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Abstract: Background and objective: Inflammatory bowel disease (IBD), including Crohn’s disease
and ulcerative colitis, is a chronic inflammatory disorder characterized by aberrant immune responses
and compromised barrier function in the gastrointestinal tract. IBD is associated with altered gut
microbiota and their metabolites in the colon. Butyrate, a gut microbial metabolite, plays a crucial
role in regulating immune function, epithelial barrier function, and intestinal homeostasis. In this
review, we aim to present an overview of butyrate synthesis and metabolism and the mechanism of
action of butyrate in maintaining intestinal homeostasis and to discuss the therapeutic implications
of butyrate in IBD. Methods: We searched the literature up to March 2023 through PubMed, Web of
Science, and other sources using search terms such as butyrate, inflammation, IBD, Crohn’s disease,
and ulcerative colitis. Clinical studies in patients and preclinical studies in rodent models of IBD
were included in the summary of the therapeutic implications of butyrate. Results: Research in the
last two decades has shown the beneficial effects of butyrate on gut immune function and epithelial
barrier function. Most of the preclinical and clinical studies have shown the positive effect of butyrate
oral supplements in reducing inflammation and maintaining remission in colitis animal models
and IBD patients. However, butyrate enema showed mixed effects. Butyrogenic diets, including
germinated barley foodstuff and oat bran, are found to increase fecal butyrate concentrations and
reduce the disease activity index in both animal models and IBD patients. Conclusions: The current
literature suggests that butyrate is a potential add-on therapy to reduce inflammation and maintain
IBD remission. Further clinical studies are needed to determine if butyrate administration alone is an
effective therapeutic treatment for IBD.

Keywords: butyrate; inflammatory bowel disease; gut microbiota; microbial metabolites; nutrients;
gut homeostasis; immune responses; T-cells

1. Introduction

Inflammatory bowel disease (IBD) is characterized by chronic intestinal inflammation
in the gastrointestinal (GI) tract and includes Crohn’s disease (CD) and ulcerative colitis
(UC). Although both CD and UC present with chronic inflammation, they differ in many
aspects such as location, distribution, and depth of inflammation, and complications, and
rectal involvement (Table 1). The exact cause of IBD is still not well understood, but the
pathogenesis is interlinked with genetic factors, abnormal immune reactivity, microbiota
dysbiosis, diet, and environmental factors being involved. The dynamic balance between
commensal microflora and host defensive responses in the intestine plays a key role in the
initiation and chronic progression of IBD [1]. Disturbed immune function and epithelial
barrier integrity are the major features of IBD.

Since the pathogenic mechanisms of CD and UC remain unknown, IBD is not curable.
Current therapies for IBD, including corticosteroids, immunomodulators, and biologics, are
designed to induce remission [2]. However, patient response to the treatments decreases
over time, and relapses occur frequently. Moreover, the side effects of these treatments
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are significant, and sometimes intolerable to patients. It is important to identify novel
therapeutic targets and discover effective and safe treatments for IBD patients. Short-
chain fatty acids (SCFAs) are the most abundant microbial metabolites in the intestine
and provide 60–70% of the energy needs for colonocytes [3]. Specifically, butyrate is the
major fuel source for the epithelial cells and has gained more attention than any other
SCFAs as it regulates intestinal homeostasis and maintains epithelial integrity. A reduced
number of butyrate-producing bacteria and lowered butyrate concentration have been
found in IBD [4,5]. As butyrate is shown to modulate immune function and intestinal
barrier function, it is considered a therapeutic target in the treatment of IBD. In this review,
we discuss the production and metabolism of butyrate and the therapeutic implications of
butyrate in IBD.

Table 1. Comparison of Crohn’s disease and ulcerative colitis.

Features Crohn’s Disease Ulcerative Colitis

Location Any part of the GI * tract Large intestine
Inflammation Transmural Superficial

Complications Fistula development,
obstruction No fistula, Hemorrhage

Distribution Discontinuous and patchy Continuous
Rectal involvement Occasional Common

* GI: gastrointestinal.

