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Abstract: Dyslipidemia is a multifaceted condition with various genetic and environmental factors
contributing to its pathogenesis. Further, this condition represents an important risk factor for its
related sequalae including cardiovascular diseases (CVD) such as coronary artery disease (CAD)
and stroke. Emerging evidence has shown that gut microbiota and their metabolites can worsen or
protect against the development of dyslipidemia. Although there are currently numerous treatment
modalities available including lifestyle modification and pharmacologic interventions, there has
been promising research on dyslipidemia that involves the benefits of modulating gut microbiota
in treating alterations in lipid metabolism. In this review, we examine the relationship between
gut microbiota and dyslipidemia, the impact of gut microbiota metabolites on the development of
dyslipidemia, and the current research on dietary interventions, prebiotics, probiotics, synbiotics
and microbiota transplant as therapeutic modalities in prevention of cardiovascular disease. Overall,
understanding the mechanisms by which gut microbiota and their metabolites affect dyslipidemia
progression will help develop more precise therapeutic targets to optimize lipid metabolism.

Keywords: mediterranean diet; prebiotics; probiotics; synbiotics; folate; fecal microbiota transplantation;
Akkermansia muciniphila; Fecalibacterium prausnitszii

1. Introduction

The human gastrointestinal (GI) tract is host to trillions of bacteria, viruses, fungi and
archaea collectively termed gut microbiota, with the colon containing the greatest density
of these microbes, estimated at 3.2 × 1011 cells per gram content [1]. Composition of gut
microbiota varies between individuals due to the interaction between genetics and environ-
mental factors. The typical human gut microbiota contains many different bacterial species,
with a predominance of two phyla including a Gram-positive phylum Firmicutes and a
Gram-negative phylum Bacteroidetes [2]. Other less abundant gut bacteria species belong to
the phyla Actinobacteria, Proteobacteria, and Verrucomicrobia [3]. In a healthy gut, homeostatic
microbial composition is achieved via cross talk between host and microbiota through a
commensal relationship [4], though negative changes in gut microbial composition and
diversity can contribute to the development of disease states [5–9]. Overall, gut microbiota
serve a variety of host functions including regulation of metabolism and immune system
as well as maintaining gut mucosal barrier integrity [10]. Further, gut microbiota contain
digestive enzymes otherwise not present in the human GI tract, allowing absorption of
indigestible nutrients in the intestines. More specifically, these enzymes yield important
metabolites, namely short-chain fatty acids (SFCA), including butyrate, acetate, and propi-
onate [11], shown to exert many of the beneficial effects of gut microbiota [12]. Additionally,
gut microbiota also serve important roles in modifying bile acids via deconjugation, dehy-
droxylation, and epimerization into secondary bile acids [13]. These microbiota-derived
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alterations in bile acids are implicated in inflammatory signaling, intestinal immunity as
well as maintaining effective lipid metabolism [14].

While the gut microbiota exert a myriad of beneficial effects on its host, imbalance or
dysbiosis may leave the host vulnerable to pathogenic disturbances. Dysbiosis is character-
ized by a loss of beneficial organisms, increased growth of harmful organisms, or loss of
microbial diversity and is largely influenced by environmental factors [15]. For example,
the Western diet confers negative changes in gut microbiota to produce a chronic low-grade
inflammation and increased intestinal barrier permeability [16]. Further, the unfavorable di-
etary substrates and excess energy associated with a Western diet led to increase adipocytes
storage in the form of triglycerides (TG) [17]. These dietary practices coupled with physical
inactivity, poor sleep, and chronic psychological stress leading to dysregulations of lipid
metabolism, are major contributors of the onset of metabolic disease [18]. As such, the
relationship between dysbiosis-related changes in gut microbiota and its correlation with
dyslipidemia have been extensively studied in recent years with targeted gut microbiota
interventions as a potential therapeutic intervention. In this review, we first explore the
associations between gut microbiota dysbiosis and altered lipid metabolism. Next, we
present the effects of key gut microbial metabolites on the development and progression of
dyslipidemia. Then, we describe how diet impacts changes in the gut microbiota and the
resulting influences on lipid metabolism. Lastly, we discuss the recent advances on targeted
microbiota therapy using prebiotics, probiotics, synbiotics, and microbiota transplant for
management of dyslipidemia.

2. Dyslipidemia and Gut Microbiota

Dyslipidemia, which broadly describes abnormal serum lipid levels, with clinical
sequelae being a major culprit responsible for increasing rates of lifetime morbidity and
mortality worldwide [19]. Normally, dyslipidemia is detected with a rapid lipid panel that
includes values of TG, total cholesterol (TC), high density lipoprotein (HDL), low density
lipoprotein (LDL), and non-HDL [20]. Dyslipidemia with elevated LDL and TG levels
has been associated with a greater risk of atherosclerotic cardiovascular diseases, such as
myocardial infarction and ischemic stroke [21]. Both dyslipidemias of familial and lifestyle
cause have been demonstrated to have similar lipid profiles and risks of cardiovascular
disease [22]. The etiology of dyslipidemia is multifaceted, with influences from genetic,
lifestyle, age, environmental factors and gut dysbiosis. Several studies have demonstrated
that microbiota composition profile influences cholesterol metabolism and markers of
dyslipidemia. For example, colonization of mice with microbiota from donors with dyslipi-
demia resulted in increased intestinal cholesterol absorption and a hypercholesterolemic
phenotype when compared to mice colonized with normal microbiota [23]. Similarly in
humans, washed microbiota treatment has been shown to reduce serum cholesterol in
dyslipidemia patients [24]. Further, using germ-free animal models, it has been shown
that the effects of dietary fats on the host physiology and metabolism are dependent on
the gut microbiota. For example, GF mice have decreased levels of serum triglycerides
and LDL, while also being resistant to diet-induced obesity secondary to impairments in
lipid metabolism within the small intestine [25]. Conventionalization with specific bacterial
strains such as Lactobacillus spp. that upregulate genes associated with lipid metabolism,
has been shown to increase lipid absorption. These findings are supported by studies
showing that GF mice exhibit upregulated cholesterol biosynthesis genes, increased lipid
excretion and insulin sensitivity in response to high fat diet feeding, all of which contribute
to altered lipid metabolism seen in these mice [26]. Multiple animal and human studies
have identified the relationship between microbial lipids, systemic lipids and disease states
and that various bacteria species are involved in lipid metabolism. However, determination
of a direct causal relationship in humans poses several challenges due to interindividual
variations in the composition of the microbiome, as complete microbiota depletion is not
feasible. Notwithstanding, the murine studies provide strong causal support for the role of
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gut microbial communities and their metabolites in host lipid homeostasis (for review, see
also [27]).

Most human studies have examined generalized trends in microbiota composition
as it pertains to dyslipidemia onset. More specifically, the relationship between levels
of predominant bacterial species of the gut microbiota is often simplified to the ratio of
Firmicutes to Bacteroidetes (F/B ratio) within an individual [28]. Changes in this F/B
ratio are important in homeostatic processes and may contribute to various extraintesti-
nal disease processes, such as dyslipidemias [11]. However, it is important to note that
this ratio does not directly account for the less dominant species. More specifically, gut
sequencing studies have associated certain microbial genera and metabolomic profiles to
the development of dyslipidemia [29]. For example, adolescents with dyslipidemia ex-
hibit diminished abundance of SCFA-producing genera Akkermansia, Bacteroides, Roseburia,
and Faecalibacterium [30]. SCFAs have been demonstrated to increase Apolipoprotein A5
(Apo-A5), which is known to enhance uptake of TG, leading to an overall decrease in
plasma TG [31]. Similarly, study findings have shown that adults with dyslipidemia harbor
elevated concentrations of Gram-negative bacteria, such as Escherichia coli and Enterobacter,
while decreasing beneficial bacterial species including Lactobacillus, Faecalibacterium and
Roseburia [32]. Further, recent studies have also identified lower abundances of Akkermansia,
Roseburia and Bifidobacterium in hypercholesterolemic individuals, and targeted microbiota
interventions restored these deficits. Taken together, there is strong evidence demonstrating
the link between relative deficiency of key bacteria species and altered lipid metabolism.
Finally, metabolites produced by these gut microbiota species have been shown to modulate
pathways associated with lipid synthesis and metabolism. In the following subsections, we
further describe the roles that these metabolites play in dyslipidemia, particularly SCFA,
trimethylamine N-oxide (TMAO), primary bile acids and coprostanol.

