-
stranded small noncoding RNA molecules of 20 to 24 nucleotides that regulate gene expres-
sion mostly at the post-transcriptional level. It has been established that they participate in
essential cell processes and regulate almost 30–80% of genes in the genome. miRNAs are
differentially expressed in many tissues and are influenced by several external factors, such
as diet. These external factors may be used as therapeutic agents against many different
diseases as a means to change miRNA expressions [116]. Immune cells express hundreds
of miRNAs and have the potential to broadly influence molecular pathways controlling
the development and function of immune responses. The deregulation of specific miRNAs
leads to various human diseases, including cancer, metabolic disorders, cardiovascular
diseases, liver disease, and immune dysfunction [116].

Specific miRNAs, including miR-155 and let-7b, have been linked to inflammatory re-
sponses. miRNA-155 is particularly responsive to many inflammatory stimuli, such as TNFα;
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IL-1β; interferons; pathogen-associated molecular patterns; damage-associated molecular pat-
terns; and TLRs in various cell types, particularly in monocytes/macrophages [117]. miR-155
is rapidly upregulated by NFκB within the first 12 h of the activation of the inflammatory
response. In the same way, let-7b, a modulator of cell proliferation and developmental tim-
ing, can mediate immune responses and adjust inflammation. Moreover, let-7b may trigger
inflammation and immune responses by activating NFκB and IL-6 downregulation [118].

Marques-Rocha et al. studied the expressions of inflammation-related miRNAs in
leukocytes from subjects with metabolic syndrome treated for 8 weeks with a Mediter-
ranean diet-based weight loss program. They found that the expression of miR-155-3p was
decreased in these cells, whereas let-7b was strongly upregulated because of the dietary
treatment. However, these expressions were not correlated with the expressions of the
proinflammatory genes in the immune cells. The same group studied the regulatory roles
of let-7b and 155-3p in the expressions of inflammation-associated genes in monocytes,
macrophages, and LPS-activated macrophages, and they analyzed the potential modulatory
roles of different fatty acids, including OA [119]. Let-7b levels were higher in activated
macrophages and OA-incubated macrophages. The same results have been described in
CACO cells [120].

The miRNA-mediated regulatory mechanisms involved in gene expression control are
complex. However, they open a path of knowledge that will allow the use of nutrients in
the regulation of metabolism and in the prevention and treatment of numerous diseases.

5. Conclusions

We conclude that OA is an immunomodulator with an anti-inflammatory function
that, along with an unsaponifiable fraction from olive oil, supports the use of this dietary
fat in the Mediterranean diet. Most studies have been conducted on animals; therefore,
further research is necessary to confirm the important properties demonstrated by this
molecule and its derivate, OEA, in humans.
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