The literature for this review was searched up to March 2023 from PubMed, Web of
Science, and other sources using search terms such as butyrate, inflammation, IBD, Crohn’s
disease, and ulcerative colitis. Studies on human trials and animal models were included to
extract data for summarizing the therapeutic implications of butyrate. The relevant studies
and their reported outcomes were analyzed and discussed with references to emphasize
possible mechanisms of action. This review only includes papers published in English.

2. Gut Microbiota and Metabolites

The human gastrointestinal tract harbors a complex and diverse microbial population
termed gut microbiota. The gut microbiota comprises trillions of microbes, including ar-
chaea, bacteria, fungi, and viruses. Many bacteria, particularly anaerobic bacteria, colonize
the intestinal tract in a symbiotic relationship which plays a critical role in maintaining the
intestinal homeostasis of the host. The high-throughput DNA sequencing technology has
enhanced our understanding of gut microbiota without the need for microbial culturing.
More than 1000 bacterial species colonized the human gastrointestinal tract, especially
in the colon. Most of these bacterial species belong to two major phyla: Firmicutes and
Bacteroidetes [6].

The gut microbiota produces a wide range of metabolites, including SCFAs, polyamines,
vitamins, tryptophan-derived metabolites, and secondary bile acids, using exogenous undi-
gested dietary substrates and endogenous compounds [7]. These metabolites can be classified
into three types: (1) Metabolites produced by the microbial transformation of dietary compo-
nents or drugs such as compound K; (2) Metabolites produced from host secretions that are
modified by gut microbiota such as secondary bile acids; and
(3) Metabolites synthesized by gut microbiota from diet components such as SCFAs [8].
These metabolites may also serve as nutrients or substrates for other bacterial species in
the colon to further produce metabolites via interspecies cross-feeding interactions [9]. The
microbial metabolites can be both beneficial and toxic to the host (Figure 1).
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Figure 1. Synthesis of microbial metabolites in the intestine. Commensal bacteria in the intestine 
utilize nondigested fermentable carbohydrates and proteins from the host-ingested diet and pro-
duce SCFAs and vitamins. Likewise, gut bacteria transform nonabsorbed primary bile salts into sec-
ondary bile acids. These microbial metabolites modulate the host physiological functions and pro-
vide health benefits. 

The primary bile acids, cholic acid, and chenodeoxycholic acids are synthesized from 
cholesterol and conjugated to glycine or taurine in the liver then stored in the gallbladder 
and released into the intestine to facilitate dietary-fats emulsification, digestion, and ab-
sorption in the small intestine. The remaining bile acids are absorbed in the terminal ileum 
and reached the liver through enterohepatic circulation [10]. The escaped bile salts during 
enterohepatic circulation become substrates for gut microbial metabolism, including de-
conjugation, oxidation, epimerization, and dehydroxylation. The bacteria genera includ-
ing Clostridium, Bifidobacterium, Bacteroides, Listeria, and Lactobacillus are involved in the 
deconjugation of bile acids. Bacteroides, Eggerthella, Escherichia, Clostridium, Ruminococcus, 
and Peptostreptococcus are involved in oxidation and epimerization [11]. The intestinal bac-
teria Clostridium and Eubacterium genera transform cholic acid and chenodeoxycholic acid 
into deoxycholic acid and lithocholic acid, respectively, by dihydroxylation using hy-
droxysteroid dehydrogenase enzymes [11–13]. Undigested dietary proteins enter the co-
lon and serve as substrate for gut-microbial metabolism. Tryptophan is an essential amino 
acid consumed in the diet. Undigested or escaped tryptophan is fermented by colonic 
bacteria, producing various metabolites, indole, indoleacetic acid, indole-3-lactate, and in-
dole-3-propionate through direct tryptophan transformation pathway [14]. Indole-pro-
ducing bacteria, such as Acinetobacter oleivorans, Vibrio cholera, Escherichia coli, Pseudomonas 
chlororaphis, and Synbiobacterium thermophilus, produce indole from tryptophan [15]. 