2.1. Short Chain Fatty Acids and Dyslipidemia

Short chain fatty acids (SCFA) are products of microbial metabolism of indigestible
carbohydrates involved in multiple metabolic processes such as lipid synthesis, storage
of fats, glucose uptake and inflammatory pathways [33]. They consist mainly of acetate,
propionate, and butyrate. Different intestinal microbes produce different amounts of SC-
FAs. For example, acetate and propionate are mainly produced by Bacteroidetes while
butyrate is produced mainly by Firmicutes [34,35]. Once synthesized, SCFA are absorbed
through colonocytes and used as substrates for lipid, cholesterol, sugar or cytokine pro-
duction [36–38]. SCFAs have long been shown to increase satiety and decrease food
intake through activation of G-protein-coupled receptors [39–41] and regulate immune
responses [42]. Given the wide range of roles SCFA play, their implication in dyslipidemia
and atherosclerosis is not surprising. Dyslipidemia is characterized by a chronic low-grade
inflammation and metabolic endotoxemia induced by dysbiosis changes that increase Gram-
negative bacteria enteric species, an unfavorable state that can be improved by SCFA [43].
For example, SCFA have been shown to inhibit formation of foam cells and reduce pro-
duction of proinflammatory cytokines [44]. More specifically, acetate is believed to affect
IL-6 and IL-8 production through GPR41/43 activation, while butyrate and propionate
affect IL-6 production [45]. In addition, they increase production of Treg cells and suppress
histone deacetylase (HDACs) resulting in suppression of inflammatory response and there-
fore atherosclerosis development [46,47]. Further, the peroxisome proliferator-activated
receptor gamma (PPAR-δ), a key regulator of lipid metabolism derived from the breakdown
of fatty acids via beta-oxidation, has been shown to be dependent on dietary SCFAs [48,49].
As such, dietary SCFA are shown to influence PPAR-δ dependent pathways to reduce
lipogenesis and promote beta-oxidation [50] as measured through increased mitochondrial
AMPK activity (Figure 1A). AMPK is a highly conserved nutrient sensor that promotes lipid
catabolism when AMP/ATP ratios become elevated in mitochondria [51]. More specifically,
the SCFA, butyrate, is shown to promote adipogenesis through activation of the PPAR
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pathway resulting in reduced inflammatory and oxidative molecule [52,53]. Taken together,
these findings support the role of SCFA in lipid metabolism through PPARδ activation.

Figure 1. Role of Gut Microbiota Metabolites on Dyslipidemia and Atherosclerosis. (A) SCFAs
are absorbed by colonocytes, leading to decrease foam cells, inflammatory cells, and decrease HMG-
CoA thereby decreasing cholesterol synthesis. SCFAs increase T-regulatory cell activation and increase
PPAR-δ activity, increasing beta-oxidation and decreasing lipogenesis. Increase SCFA production
decreases atherosclerosis and risk of CAD. (B) Trimethylamine gets oxidized in the liver to form
TMAO, which increases scavenger A and CD36 activity of macrophages and LDL uptake. This leads
to formation of foam cells, contributing to increased atherosclerosis and CAD risk. (C) Primary bile
acids synthesized by the liver are conjugated to secondary bile acids by gut microbiota. Secondary bile
acids upregulate FXR leading to increase production of inhibitory nuclear receptor SHP. SHP interacts
with living receptor homolog-1 to suppress transcription, interacts with CYP7A1 gene, decreasing
synthesis of primary bile acid. FXR also induces FGF15 and FGF19 increasing ABCG5/ABCG6
cholesterol exporter, which helps translocate bile acids to the lumen. (D) IsmA encoding bacterial
species contain enzymatic capability of converting circulating cholesterol to coprostanol which
is excreted via feces, thereby decreasing serum cholesterol levels. Abbreviations: SCFA, short-
chain fatty acids; Treg, T regulatory; CAD, coronary artery disease; PPAR, Peroxisome proliferator
activated receptor; HMG-CoA, hydroxymethylglutarly Coenzyme A; TMA, Trimethylamine; TMAO,
Trimethylamine N-Oxide; FXR, Farsenoid X receptor; SHP, small heterodimer partner; FGF, Fibroblast
growth factor; LRH-1, living receptor homolog-1; ABCG; ATP-binding cassete gene; IsmA, intestinal
sterol metabolism A; ↑, upregulated; ↓, downregulated.

Among bacteria, the Enterobacteriaceae family of bacterial species, that includes gen-
era Escherichia coli and Enterobacter were found to be elevated in dyslipidemia patients,
which was associated with production of cytotoxic amounts of nitric oxide [54]. Excess
nitric oxide and other oxidative species induce formation of oxidized LDL, triggering
inflammation and plaque formation in the vasculature [55], resulting in the onset of clinical
sequelae of dyslipidemia like coronary artery disease. Importantly, PPAR-δ also serves
as an inhibitor of inducible nitrate oxide synthase genes [56]. In this regard, butyrate
was found to reduce endothelial NADPH oxidase 2 (Nox2) and reactive oxygen species
by upregulating PPAR-δ/miR-181b pathway preventing endothelial dysfunction seen in
atherosclerosis [45,57]. Therefore, SCFA-producing genera, characteristically reduced in
dyslipidemia patients, including Akkermansia, Bacteroides, Roseburia, and Faecalibacterium
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play a critical role in maintaining lipid balance and counteracting unfavorable effects of
pathogenic Enterobacteriaceae.

Butyrate also can reduce HMG-COA reductase gene expression resulting in reduction
of cholesterol biosynthesis [58]. Several studies have shown that butyrate supplementation
in high fat fed mice caused reduction in low density lipoprotein cholesterol and total
cholesterol [59]. Similarly, propionate has been shown to decrease cholesterol serum levels
by inhibiting acetate incorporation into fatty acids and cholesterol [34]. For example, in
ApoE–/– mice, treatment with propionate was associated with reduced atherosclerotic
lesion burden [60]. Similar findings have been seen in humans. In a randomized, double-
blinded, placebo-controlled human study, administration of 500 mg of propionate twice
a day was associated with significantly reduced LDL and non-high density lipoprotein
cholesterol levels compared to the control group [61]. Taken together, these studies show
that administration of SCFA such as butyrate and propionate may serve as a treatment
modality for atherosclerosis. Further research, however, needs to be conducted to determine
the specific role played by these SCFA.

2.2. Trimethylamine N-Oxide (TMAO)

Trimethylamine N-oxide (TMAO) is a gut metabolite produced from the oxidation
of trimethylamine, an intermediate compound, by hepatic flavin monooxygenase (FMO1
and FMO3) [62]. The gut microbiota plays a critical role in converting dietary choline
into trimethylamine (TMA) which ultimately gets oxidized to TMAO in the liver [63].
Diet rich in dairy products, eggs, red meats, fish and other seafood are potential sources
of TMAO [64,65]. TMAO came into the spotlight when it was discovered that elevated
levels of TMAO were associated with atherosclerosis and risk of CVD. In a study involving
220 subjects, increased TMAO was associated with increased carotid intima media thickness,
an early marker for atherosclerosis [66]. Additional research involving patients presenting
to emergency department for cardiac related chest pain found elevated TMAOs levels to be
associated with risk of major adverse cardiac events suggesting its role as a biomarker [67].
Nine bacteria strains have been shown capable of producing TMA from choline suggesting
that alterations in the gut microbiota can have marked effects on TMAO levels [68]. In mice,
transplantation of choline converting bacteria to germ free mice has been shown to increase
TMA production [69,70]. Furthermore, use of broad-spectrum antibiotics causing changed
in the gut microbiota resulted in near suppression of TMAO levels [71]. The use of van-
comycin, metronidazole vancomycin, neomycin-sulphate, metronidazole, and ampicillin
have all been shown to inhibit choline enhanced atherosclerosis [72]. Likewise, increases
in TMAO levels after phosphatidylcholine challenge were markedly reduced following
administration of antibiotics in healthy participants providing possible therapeutic avenue
for atherosclerosis development [71]. Taken together, these studies suggest that increased
levels of TMAO may result from dysbiosis of gut microbiota which may in turn further the
pathogenesis and progression of dyslipidemia.

Although many studies have demonstrated the association of TMAO and develop-
ment of atherosclerotic cardiovascular disease, its proposed mechanism remains unclear.
TMAO involvement is multifactorial with the summation of effects contributing to hyper-
lipidemia and cardiovascular disease [69,73]. First, TMAO has been shown to upregulate
scavenger A and CD36 located on macrophages with a role in the uptake of oxidized LDL
via MAPK/JNK pathway [74] (Figure 1B). This leads to formation of foam cells, a hallmark
of atherosclerotic disease. In mice, where production of TMAO was inhibited by antibiotics,
the number of macrophages and formation of foam cells were drastically reduced [72]. The
association of TMAO and atherosclerosis, however, is not all that clear. In a study involving
APoE−/− mice expressing human cholesteryl ester transfer protein (hCETP), TMAO was
inversely correlated with aortic lesion size suggesting a possible protective role in aortic
lesion formation [75]. As far as lipid metabolism, TMAO has been shown to play a role in
decreased reverse cholesterol transport (RCT) [76]. RCT is a multi-step process involving
removal of excess cholesterol from peripheral tissue and delivering it to the liver for re-
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distribution or removal through bile acid [77]. Further disruption of bile acid regulation
is seen as TMAO has been shown to be negatively related to bile acid pool size through
inhibition of bile acid synthesis and liver bile acid transportation. Farnesoid X receptor
(FXR) is a nuclear receptor family activated by bile acids regulating bile acid synthesis
and transport. TMAO downregulates CYP7A1 and CYP27A1 enzymes involved in the
bile acid synthesis through activation of FXR [78]. In Ldlr-/- mice, studies have shown
that downregulation of FXR results in decrease TMAO levels and reduction in the size
of atherosclerotic lesions in the aorta. Interestingly, this result was found in male but not
female mice [79]. In another study, Bennett et al. found that TMAO levels explained about
11% of difference in atherosclerosis susceptibility in female mice suggesting a possible
role of TMAO in atherosclerosis development [80]. Moreover, expression of Niemann-Pick
C1-like1 (Npc1L1), cholesterol transporter from intestinal lumen into enterocytes, and
ABCG5/8, which transports cholesterol out of enterocytes into the gut lumen, is signifi-
cantly decreased with TMAO dietary supplementation [81]. This may be an additional
mechanism through which TMAO affects atherosclerosis. Therefore, these cumulative
effects of TMAO make for an interesting treatment opportunity for CVD reduction.

2.3. Primary Bile Acids

Bile acids are hydroxylated steroids that act as emulsifiers, aiding in the process of
solubilization and digestion of dietary lipids. They serve as the primary pathway for
breakdown and excretion of cholesterol playing a role in cholesterol, triglyceride and
energy regulation [82]. Synthesis of bile acid (primary bile acid) occurs in the liver and
involves hydroxylation of cholesterol by rate limiting enzyme cholesterol 7α-hydroxylase
(CYP7A1) [83]. Two primary bile acids, cholic acid and chenodeoxycholic acid, are the
end result of the bile acid synthetic pathway. These products are typically conjugated
with glycine in humans, excreted into bile and facilitate emulsion following consumption
of a meal [84]. Roughly 95% of the bile acids are reabsorbed from the intestine at the
distal ileum to be transported back to the liver via the portal circulation [85]. Primary
bile acids can also be acted upon by intestinal bacterial flora to form secondary bile acids:
deoxycholic and lithocholic acid, derived from cholic acid and chenodeoxycholic acid,
respectively [86]. When the bile acid pool increases, bile acid binds to nuclear receptor
farnesoid X receptor (FXR). FXR induces production of inhibitory nuclear receptor SHP
that interacts with nuclear receptor living receptor homolog (LRH)-1 suppressing gene tran-
scription of the CYP7A1 gene resulting in decreased synthesis of primary bile acid [83,87]
(Figure 1C). Furthermore, FXR promotes production of fibroblast growth factor 15/19 in
intestine resulting in bile acid synthesis inhibition in the liver and increased cholesterol
into intestinal lumen through ABCG5/ABCG6 cholesterol exporter [88]. Bile acids can
also act on membrane Takeda G-protein-coupled receptor 5 (TGR5). Activation of TGR5
has been shown to promote energy expenditure [89,90]. Disruption of this receptor has
been shown to decrease total bile acid pool size and increase fat accumulation with body
weight gain in female mice [91]. In obese mice, TGR5 has been shown to improve liver and
pancreatic function by inducing GLP-1 release from enteroendocrine L-cells, resulting in
improved liver and pancreatic function in obese mice [92]. Current literature suggests some
interplay between the two. Bile acids can also alter the structure of the gut microbiota. Bile
acids produce an environment that favors bacteria resistant to BA, promoting microbial
diversity [93]. Conjugated bile acids have been shown to prevent bacterial overgrowth
and promote epithelial cell integrity through binding to FXR and inducing antimicrobial
proteins angiogenin 1 and RNase family member 4 [94]. In a study involving ApoE-/-, a
polyphenol, resveratrol, altered gut microbiota composition by increasing levels of Bifidobac-
terium and Lactobacillus which increased levels of deconjugated BA. This, in turn, altered
and reduced atherosclerosis progression [95]. It has also been shown that specific species
like Lactobacillus reuteri, decrease LDL cholesterol while increasing bile acids through their
bile salt hydrolase activity [96], which deconjugates bile acids.
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Further research needs to be conducted to better understand the role bile acids play
in dyslipidemia as activation and inhibition of FXR by BA show contradictory findings.
Individuals with obesity have been shown to have increased BA synthesis, preferential
12α-hydroxylation and decreased serum BA fluctuations [97,98]. 12α-hydroxylated bile
acids are more effective in emulsifying dietary fat suggesting that obesity may alter the
composition of bile acids that in turn promotes an environment for dyslipidemia [98]. In
high-fat diet-induced obese (DIO) mice, reduction in 12α-hydroxylated bile acids through
bile acid synthesis enzyme CYP8B1 improved oral glucose tolerance, and reduced liver
triglycerides helping managing dyslipidemia [99,100]. Recent research has also shown
insulin suppression of FoxO1, an insulin receptor, results in reduced 12α-hydroxylated
bile acids, cholesterol absorption, and plasma cholesterol levels serving as a possible
mechanism for prevention of hypercholesteremia. Restoring insulin signaling or reducing
12α-hydroxylated bile acid levels normalized cholesterol levels suggesting the possibility
that targeting cholesterol absorption rather than synthesis may prove to be more beneficial
particularly in those with type 1 diabetes [101]. Taken together these studies show that,
disruption of the bile acid pathway is seen in individuals with metabolic disease, thus
targeting this pathway may serve as a potential therapeutic option.

2.4. Microbial Cholesterol Dehydrogenases

Microbial enzymes have been shown to have the capacity to convert cholesterol to non-
absorbable metabolites that can be excreted, thus reducing serum cholesterol levels [99].
For example, the microbial gene, intestinal sterol metabolism A (ismA), is responsible
for encoding a family of cholesterol dehydrogenase enzymes that convert circulating
cholesterol to coprostanol [102] (Figure 1D). Coprostanol is a form of cholesterol that is
eliminated through feces. Although the role of coprostanol is not fully understood at this
time, individuals with microbiota expressing ismA have been shown to have lower total
serum cholesterol [102]. Certain bacteria have been associated with coprostanol-forming
capacity that have also been shown to be decreased in dyslipidemia. These bacteria
include Lactobacillus spp., Bifidobacterium spp. and Eubacterium [102,103]. Phylogenetic
evaluation and gut sequencing studies also showed that Faecalibacterium prausnitzii and
Clostridium leptum encode ismA, therefore having the ability to metabolite cholesterol into
coprostanol. As such, shifting the gut microbial composition to increase abundances
of these genera and species can serve to improve dyslipidemia through formation of
coprostanol, a gut microbiota metabolite derived from cholesterol. Still, further research
is needed to fully elucidate the mechanisms and specific bacteria expressing ismA and
have coprostanol forming capacity. Additionally, other microbial enzymes such as bacterial
stereospecific hydroxysteroid dehydrogenases (HSDH), bile salt hydrolases (BSH) and
bile acid-inducible (BAI) enzymes can indirectly have favorable roles on dyslipidemia
through modulation of bile acids [104]. HSDH enzymes modify bile acids by way of
oxidation, epimerization and dehydroxylation, whereas BSH and BAI enzymes perform
bile acid deconjugation dehydroxylation, therefore promoting bile acid homeostasis and
changes in lipid parameters [105]. Numerous Gram-positive and Gram-negative bacteria
can produce these enzymes, including Lactobacillus, Bifidobacterium and Bacteroides. Further,
BSH enzymes provide a dual benefit as they have been shown to confer protection for
certain bacterial species in the GI tract through deconjugation of toxic bile acids along with
its role in modification of bile acids to forms that are readily excreted. Taken together, these
findings support the role of inherent microbial enzymes that can either directly conjugate
cholesterol to a form that is more easily excreted via ismA or indirectly through bile acid
modulation via enzymes such as HSDH, BSH and BAI.

3. Diet and Its Effects on Gut Microbiota and Dyslipidemia

Diet is understood to be the most important determinant in shaping the microbiota
ecosystem as balanced diets of fruits and vegetables are shown to increase gut bacterial
richness and diversity [10,15]. As such, lifestyle changes specifically through dietary
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interventions represent an effective therapeutic modality for dyslipidemia by creating
targeted and beneficial changes in gut microbial composition. Although many dietary
choices influence the composition of the gut microbiota, two particular diets have been
studied extensively and can lead to significant, yet opposite effects. In this section, we first
describe the metabolic changes seen in Western Diet (WD)-induced dyslipidemia followed
by the role of plant-based diets such as the Mediterranean diet (MD) play in optimizing
gut microbial composition to restore defective metabolic states.

3.1. High Fat Diet, Gut Microbiota and Dyslipidemia

High fat diets (HFD), such as the WD, are comprised by increased amounts of animal
proteins, saturated fats and sugars, with low levels of fibers and phenols. Additionally,
chronic HFD intake results in decreased total microbiota richness with a shift towards
overgrowths of lipopolysaccharides (LPS) containing, Gram-negative enteric bacteria,
which are shown to contribute to metabolic endotoxemia [106,107]. More specifically,
elevated concentrations of circulating LPS induced by a chronic HFD facilitates increased
binding to its receptor, Toll-like receptor 4 (TLR4), to activate innate and adaptive immunity
triggering a pro-inflammatory cascade [108]. TLR4 activation has been implicated in the
development of dyslipidemia and associated atherosclerosis, through enhanced release
of pro-inflammatory cytokines like IL-8, IL-1beta and TNF-alpha [109]. Results from this
study also showed TLR-4 mediated oxidation of low-density lipoproteins, which are known
to accumulate in unstable plaques that deposit in the vasculature. As such, the combination
of altered lipid metabolism as seen through increased LDL combined with LPS/TLR-4
mediated oxidization, worsens dyslipidemia leading to more severe associated clinical
sequelae (Figure 2). It is also shown that lipoproteins, particularly HDL, has a protective
effect against LPS-mediated metabolic endotoxemia by facilitating clearing of LPS from
circulation [108]. Therefore, decreases in HDL and increases in relative concentrations of
unfavorable Gram-negative bacteria resulting from HFD-induced dyslipidemia, further
worsens hypercholesterolemic states through inability to clear excess LPS.