SCFAs, including acetic, propionic, and butyric acids, are a group of carboxylic acids 
that consist of lesser than six carbon atoms. SCFAs are derived from the fermentation of 
nondigestible carbohydrates in the proximal colon and by proteolytic fermentation in the 
distal colon. SCFAs can be formed from fermentable carbohydrates through the glycolytic 
pathway and the pentose phosphate pathways by microbial fermentation [16]. Butyrate is 

Figure 1. Synthesis of microbial metabolites in the intestine. Commensal bacteria in the intestine
utilize nondigested fermentable carbohydrates and proteins from the host-ingested diet and produce
SCFAs and vitamins. Likewise, gut bacteria transform nonabsorbed primary bile salts into secondary
bile acids. These microbial metabolites modulate the host physiological functions and provide
health benefits.

The primary bile acids, cholic acid, and chenodeoxycholic acids are synthesized from
cholesterol and conjugated to glycine or taurine in the liver then stored in the gallblad-
der and released into the intestine to facilitate dietary-fats emulsification, digestion, and
absorption in the small intestine. The remaining bile acids are absorbed in the terminal
ileum and reached the liver through enterohepatic circulation [10]. The escaped bile salts
during enterohepatic circulation become substrates for gut microbial metabolism, including
deconjugation, oxidation, epimerization, and dehydroxylation. The bacteria genera includ-
ing Clostridium, Bifidobacterium, Bacteroides, Listeria, and Lactobacillus are involved in the
deconjugation of bile acids. Bacteroides, Eggerthella, Escherichia, Clostridium, Ruminococcus,
and Peptostreptococcus are involved in oxidation and epimerization [11]. The intestinal
bacteria Clostridium and Eubacterium genera transform cholic acid and chenodeoxycholic
acid into deoxycholic acid and lithocholic acid, respectively, by dihydroxylation using hy-
droxysteroid dehydrogenase enzymes [11–13]. Undigested dietary proteins enter the colon
and serve as substrate for gut-microbial metabolism. Tryptophan is an essential amino acid
consumed in the diet. Undigested or escaped tryptophan is fermented by colonic bacteria,
producing various metabolites, indole, indoleacetic acid, indole-3-lactate, and indole-3-
propionate through direct tryptophan transformation pathway [14]. Indole-producing bac-
teria, such as Acinetobacter oleivorans, Vibrio cholera, Escherichia coli, Pseudomonas chlororaphis,
and Synbiobacterium thermophilus, produce indole from tryptophan [15].

SCFAs, including acetic, propionic, and butyric acids, are a group of carboxylic acids
that consist of lesser than six carbon atoms. SCFAs are derived from the fermentation of
nondigestible carbohydrates in the proximal colon and by proteolytic fermentation in the
distal colon. SCFAs can be formed from fermentable carbohydrates through the glycolytic
pathway and the pentose phosphate pathways by microbial fermentation [16]. Butyrate
is mainly produced from species of the Firmicutes phylum, including Roseburia species,
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Faecalibacterium prausnitzii, and Eubacterium rectale, whereas acetate and propionates are
produced from the species of the Bacteroidetes phylum [17,18]. The production of SCFAs
in the intestine is substrate dependent. About 300 to 600 mmol of SCFAs are produced in
the human intestine per day and only a small amount of SCFAs (~10 mmol) are excreted
through fecal excretion. The remaining SCFAs are rapidly absorbed by the host epithelial
cells via passive diffusion or active transport [19,20].