Further, it has been shown that microbial species like Escherichia coli and Ruminococ-
cus spp., that are elevated after HFD feeding, contribute to increased intestinal barrier
permeability, allowing for LPS to translocate into the blood stream and cause systemic
low-grade inflammation characteristic of dyslipidemia [110]. In turn, high-fat diets and as-
sociated dyslipidemia chronically activate the NLRP3 inflammasome, which plays a role in
inducing macrophage activity and release of proinflammatory cytokines like interleukin-1
(IL-1) [111]. In particular, sterol regulatory element binding protein 2 (SREBP-2), a tran-
scription factor that facilitates lipogenesis, complexed with SREBP cleavage-activating
protein (SCAP) contributes to NLRP3 inflammasome assembly [112]. This, in turn, affects
cholesterol biosynthesis signaling with NLRP3 induced inflammation in macrophages.
Excessive NLRP3-mediated release of proinflammatory cytokines has been associated with
downregulation or decreased expression of the LDL-receptor [113]. The LDL-receptor has
been shown to be downregulated in chronic high fat intake [114]. Taken together, these
findings show how chronic high-fat diets can contribute to metabolic endotoxemia and
dyslipidemia through upregulation of key pro-inflammatory factors including NLRP3.

3.2. Mediterranean Diet, Gut Microbiota and Dyslipidemia

The Mediterranean Diet (MD) consists of plant-based ingredients including wheats,
cereals, nuts, fruits, vegetable, omega-3 polyunsaturated fatty acids, with high amounts
of fibers and polyphenols [8]. Collectively, these ingredients have been shown to have
beneficial effects on lipid imbalances through their antioxidant and anti-inflammatory
effects [115,116] as shown via reduction in TNF-alpha and LPS concentrations [117,118].
Further, diets high in polyphenols, known as indigestible phytochemicals, that are abundant
in plant-based foods, increase production of beneficial SCFAs because of their interaction
with colonic microbiota [119]. For example, the polyphenol, resveratrol, specifically has
been found to increase the SCFA-producing bacterial genera, Allobaculum, Bacterioides, and
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Blautia while also inhibiting TLR-4 [120–122]. Further, the rich plant-based MD increases
fiber-derived SCFA by the gut microbiota, such as acetate, propionate, and butyrate [119]
and has been shown to decrease total cholesterol and LDL cholesterol [123] (Figure 2). As
described in the previous sections, SCFA exert a myriad of beneficial effects including
attenuating the progression, or preventing against, the onset of dyslipidemia.
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and phenols, plant-based products, and omega-3 poly-unsaturated fatty acids. The MD increase 
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teroides and Blautia. It increases SCFA, while upregulating cholesterol and bile acid metabolism by 
increasing PPAR, CPT-1, FXR activity and decreasing SREBP-1 and FAS activity. This lead to de-
creased TNF-alpha, TLR4 activation, total cholesterol and LDL, increase HDL and supports intesti-
nal barrier integrity. Less LDL builds up, lessening atherosclerosis and CAD risk. Abbreviations: LPS, 
Lipopolysaccharides; TLR4, Toll-like receptor 4; LDL, Low-density lipoprotein; IL, interleukin; TNF, 
Tumor necrosis factor; CAD, coronary artery disease; PUFA, poly-unsaturated fatty acids; PPAR, 
Peroxisome proliferator activated receptor; CPT-1, Carnitine palmitoyl transferase I; SREBP-1, 
sterol-regulatory element-binding protein 1; FAS, fatty-acid synthase; HDL, High-density lipopro-
tein. 

Further, it has been shown that microbial species like Escherichia coli and Ruminococ-
cus spp., that are elevated after HFD feeding, contribute to increased intestinal barrier 
permeability, allowing for LPS to translocate into the blood stream and cause systemic 
low-grade inflammation characteristic of dyslipidemia [110]. In turn, high-fat diets and 
associated dyslipidemia chronically activate the NLRP3 inflammasome, which plays a 
role in inducing macrophage activity and release of proinflammatory cytokines like inter-
leukin-1 (IL-1) [111]. In particular, sterol regulatory element binding protein 2 (SREBP-2), 
a transcription factor that facilitates lipogenesis, complexed with SREBP cleavage-activat-
ing protein (SCAP) contributes to NLRP3 inflammasome assembly [112]. This, in turn, 
affects cholesterol biosynthesis signaling with NLRP3 induced inflammation in macro-
phages. Excessive NLRP3-mediated release of proinflammatory cytokines has been asso-
ciated with downregulation or decreased expression of the LDL-receptor [113]. The LDL-

Figure 2. Effects of a High-Fat Diet and a Mediterranean Diet on Dyslipidemia and Atherosclerosis.
(A) The High-Fat Diet is composed of large quantities of animal proteins, saturated fats and sugars
with decreased fibers and phenols. HFD feeding increase Gram-negative bacteria Ruminococcus
and Escherichia spp. while intestinal tight junction proteins occludin and claudin and microbial
diversity are reduced. This leads to increased gut permeability, LPS enters the blood stream, resulting
in metabolic endotoxemia. Lipopolysaccharides bind TLR-4 on circulating host cells to increase
pro-inflammatory cytokines, increased inflammation and reactive oxygen species. Oxidized LDL
builds up, causing plaques and increased risk of atherosclerosis. (B) The Mediterranean diet is
rich in fibers and phenols, plant-based products, and omega-3 poly-unsaturated fatty acids. The
MD increase Clostridium leptum and key genera Faecalibacterium, Lactobacillus, Dialister, Bacteroides,
Dialister, Bacteroides and Blautia. It increases SCFA, while upregulating cholesterol and bile acid
metabolism by increasing PPAR, CPT-1, FXR activity and decreasing SREBP-1 and FAS activity. This
lead to decreased TNF-alpha, TLR4 activation, total cholesterol and LDL, increase HDL and supports
intestinal barrier integrity. Less LDL builds up, lessening atherosclerosis and CAD risk. Abbreviations:
LPS, Lipopolysaccharides; TLR4, Toll-like receptor 4; LDL, Low-density lipoprotein; IL, interleukin;
TNF, Tumor necrosis factor; CAD, coronary artery disease; PUFA, poly-unsaturated fatty acids;
PPAR, Peroxisome proliferator activated receptor; CPT-1, Carnitine palmitoyl transferase I; SREBP-1,
sterol-regulatory element-binding protein 1; FAS, fatty-acid synthase; HDL, High-density lipoprotein.

Several studies have shown that low carbohydrate (LC) diets significantly improve
the Bacteroidetes/Firmicutes ratio, as well as important metabolic markers of dyslipi-
demia [124]. More specifically, the LC diet reduced fatty acids associated with de novo
lipogenesis pathways, while increasing omega-3 PUFA that are shown to exert anti-
inflammatory and anti-hypertriglyceridemia effects [125]. Importantly, microbiota changes
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after LC were also associated with increased HDL and decreased triglycerides. This is
supported by findings showing that vegetable oils particularly omega-3 PUFA and phytonu-
trients, had beneficial effects on serum lipid profiles including HDL, TG, and apolipoprotein
B in hypercholesterolemic patients [126]. Hypocholesterolemia has been associated with
increased levels of Clostridium leptum, known to be involved in promoting increased choles-
terol and bile acid metabolism [127]. Therefore, vegetable oils such as omega-3 PUFA, a
key component of the MD has an important role in maintaining a healthy lipid balance.

Further, oatmeal, a food option within the umbrella of the MD, improve cardiometabolic
parameters in patients with dyslipidemia through key changes in gut microbiota pro-
file [128]. These changes include increased beneficial bacteria like Akkermansia along with
SCFA-producing Faecalibacterum, Dialister, Lactobacillus, with decreases within the Rum-
minococcacae family. Akkermansia spp. are shown to improve metabolic parameters through
reducing oxidative stress, reducing fat mass, insulin resistance and dyslipidemia in a rodent
model [129,130]. Therefore, these findings of elevated Akkermansia and SCFA-producing
bacterial species after oatmeal were associated with decreased total cholesterol and LDL
with increased amounts of serum antioxidant capacity. Further, Sun et al. showed that oat-
based foods (OF) rich in beta-glucans, when compared to high-fat diets (HFD) and control
diets had significant reductions in plasma total cholesterol (TC), low-density lipoprotein
(LDL), and triglycerides (TG), along with increased concentrations in several SCFAs in-
cluding butyrate, propionate, and acetate [131]. Similarly, it has recently been shown that
flavonoids, a component of whole-grain oat, regulates bile acid pathways to reduce hy-
perlipidemia induced by chronic HFD feeding [132]. Flavonoids upregulate expression of
PPAR, carnitine palmitoyl transferase I (CPT-1) and FXR, while down-regulate SREBP-1 and
fatty acid synthase (FAS). As mentioned, PPAR contributes to the breakdown of fatty acids
via beta-oxidation by inducing CPT-1 activity while FXR regulates bile acid synthesis and
transport by promoting efflux to feces to improve dyslipidemia. On the other hand, SREBP-
1 induces lipogenesis in the liver and promotes fat storage in the form of triglycerides [133],
therefore down-regulating this transcription factor is beneficial in states of dyslipidemia.
Additionally, Akkermansia is increased in flavonoid treated mice, while unfavorable species
associated with a HFD like Desulfovibrio was decreased. As such, Akkermansia can serve
an important role in improving dyslipidemia not only through dietary interventions, but
as a potential next-generation probiotic, discussed in a future subsection. Taken together,
these findings provide strong evidence for MD as a lifestyle intervention that contributes to
generalized and specific favorable changes in the gut microbiota composition to improve
metabolic parameters.