3. Butyrate Production, Absorption, and Metabolism

Gut microbiota produces butyrate from acetyl-CoA, lysine, glutarate, or succinate
pathways in the colon [21]. Various bacterial species in the human intestine generate
enzymes that can synthesize butyrate from complex fermentable substrates. The predomi-
nant butyrogenic bacterial species, including Faecalibacterium prausnitzii, Clostridium spp.,
Eubacterium spp., and Roseburia spp., are from two clusters (Clostridium clusters IV and
XIVa) in the Firmicutes phylum and the Clostridiales order [22,23]. Most luminal butyrate is
synthesized from nondigestible carbohydrates via the acetyl-CoA pathway (Figure 2). In the
first step, nondigestible carbohydrates are catabolized into pyruvate through the pentose
phosphate pathway or Embden–Meyerhof–Parnas pathway. Pyruvate can be converted into
acetyl-CoA, which is further broken down into butyryl-CoA. In the final step, butyryl-CoA
can be converted into butyrate by butyryl-CoA: acetyl-CoA transferase or phosphorylated
to butyryl-phosphate through phospho-transbutyrylase and then subsequently converted
to butyrate through butyrate kinase [24–26]. Acetate is required to produce butyrate via
butyryl-CoA: acetyl-CoA transferase through cross-feeding microbial reactions. Butyrate is
produced by cross-feeding interactions between acetate-producing Bifidobacterium spp. and
acetate-utilizing Faecalibacterium prausnitzii [23]. Moreover, the metabolite cross-feeding
within the microbial community plays a key role in maintaining the diversity of the gut-
microbial ecosystem [27]. In the succinate pathway, butyrogenic bacteria convert succinate
to crotonyl-CoA, which is subsequently converted into butyrate. Crotonyl-CoA is the
common butyrate precursor in L-lysine and glutarate pathways (Figure 2).

Gut-microbiome-derived butyrate is taken up rapidly by colonocytes through passive
nonionic diffusion or active carrier-mediated transport [28]. The ionized form of butyrate
is transported across the apical surface of intestinal epithelial cells through active transport
mediated by H+-monocarboxylate transporter-1 (MCT1) and Na+-coupled monocarboxy-
late transporter-1 (SMCT1). Solute carrier family 5 member 8 (SLC5A8) is one of the major
SMCT1 transporters of butyrate across the colonocytes [29]. The gene expression levels of
SLC5A8 are abundant in the apical membrane of the colon and ileum. On the basolateral
membrane, butyrate is transported through the carrier-mediated bicarbonate exchange
system [30]. Butyrate predominantly presents in the anionic form in the colon due to colonic
luminal pH conditions. Thus, it requires carrier-mediated transportation for cellular entry.

The absorbed butyrate is metabolized in the intestinal epithelial cells, liver cells, and
other tissues and cells [31]. In the epithelial cells, butyrate is transformed into acetyl-CoA
and enters the tricarboxylic acid (TCA) cycle in the mitochondria to produce ATP, which
is consumed by the colon epithelial cells. The portion of butyrate which is not utilized
by epithelial cells can reach the liver via portal circulation, where it is metabolized into
acetyl-CoA and becomes a substrate for fatty acids, cholesterol, and ketone bodies by
hepatocytes [22,32]. The plasma concentration of butyrate is very low compared to colonic
levels, only 2% of butyrate enters systemic circulation, being utilized by other tissues
and cells [32]. The remaining SCFAs, including butyrate, are excreted through the lungs
and urine.
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Figure 2. Schematic representation of pathways involved in butyrate production, absorption, and
metabolism. Butyrate is synthesized by intestinal bacteria via four pathways from nondigestible
carbohydrates, succinate, L-lysate, and glutarate. It is taken-up and metabolized by the colonic
epithelial cells. Low levels of butyrate enter into the liver and regulate fatty acid metabolism. Small
amounts of butyrate enter into the systemic circulation and may reach other tissues.



Nutrients 2023, 15, 2275 6 of 17

4. Role and Mechanisms of Butyrate in the Regulation of Barrier Function and
Immune Response

The single layer of intestinal epithelium serves as a barrier between the host and its
external environment that controls the interaction between the luminal contents and the
internal milieu of the body. The intestinal epithelial monolayer contains several types
of specialized cells: (1) enterocytes, for absorption of nutrients; (2) goblet cells, produc-
ing secretory and gel-forming mucins which are glycosylated proteins that form poly-
meric nets called mucus layer, a physical barrier between intestinal bacteria and epithelial
cells; (3) enteroendocrine cells, secreting various hormones regulating digestive function;
(4) Paneth cells, residing at crypt base and secreting antimicrobial peptides such as lysozyme,
defensins, and cryptidins; (5) microfold cells (M cells), sampling antigens from the lumen
to subepithelium; and (6) tuft cells, for chemosensing function in the epithelium [33,34].
These epithelial cells are connected by intercellular desmosomes, tight junctions (TJs), and
adherent junctions (AJs), which create a physical barrier for luminal contents of the gut
and regulate epithelial permeability. TJs are a complex network formed by transmembrane
proteins such as claudins, occludin, tricellulin, and junctional adhesion molecules and
cytosolic scaffold proteins such as zonulae occludens (ZO) and cingulin [35,36]. Both TJs
and AJs are connected to the actin cytoskeleton and form an apical junction complex. On
the basal side, epithelial cells are connected by hemidesmosomes.