3.3. Current Pharmacologic Treatments for Dyslipidemia and Relations to Gut Microbiota

Pharmacologic interventions of dyslipidemia may include inhibition of cholesterol
synthesis, increasing use of cholesterol for bile acid production, or conversion of choles-
terol in the gut to non-absorbable metabolites. Interestingly, the current pharmacological
treatment modalities are associated with changes in gut microbiota, indicating the potential
for synergistic effects of medications and targeted gut microbiota therapy for dyslipidemia.

Statin drugs are the first-line agents to reduce cholesterol synthesis by inhibition of
HMG CoA Reductase. Use of statins has been demonstrated to improve the composition
and function of gut microbiota [134] and has been associated with lower occurrence of
gut microbiota dysbiosis [135]. For example, statin responsive patients showed increased
concentrations of SCFA-producing genera including Lactobacillus, Eubacterium, Faecalibac-
terium and Bifidobacterium, all of which are characteristically decreased in dyslipidemia
patients [136]. On the other hand, statin resistant patients did not exhibit similar changes.
Further, other studies support the changes that statins can exert on gut microbiota, particu-
larly elevations in Blautia and Bifidobacterium longum, which has specifically been correlated
with decreased triglycerides and overall body weight [134]. As such, these combined
findings suggest that response to statin treatment may, to some extent, be mediated or
predicted by alterations in gut microbiota
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Bile acid sequestering agents in the treatment of dyslipidemia are used to partially
remove bile acids from enterohepatic cycling to increase use of cholesterol in the synthesis
of new bile acids [137]. As mentioned earlier, bile acids have been shown to have favorable
effects on gut microbiota. Therefore, it is possible that bile sequestering agents such as
Cholestyramine, can mediate beneficial effects on dyslipidemia through changes in gut
microbiota. For example, HFD and cholecystectomy mice treated with cholestyramine ex-
hibit improved lipid profiles, beneficial effects on PPARδ and SREBP1 concentrations while
concurrently elevating concentration of favorable gut bacteria including Blautia, Alistipes
and Eubacterium [138]. It has also recently been shown that cholestyramine increased SCFA
and enriched concentrations of SCFA-producing Lachnospiraceae spp. in treatment respon-
sive groups [139]. More generally, cholestyramine increased the Bacteroidetes/Firmicutes
ratio, indicating a shift towards a more favorable gut composition profile with overall
reductions of inflammatory markers. These anti-inflammatory effects are supported by
results showing that cholestyramine can reduce inflammatory signaling in HFD-induced
mice [140]. Therefore, bile acid sequestrants are able to influence gut microbiota via bile
acid-microbiota crosstalk to improve dyslipidemia, though more studies are needed to
elucidate the specific mechanisms by which they do so.

Although not first-line for dyslipidemia treatment, metformin can also improve dys-
lipidemia in patients with T2DM through mechanisms that increase insulin sensitivity to
reducing LDL and TG [141]. Recent findings have shown that metformin exerts favorable
changes in gut microbiota, most notably through increases in Blautia and Faecalibacterium,
which were associated with lipid homeostasis and improvements in serum triglyceride
levels [142]. Further, metformin has been shown to increase concentrations of Akkermansia
while improving total cholesterol levels in a rodent model of metabolic syndrome [143].
Therefore, these changes in gut microbiota can provide more insight into mechanisms
by which pharmacological therapy can augment microbiota mediated pathways to exert
their effects.

4. Targeted Microbiota Therapies

In recent years, there has been increasing research describing the role of targeted
microbiota therapy in improving lipid metabolism. Generally, the goal of targeted mi-
crobiota therapy is to create favorable changes in gut microbial composition, to increase
its richness and diversity, specifically by enhancing richness of particular genera that are
influential in treating dyslipidemia. However, it is important to keep in mind that diet,
lifestyle, and other environmental changes may concurrently affect the structure, composi-
tion and metabolic function of gut microbiota and often must be considered along with
these therapeutic interventions. Overall, these treatment modalities include prebiotics,
probiotics, synbiotics, folate and fecal microbiota transplants. In the following subsections,
we describe these treatment methods, how they improve gut microbial composition profile
and the mechanisms by which they may exert their effects in dyslipidemia.

4.1. Prebiotics

Prebiotics (Table 1) are organic compounds that can be utilized by the symbiotic
gut microbiota to support their growth. By providing an energy source for commensal
bacteria, prebiotics are shown to positively impact humans’ health via modulation of lipid
metabolism, improving intestinal barrier functioning, intestinal cell growth, proliferation,
and absorption of minerals such as iron, magnesium, and calcium [144]. Compounds that
are prebiotic in nature can be found in a wide variety of foods such as whole wheat bread,
fruits, vegetables, herbal teas and even orange juice [145], though extracts have been used
to promote targeted changes in gut microbiota. These compounds include beta-glucans,
psyllium, and inulin, which will be further discussed.

Beta-glucans, used in prebiotic supplements, are a group of non-starch polysaccharides
found in oats and wheats and have demonstrated many health benefits, from modulating
gut microbial concentrations to pro-immune effects and improving serum cholesterol levels.
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Beta-glucans support the growth of beneficial species like Bifidobacteria, Akkermansia and
Lactobacilli in vivo as well as in vitro [146,147]. Further, beta-glucan contained in oat fibers
improves lipid profiles, particularly reducing serum LDL by 15% and total cholesterol by
8.9% in an 8-week trial period [148]. A recent study showed that beta-glucan consumption
for as little as 4 weeks reduced LDL cholesterol by 6% and overall cardiovascular disease
risk by 8% [149]. Similarly, ingestion of 3 g of soluble fibers from oats for one-month,
significantly reduced both total cholesterol and LDL cholesterol compared to a control
group [150]. It is also important to note that oats comprise a portion of the MD and beta-
glucans can be obtained from diet adherence as well as in prebiotic supplements. Aside
from gut microbiota modulation, beta-glucans possess host immunomodulatory effects
that can also improve dyslipidemia. This is evidenced through studies that show that beta-
glucans reduced pro-inflammatory cytokines and overall inflammation in diet-induced
dyslipidemia [151]. Further, beta-glucans are shown to interact with innate immune cells
via receptors such as dectin-1 and complement receptor type 3 (CR3) which have been asso-
ciated with several immunoregulatory processes [152]. These changes can be attributed to
beta-glucan mediated increases in SCFAs through restructuring the gut microbial composi-
tion [153]. As such, these immunomodulatory effects serve to improve hypercholesteremic
states as well as prevent the progression to atherosclerosis and other more severe sequalae.
Lastly, beta-glucans positively influence cholesterol and bile salt regulation. These com-
pounds seem to exert their lipid-lowering abilities due to an inherent ability to increase
the viscosity of fecal matter [154] that can prevent reabsorption of bile salts. As a result,
the liver must increase production of new bile salts which involves increased uptake of
circulating cholesterol, leading to a reduction in serum cholesterol levels [147]. Overall,
beta-glucans have favorable and targeted effects on gut microbiota that can improve lipid
profiles in dyslipidemia patients.

Further, psyllium, a viscous dietary fiber, used as a prebiotic is shown to including
improvements in lipid balance through targeted changes in gut microbiota. A recent
meta-analysis involving 28 trials found that supplementation of a median dose of 10.2 g of
psyllium yielded significant reductions in LDL, non-HDL cholesterol, and apolipoprotein
B [155]. It was suggested that alterations in viscosity by psyllium, increases utilization
of serum cholesterol by the liver in de novo bile acid synthesis, a mechanism similar to
how beta-glucans may exert their benefits. Additionally, psyllium significantly increase
concentrations of butyrogenic species including Roseburia, Lachnospira and Faecalibacterium
concentrations and associated SCFAs, while also improving immune function [156]. Inter-
estingly, recent findings suggest that psyllium husk is more effective than orlistat, a lipase
inhibitor, in reducing liver cholesterol and TG levels in HFD-induced obesity [157]. Both
psyllium husk and orlistat had beneficial effects on FXR receptor and sterol-27-hydroxylase
expression, while regulating levels of important bile acids in the feces. It should also be
noted that this study supports increases in Faecalibacterium, Roseburia and Akkermansia
reported in other studies assessing psyllium intervention, further indicating the important
of these bacterial species in lipid balance.

Inulin is another naturally occurring polysaccharide, commonly used in prebiotic
supplements and found to improve weight loss, diabetes and lipid imbalance [158]. In com-
bination with 2 g of phytosterols, 10 g inulin-enriched soymilk decreased LDL cholesterol
by 9% and total cholesterol by 5% more than standard soymilk. Inulin prebiotics induce
characteristic changes in gut microbiota including increase in Bifidobacteirum, Faecalibac-
terium and Lactobacillus and decreased Bilophila [159,160] with associated increases in SCFA.
Bilophila is a sulfate-reducing bacteria that yields byproducts including hydrogen sulfide,
which is shown to inhibit butyrate [161]. Further, a combination of increased Bifidobacterium
and decreased Bilophila is associated with decreased pro-inflammatory cytokine. includ-
ing IL-1, TNF-alpha and IL-10 [162]. As such, this favorable alteration of gut microbiota
contribute to improving lipid profiles by decreasing inflammation and increasing butyrate
concentrations and activity.
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Table 1. Targeted Microbiota therapy studies, outcomes, results, and implications.

Targeted Microbiota Therapy Method Study Period Species Involved/Outcome Measured Results/Implications Subject Type Reference

Prebiotic—Beta-glucans Bifidobacterium, Lactobacillus Increased SCFA production
Decreased cholesterol biosynthesis Mice [147]

Prebiotic—Beta-glucans (oat
and tartary buckwheat) Bacteroidetes/Firmicutes ratio

Increased SCFA production
Reduction of plasma lipids

Increased fecal bile acid concentration
Rodent [131]

Prebiotic—Beta-glucans Strong immunomodulary effects
Reduced serum cholesterol levels [152]

Prebiotic—Oatmeal 45-day follow-up

Akkermansia, Dialister,
Faecalibacterium, Barnesiella,
Agathobacter, Lactobacillus

Ruminococcaceae-MK4A214

Increased Akkermansia, Dialister, Faecalibacterium,
Barnesiella, Agathobacter, Lactobacillus
Decreased Ruminococcaceae-MK4A214

Decreased serum TC, LDL, and non-HDL cholesterol
Increased serum total antioxidant capacity

Increased SCFA production

Human [128]

Flavonoids from whole-grain
oat

Akkermansia, Blautia
Lachnoclostridium, Colidextribacter,

and Desulfovibrio

Improved serum lipid profiles
Decreased body weight

Decreased lipid deposition
Increased Akkermansia

Decreased Lachnoclostridium, Blautia, Colidextribacter, and
Desulfovibrio

Mice [132]

Prebiotic—Wheat bread and
barley beta glucans 4 weeks

Akkermansia muciniphila &
Bifidobacterium were elevated

pre-intervention in
cholesterol-responsive group

Decreased abdominal circumference
Decreased total cholesterol

Increased fecal propionic acid
Decreased Clostridium leptum by 25% and Collinsella
aerofaciens, a species that thrives within inflamed gut

tissues

Human [146]

Prebiotic—Oat beta-glucans 8 weeks Serum lipids Reduced LDL, TC, and non-HDL in mildly
hypercholesterolemic patients Human [148]
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Table 1. Cont.

Targeted Microbiota Therapy Method Study Period Species Involved/Outcome Measured Results/Implications Subject Type Reference

4 weeks Serum lipids Reduced LDL by 6%
8% reduction in CVD risk Human [149]

4 weeks Reduced serum TC and LDL Human [150]

Lowered markers of inflammation in
heart/liver/kidney/spleen/colon in obese mice fed

high-cholesterol diets
Mice [151]

30 days
Acetic acid

Propionic acid
Hydroxybutyric acid

Reduction in mucosal damage—Increased fecal
concentrations of acetic acid, propionic acid, and

hydroxybutyric acid
Decreased serum CRP

Human [153]

Prebiotic—Psyllium (plantago
ovata) fiber

Meta analysis of 28 trials
greater than or equal to 3

weeks
N/A Significant reduction in LDL cholesterol, non-HDL

cholesterol, and apoB lipoproteins Human [155]

Prebiotic—Psyllium husk

7 days Roseburia, Lachnospira, and
Faecalibacterium

Increased concentrations of Lachnospira, Faecalibacterium,
Phascolartobaceterium, Veillonella, and Sutterella

Increased fecal water content associated with increased
butyrate-producing strains (Lachnospira, Roseburia, and

Faecalibacterium)

Human [156]

Roseburia Bacteroides,
Faecalibacterium, Coprobacillus, and

Akkernansia

Greater reduction in cholesterol and TGs compared to
Orlistat Mice [157]

Prebiotic- Inulin-type fructans

Bifidobacterium, Faecalibacterium,
Lactobacillus

Increased insulin sensitivity
Increased gut barrier function

Improved lipid profiles
[158]

Bifidobacterium, Anaerostipes,
Bilophila

Increased Bifidobacterium and Anaerostipes
Decreased Bilophila Human [159]

6 weeks
Bifidobacterium

Acetic acid, propionic acid, butyric
acid

Significantly increased Bifidobacterium
Increased total fecal SCFA, acetic acid and propionic acid

in Type 2 DM patients
Human [160]



Nutrients 2023, 15, 228 15 of 30

Table 1. Cont.

Targeted Microbiota Therapy Method Study Period Species Involved/Outcome Measured Results/Implications Subject Type Reference

Dietary glycan—Seaweed
Polysaccharide 6 weeks and 12 weeks

Bifidobacteria,
Akkermansia,

Pseudobutyrivibrio, Clostridium,
Bilophila

Significantly reduced non-HDL cholesterol
Increased Bifidobacteria, Akkermansia, Pseudobutyrivibrio

and Clostridium
Decreased Bilophila

[162]

Probiotic- Lactobacillus,
Bifidobacterium, Streptococcus 6 weeks Lactobacillus, Bifidobacterium and

Streptococcus
Decreased fasting plasma glucose versus control group

Increased serum HDL versus control group Human [163]

Probiotic—Lactic acid producing
strains

Lactobacillus casei, Lactobacillus
paracasei, Lactobacillus plantarum,
Enterococcus faecium, Enterococcus

lactis

Incorporation of probiotics into foods containing dairy
reduced reduced serum cholesterol [164]

Probiotic—Bifidobacterium
bifidum 3 weeks

Firmicutes, Bacteroides,
Actinobacteria, Proteobacteria,

Fusobacteria, Dorea, Lachnospira

Increased Firmicutes, Bacteroides and Actinobacteria
Decreased in Firmicutes, Bacteroides and Actinobacteria

Decreased in total cholesterol and LDL cholesterol
Human [165]

Probiotic milk—Lactobacillus
acidophilus, Lactobacillus casei,

Bifidobacterium lactis

10 weeks supplement plus 2
weeks follow-up

Lactobacillus acidophilus,
Lactobacillus casei, Bifidobacterium

lactis

Improved fecal weight
Decreased fecal passing time

Increased biodiversity of Lactobacillus and Bifidobacterium
spp.

Improved lag-time of LDL oxidation
Decreased serum cholesterol

Human [166]

Probiotic—Bifidobacterium
animalis subsp. lactis 6 months Lactobacillus and Akkermansia

Significantly increased fecal Bifidobacterium, Akkermansia,
and Streptococcus in supplemented group

Decreased glycocholic acid, glycoursodeoxycholic acid,
taurohyodeoxycholic acid, and tauroursodeoxycholic

acid

Human [167]

Synbiotic—xylo-
oligosaccharides (XOS) +

Bifidobacterium animalis lactis
3 weeks XOS + Bifidobacterium animalis

lactis
Increased host Th1 responses, increase in HDL, increased

Bifidobacterium count Human [168]

Synbiotic—xylo-
oligosaccharides (XOS) +

Bacillus licheniformis
XOS + Bacillus licheniformis Reduction in serum LPS, decreased body weight,

decreased serum total cholesterol Mice [169]
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Table 1. Cont.

Targeted Microbiota Therapy Method Study Period Species Involved/Outcome Measured Results/Implications Subject Type Reference

Folate

Reduced body weight gain, adipocyte size and dysbiosis
Down-regulated lipid-metabolism genes Mice [170]

Lower serum folate levels were associated with increased
carotid intima-media thickness Human [171]

Porphyromonadaceae Low folate diet resulted in higher amounts of
Porphyromonadaceae and associated NAFLD Mice [172]

Fecal Microbiota Transplant

Bifidobacterium, Lactobacillus,
Bilophila and Desulfovibrio

Increases in Bifidobacterium and Lactobacillus
Decreased Bilophila and Desulfovibrio Human [173]

24 weeks Bifidobacterium and Lactobacillus Increases in butyrate-producing bacteria
Improvements in total cholesterol and LDL [174]

12 weeks Fecal bacteria
Bile acids

Decreased taurocholic acid versus baseline
Bile acid profile shifts towards that of the donor [175]

Akkermansia muciniphila

Akkermansia muciniphila

Significant positive correlation with PUFA/SFA ratio
Negatively correlated with onset of dyslipidemia

Reduced body fat mass and insulin resistance
Increased tight junction proteins, zonulin-1 and occludin

Increased IL-10
Degradation of host mucin lining

Human [176]

Akkermansia muciniphila Improved gut barrier function via interactions with TLR-2 Mice [129]

Akkermansia muciniphila and
Periplaneta americana extract (PAE)

PAE pretreatment greatly increased amount of
Akkermansia muciniphila versus control facing

diquat-induced oxidative stress
Mice [130]

Akkermansia mucinophila
Increased therapeutic effect of the novel

anti-hyperlipidemic plant-alkaloid, Nuciferine, via
enrichment with Akkermansia mucinophila

Mice [177]

Akkermansia mucinophila
Increased Akkermansia muciniphila was associated with

decreased risk of metabolic syndrome once A.
muciniphila comprised 0.2% of total microbiome

Human [178]
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Table 1. Cont.