The intestinal epithelium lies between the commensal organisms in the gut lumen and
the immune cells in lamina propria. The complex immune interactions between commensal
microflora, the epithelial layer, and the subepithelial immune cells maintain homeostasis
under normal conditions. Lamina propria contains the gut-associated lymphoid tissue
(GALT) which is comprised of Peyer’s patches, a group of lymphoid follicles containing
several immune cells, such as specialized M cells, dendritic cells, T cells, B cells, intraep-
ithelial lymphocytes, and macrophages [37]. The dendritic cells (DCs) from lamina propria
sample the luminal food and microbial antigens by extending their dendrites between
epithelial cells and transport to antigen-presenting cells (APCs) in GALT [38,39]. Upon
activation, GALT performs effector immune functions by activating immune cells to pro-
duce specific cytokines from T cells and immunoglobulins from B cells. Antigens in the gut
lumen can be taken up by specialized M cells and delivered to DCs for effector functions
in the Peyer’s patches [40]. Intestinal epithelial cells themselves can also act as dynamic
sensors by pattern recognition molecule receptors (PRRs) such as toll-like receptors (TLRs)
and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) to sense
pathogen-associated molecular patterns.

Gut microflora and their metabolites play a major role in maintaining epithelial barrier
function and immune homeostasis. Among the microbial metabolites, butyrate involves a
number of signaling pathways in the gut immune cells and epithelial cells for the restoration
of impaired colonic barrier function and gut homeostasis (Figure 3). The pathophysiology
of IBD involves both epithelial barrier dysfunction and abnormal immune-cell activa-
tion. Changes in TJs structure, downregulation of claudin proteins, and upregulation of
pore-forming claudin-2 were observed in both CD and UC conditions [34]. Since 2007,
butyrate was found to enhance the intestinal barrier function by facilitating tight junction
assembly via activation of AMPK, Akt, and other signaling pathways in a dose-dependent
manner as shown in studies with transepithelial electrical resistance (TEER) and fluores-
cein isothiocyanate-dextran (FITC-dextran) permeability assays in in vitro settings [41–43].
Marinelli et al. [44] demonstrated that butyrate regulates the epithelial barrier function by
acting as a signaling molecule for cell-surface G-protein-coupled receptors (GPRs) and nu-
clear factors (NFs). Indeed, butyrate was found to induce T cell-independent IgA secretion
in the colon via activation of GPR41 (free fatty acid receptor 3, FFAR3) and GPR109A (hydro-
carboxylic acid receptor 2, HCAR2), and inhibition of histone deacetylase (HDAC) to restore
epithelial barrier function under inflammatory conditions [45]. Studies also explored the
effect of butyrate on claudins expression. Zheng et al. [46] reported that butyrate promotes
epithelial barrier function through interleukin-10 receptor α-subunit (IL-10RA)-dependent
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repression of claudin-2 TJ protein. Wang et al. [47] demonstrated that butyrate treatment
improved epithelial barrier function via the upregulation of claudin-1 transcription by
facilitating the interaction between specific motifs in the claudin-1 promoter region and SP1
transcription factor. Moreover, butyrate enhances mucin secretion and protects epithelial
cells by inducing MUC2 gene expression via AP-1 and acetylation/methylation of histones
at the MUC2 promoter in intestinal epithelial goblet cells [48]. Hypoxia-inducible factor 1
(HIF-1)-dependent mechanism may also contribute to butyrate-enhanced epithelial barrier
function [49].
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by intestinal epithelial cells via active transport mediated by MCT1 and SMCT1 transporters or via
passive diffusion. Butyrate activates GPRs and couples to G proteins to interact with downstream
effectors such as HDACs to reduce inflammation.