Targeted Microbiota Therapy Method Study Period Species Involved/Outcome Measured Results/Implications Subject Type Reference

Faecalibacterium prausnitzii

Faecalibacterium prausnitzii

Mononuclear cell stimulation of Faecalibacterium
prausnitzii lowered IL-12 and IFN-gamma production

Increased secretion of IL-10
Displayed anti-inflammatory effects including blocking

NF-KB and IL-8 production

[179]

Faecalibacterium prausnitzii

Produced butyrate thereby inhibiting NF-KB, and
downregulating TLR-3/TLR-4

Stimulated mucin secretion, improving gut barrier
functionality

[180]

Faecalibacterium prausnitzii
Decreased abundance of the species in obese individuals

Exhibited anti-inflammatory effects
Produced butyrate

[181]

13 weeks Faecalibacterium prausnitzii

Decreased adipose tissue inflammation
Lowered AST/ALT

Increased fatty acid oxidation
Improved intestinal integrity

Mice [182]

Abbreviations: CRP, C-reactive protein; DM, diabetes mellitus; Th1, T-helper 1 subtype; NAFLD, non-alcoholic fatty liver disease; PUFA/SFA, poly-unsaturated fatty acids / saturated fatty acids; IL,
interleukin; TLR, toll-like receptor; NF-KB, Nuclear factor kappa-light-chain-enhancer of activated B cells.
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4.2. Probiotics

Probiotics are organic supplements that contain non-pathogenic live strains of bacteria,
most commonly containing Lactobacilli and Bifidobacteria [183]. Lactobacillus, in particular,
has significant roles in breakdown of glycans in the intestinal mucus layer, which not
only serves to drive mucosal barrier regeneration, but also provides a nutrient source to
other bacterial species which lack hydrolytic enzymes capable of digesting glycans into
monosaccharides [184]. Lactobacilli outpace pathogenic bacteria by producing adhesins that
allow binding to the host mucus layer [185]. Further, a study examining 58 different strains
of lactic acid bacteria on a medium with cholesterol and bile acids, which simulated the
human gastrointestinal tract environment, showed cholesterol reduction rates as high as
55% [164]. Bifidobacterium also plays significant roles in optimizing overall gut microbial
composition. This is supported by recent findings showing that Bifidobacterium animalis
supplementation significantly lessened the effects of dysbiosis induced by antibiotic ad-
ministration. Further, Bifidobacterium bifidum probiotic supplementation in individuals with
dyslipidemia for 3 weeks resulted in significantly decreased total cholesterol and LDL
cholesterol [165]. As such, combination of these two main genera in probiotic supplements
has been shown to positively impact several metrics of overall health, including the ability
to lower serum levels of total cholesterol, LDL and TGs.

For example, administration of probiotics containing Lactobacillus acidophilus, Lacto-
bacillus casei and Bifidobacterium lactis in hypercholesterolemic volunteers reduced LDL
cholesterol by 10.4% and total cholesterol by 8.1% over a 10-week study period [166].
When examining the time that isolated LDL from serum samples took to oxidize, it was
found that the probiotic group had a longer lag time in LDL oxidation, demonstrating
the benefit of supplementation of these species in atherosclerosis development as well.
Further, probiotics containing Lactobacillus, Bifidobacterium and Streptococcus were found
to increase HDL cholesterol [163]. In addition, probiotics enhance bile acid profiles. For
example, probiotic supplementation increased levels of Lactobacillus and Akkermansia, while
reducing conjugated bile acids such as glycoursodeoxycholic acid and taurohyodeoxycholic
acid [167]. Conjugated bile acids are reabsorbed through enterohepatic cycling and not
excreted. Therefore, de novo bile acid synthesis is diminished, and less cholesterol is
utilized. As such, probiotics can also facilitate excretion of bile acids through deconjugation
reactions to increase utilization of cholesterol in de novo bile acid synthesis and improve
states of dyslipidemia.

4.3. Synbiotics

Synbiotics are formulations that combine prebiotics and probiotics. Prebiotics serve
as substrates for probiotics that increase their beneficial effects on the gut microbiome as
well as increase the likelihood of survival in the gut environment. These formulations are
shown to improve metabolic parameters including lipid imbalance. In a 3-week study
examining the effect of prebiotic xylo-oligosaccharides (XOS) alone or in combination with
Bifidobacterium animalis lactis on gut microbiota composition, immune function, and serum
lipid concentrations, Childs et al., showed increases in Bifidobacteria with XOS supplemen-
tation, significant increases in fasting HDL, and stimulation of Th1 and suppression of
Th2 responses [168]. Further, Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium
bifidum plus inulin significantly decreased concentrations of serum TG and VLDL over a
6-week period. In addition to Bifidobacterium and Lactobacillus, another probiotic, Bacillus
licheniformis has been studied with XOS to determine symbiotic effects on gut dysbiosis
in high-fat diet rats. The symbiotic combination of XOS and Bacillus licheniformis elicited
reductions in serum LPS, a decrease in the F/B ratio, reductions in body weight and even
reduced serum total cholesterol [169]. Therefore, combinations of prebiotics and probiotics
can promote targeted changes in gut microbiota to improve dyslipidemia.
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4.4. Gut Microbiota, Folate and Dyslipidemia

Folate is an essential molecule required for nucleotide biosynthesis and acts as a
methyl donor for processes such as DNA methylation/epigenetic modification. It is well-
established that probiotic bacteria in the gut microbiome are important for the production
and synthesis of many compounds including vitamin K and the B vitamins. Though
not all Lactobacilli and Bifidobacteria produce folate, specific species in these genera have
folate-producing capabilities including Lactobacillus. plantarum, Bifidobacterium adolescents,
and Bifidobacterium pseudocatenulatum [186]. However, the ability to produce folate is
generally rare for gut microbiota, though most species are known to require folate for proper
functioning [187]. As a result, folate therapy has been studied in the context of dyslipidemia
through its targeted changes in gut microbiota. More specifically, folate has been shown to
restore dysbiosis to beneficially alter serum lipids and cholesterol through its regulatory
pathways. For example, Chen et al. studied different mice groups fed high-fat diets with or
without folate supplementation and how it affected their body weight gain, fat distribution,
and gut microbiota among other. In C57 BL/6J conventional (CV) mice fed a high-fat diet,
supplementation with folate reduced weight gain, adipocyte sizes, dysbiosis, and down
regulation of lipid-metabolism associated genes such as peroxisome proliferator-activated
receptor-alpha (PPAR-alpha), hormone-sensitive lipase (HSL), and adiponectin [188]. In
germ-free high-fat diet fed mice, folate supplementation had no effect on the overall
body weight gain, whereas in CV high-fat diet fed mice there was a notable decrease in
body weight gain, reduced expression of PPAR-alpha, HSL, adiponectin, and changes to
short-chain fatty acid concentrations. This suggests that commensal bacteria in the CV
microbiome employs folate to correct dysbiosis and improve host serum lipid profiles.

Additionally, the ADRB3 gene has surfaced as an important gene associated with
obesity/dyslipidemia as it encodes for a beta-adrenergic receptor found on the surface of
adipocytes and is important regulator of lipolysis. ADRB3 gene methylation was nega-
tively associated with serum folate levels in eutrophic adults but not overweight or obese
adults [189]. This suggests that normal weight adults with adequate levels of folate experi-
ence lower levels of ADRB3 gene methylation which can serve as a protective mechanism
against obesity and altered lipid profiles. Further, folate-induced changes of gut microbiota
are associated with sequelae of dyslipidemia including atherosclerosis and non-alcoholic
fatty disease (NAFLD). For example, in a large study of 14,970 Chinese adults with hyper-
tension, increased serum folate levels attenuated LDL and carotid intima-media thickness
(CIMT) measurements, indicating an association between low folate levels and increased
risk of atherosclerosis [171]. In addition, mice fed a high methionine low folate (HMLF)
diet experienced higher fecal concentrations of Porphyromonadaceae, a family within Bac-
teroidetes, that has been associated with non-alcoholic fatty liver disease (NAFLD) [170], a
condition characterized by insulin resistance and increased TG and LDL. Taken together,
these findings support the beneficial effects of folate interventions and associated changes
in gut microbiota in treating dyslipidemia, though more work is needed to examine the
role of folate on the bacteria metabolism and the subsequent effects in dyslipidemia.

4.5. Fecal Microbiota Transplantation in Restoring Dyslipidemia

Fecal microbiota transplant (FMT) is a treatment modality in which gut microbiota
from a “healthy” individual is administered to a patient with the intent of restoring the
gut’s microbial composition and providing a benefit to its overall function [190]. Currently
used methods to administer fecal microbiota include via upper GI tract administration
through oral capsules, nasogastric tube, and endoscopy or through the lower GI route via
colonoscopy and rectal enema [190,191]. Although the only currently FDA-approved FMT
therapy is for recurrent and refractory Clostridoides difficile infection, FMT has been proposed
in recent years as a potential therapeutic intervention for patients with various pathologies
including to improve lipid profile of patients with metabolic disease [192]. For example,
FMT has been shown to induce rapid changes in gut microbiota composition profile and
diversity, by increasing Bifidobacterium and decreasing sulfate-reducing bacteria including
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Bilophila and Desulfovibrio [173]. This resulted in improved serum lipid profiles, specifically
total cholesterol, and triglycerides. A similar recent study supports the beneficial effects
of FMT on improving lipid profile, which was associated with increased Lactobacillus and
Bifidobacterium [174]. However, FMT in conjunction with lifestyle interventions including di-
etary modification more significantly reduced total and LDL cholesterol. As such, although
beneficial effects of FMT have been demonstrated in several studies, combining treatments
that promote targeted and generalized changes in gut microbiota may optimize outcomes.
Few studies have also shown that FMT via oral capsules can also improve lipid metabolism
by altering bile acids [175]. In addition to shifts in microbiota composition resembling the
healthy donor microbiota, FMT also induced sustained decreases in fecal taurocholic acid
and bile acid profiles that showed more similarity to donors. Therefore, bile acid-microbiota
crosstalk can mediate some of the beneficial effects of FMT in dyslipidemia.

4.6. The Use of Faecalibacterium prausnitzii and Akkermansia muciniphila as
Next-Generation Probiotics

In addition to Lactobacillus and Bifidobacterium, the two strains of beneficial gut bac-
teria strongly associated with improved lipoprotein profiles are Akkermansia muciniphila
and Faecalibacterium prausnitzii [193]. They each constitute up to 5% of the total gut mi-
crobiome [194,195] in healthy individuals. Throughout the review, we have highlighted
that the relative abundances of these species are ordinarily decreased in dyslipidemia,
while pharmaceutical interventions and microbiota targeted therapies increase their con-
centrations. In as much as “precision probiotics” could be used to modulate specific
microbiota-driven regulatory mechanisms involved in lipid metabolism, it is important
to consider the inter-bacterial microbiota interactions and the resulting impact on the mi-
crobiota and the host. It is well known that bacteria act synergistically and collectively
with other microbial species within our gut, therefore the effects of these next-generation
probiotics on lipid metabolism may largely depend on the microbial interactome. However,
establishing causality of inter-bacterial interaction network in impacting dyslipidemia, or
in health and disease, in general, is a daunting task given the complexity of the factors
involved. Nevertheless, manipulation of a single abundant gut commensal strain is one
way in assessing changes in the gut microbiota metabolic pathways and how it impacts
community structure and host responses [196]. In this regard, promising data has shown
that Akkermansia and Faecalibacterium introduction, generally exerts favorable effects in
states of dysbiosis seen in dyslipidemia. In the following subsections, we describe the
potential mechanisms by which these two species exert their effects on improving lipid
imbalance as well as their future applications as next-generation probiotics.

4.6.1. Akkermansia muciniphila

Akkermansia muciniphila colonizes the gastrointestinal tract early in childhood and
its population declines in the elderly [197]. Akkermansia has been shown to be positively
and significantly correlated with PUFA/saturated fatty acid ratio, a marker associated
with increased HDL cholesterol and negatively correlated with the onset of dyslipidemia
and atherosclerosis [176]. Further, Akkermansia muciniphila interacts with the host immune
system via an important outer membrane protein, named Amuc_1100, which has affinity
for Toll-like receptor 2, thus preventing antigens such as LPS from binding and triggering an
immune response [198]. By lowering metabolic endotoxemia induced from LPS-producing
bacterial species and improving gut barrier integrity, current findings have shown that
Akkermansia can reduce body fat mass and improve dyslipidemia [129] via restoration of
HDL and LDL, an effect worsened by HFD-induced obesity.

It has also been shown that novel pharmaceutical agents and their anti-hyperlipidemic
events may be largely related to the increase in Akkermansia [177]. For example, Periplaneta
americana extract (PAE) increased gut concentrations of Akkermansia muciniphila to induce
beneficial effects on oxidative stress and inflammation, commonly seen in metabolic dis-
ease [130]. This was shown through increase in tight junction proteins, zonulin-1 and
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occludin, that maintain gut barrier integrity and activation of interleukin-10 (IL-10) that
mediate its effects through JAK1/STAT3 signaling pathways. Further, the therapeutic effect
of another novel plant-alkaloid antihyperlipidemic agent, nuciferine, was directly corre-
lated with Akkermansia enrichment [177]. Similar findings show that Akkermansia may exert
these effects through its mucus degrading qualities, which provides other bacterial species
with a consistent supply of nutrients which aids their survival [199]. This degradation of
the mucous layer is carried out by glycosyl hydrolases releasing glycan oligosaccharides,
promoting cross-feeding and increased richness and diversity in the microbial commu-
nity. However, it is important to note that the relationship of Akkermansia on maintaining
a healthy gut layer and preventing metabolic endotoxemia is dose-dependent, as over
degradation of the mucin layer in combination with other mucin-degrading bacteria can
increase gut permeability [200]. At the same time, a minimal concentration of Akkermansia
is required for metabolic benefits to be present [178]. In patients with metabolic syndrome,
Akkermansia comprised 0.08% of the total gut microbial abundance and it was not until
Akkermansia reached 0.2%, that risk of metabolic syndrome decreased. Taken together, these
findings provide strong evidence for Akkermansia muciniphila in restoring the unfavorable
effects on intestinal barrier integrity, inflammation and decreased microbial richness seen
in dyslipidemia.

4.6.2. Faecalibacterium prausnitzii

Another potential next-generation probiotic is Faecalibacterium prausnitzii which has been
identified as playing an important role in energy production and has an anti-inflammatory
role which can combat chronic conditions such as dyslipidemia [179]. Faecalibacterium
prausnitzii is shown to cross feed off other intestinal microbiota produced metabolites or
dietary supplements to yield SCFAs, which produces most of its beneficial effects and
it has been regarded as one of the most important butyrate producing bacteria within
the human gut [201]. Butyrate has anti-inflammatory role via inhibition of nuclear factor
kappa-light-chain-enhancer of activated B cells (NFκB) and therefore decreased interleukin
8 (IL-8), which causes chemotaxis neutrophils into tissues during inflammatory processes.
Additionally, recent findings have shown that Faecalibacterium-derived butyrate can down-
regulate TLR3 and TLR4 to reduce activity of the TLR-NFκB and HDAC axes [180]. Toll-like
receptors are important receptors activated by LPS that induce inflammation via NFκB sig-
naling, which is commonly elevated in metabolic diseases like dyslipidemia [202]. Further,
Faecalibacterium prausnitzii stimulate mucin secretion thus maintaining intestinal barrier
integrity [203]. These beneficial mechanistic effects of Faecalibacterium prausnitzii translate
to improvements in lipid profile [181]. For example, oral introduction of Faecalibacterium
prausnitzii increased adiponectin signaling and fatty acid oxidation, while reducing TG,
phospholipids, and cholesterol esters [182]. These effects were associated with an over-
all improvement in gut microbial richness and diversity as well as improved intestinal
integrity through stabilization of the mucous layer. Therefore, Faecalibacterium prausnitzii
plays an important role in improving cholesterol imbalances commonly seen in various
metabolic disease.

5. Conclusions and Perspective

While new studies continue to emerge, substantial evidence supports the involvement
of gut microbiota and states of dysbiosis in the development and progression of metabolic
diseases, such as dyslipidemia. Through advancements in our understanding of the role
of gut microbiota and their metabolites in lipid metabolism, studies have shifted towards
identifying ways to leverage its therapeutic potential into creating targeted microbiota
therapies to improve lipid imbalances. Current first-line interventions include improved
dietary intake through the MD and statin therapy that exert their positive effects through
generalized, yet favorable changes, by increasing SCFA-producing bacteria like Lactobacillus,
Eubacterium, Faecalibacterium, Bifidobacterium and Akkermansia, that are key in maintaining
gut barrier integrity. Further, prebiotics, probiotics, synbiotics, FMT and next-generation
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probiotics provide a simple, yet effective treatment modality for dyslipidemia by enriching
the gastrointestinal tract of affected individuals with beneficial microbial species. While
research on gut microbiota and its therapeutic significance has yielded notable results, its
clinical applications in humans have been limited. In order to draw causative conclusions
between improvements in chronic diseases and use of microbiota modulators, thorough
investigation is needed to understand the commensal, known as well as currently unknown,
role prior to disease and throughout its progression. Thus, future directions of microbiota
modulation treatments of dyslipidemia should include longitudinal studies that consider
the inherent gut microbiota variations between individuals while investigating changes
in microbiota profile prior, during, and after treatment. Although this is a time and labor-
intensive process, the potential benefits of modulating gut microbiota for the treatment of
dyslipidemia have been promising.
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