An inappropriate immune response to antigens derived from intestinal components is
a key feature in IBD, leading to an imbalance of inflammatory cytokines, tissue damage, and
disease progression [50,51]. Increased phagocytic activity of macrophages and cytokines’
secretion (for example, IL-1, IL-6, IL-17, and TNF) has been found in IBD patients [52]. T
lymphocytes (T-cells) play a crucial role in maintaining immune homeostasis by regulating
innate and adaptive immune responses. Upon specific antigen stimulation, naïve CD4+

T-cells differentiate into effector T helper (Th) cells, including Th1, Th2, T regulatory (Treg),
and Th17 cells [53]. Each Th type secretes specific cytokines to perform protective or
pathogenic roles. Treg cells have immunosuppressive properties that help to maintain
immune homeostasis by secreting anti-inflammatory cytokines, including IL-10 [54]. IBD
is associated with dysregulated T-cell immune responses such as increased Th1, Th2, and
Th17 cell function and decreased Treg cells function [55]. Th17 produces inflammatory
cytokines such as IL-17A, IL-17F, and IL-21 which are involved in the pathogenesis of IBD.
Gut microbial metabolite butyrate regulates the differentiation and proliferation of T cells
(Figure 4). Butyrate administration enhanced Treg cell function and suppressed IL-17 levels
as well as Th17 cells in the peripheral blood and colon tissues of TNBS-induced colitis
rats compared to a control group [54]. Zimmerman et al. [56] have demonstrated that
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butyrate inhibits proliferation of both CD4+ and CD8+ T cells in a dose-dependent manner
and it induces apoptosis in T cells through the Fas-mediated apoptosis pathway. Butyrate
facilitates Treg cell differentiation by increasing histone H3 acetylation at the promoter and
CNS3 region of the FOX3 gene locus [57]. Chen et al. [58] found that butyrate enhanced
Th1 differentiation by promoting IFN-γ levels and T-bet expression in healthy conditions,
but inhibited Th1 differentiation through IL-10 production and T-bet expression in colonic
inflammation. In addition, butyrate has been shown to regulate inflammatory response
by influencing NF-κB activity. NF-κB is a transcription factor involved in the regulation of
various inflammatory mediators and cytokines expression including, TNF-α and IL-6 [59].
Butyrate is shown to reduce inflammatory response by suppressing NF-κB activity. Several
studies have demonstrated the ability of butyrate to reduce NF-κB activity in human
colon-cell lines and in lamina propria mononuclear cells isolated from CD patients [60–62].
Butyrate activates transmembrane GPRs and nuclear receptors such as aryl hydrocarbon
receptor (AhR) in the intestinal epithelial cells. AhR is a ligand-activated transcription factor
that resides in the cytosol in activated form, and translocates to the nucleus upon activation,
thereby regulating AhR-dependent gene expression [63,64]. SCFAs, including butyrate, are
shown to enhance AhR ligand interactions in mouse and human colon cells [44,65].
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5. Therapeutic Implications of Butyrate for IBD

IBD is characterized by aberrant immune response and barrier dysfunction and is as-
sociated with a reduced number of butyrate-producing bacteria in the gut. As butyrate was
found to not only provide energy to colonic epithelial cells but also help maintain intestinal
integrity and modulate immune responses [43]; numerous studies have investigated the
role of various forms of butyrate in reducing gut inflammation [66–68]. Many of the studies
have demonstrated the efficacy of oral butyrate supplements, butyrate enema, butyrogenic
diet, and bacterial supplements in the treatment of IBD.

5.1. Butyrate Supplements
5.1.1. Oral Administration

Dysbiosis of gut microbiota leads to decreased butyrate synthesis and impaired bu-
tyrate metabolism as observed in IBD [69]. Although a low concentration of butyric acid is
commonly present in our daily regular diet, it may not be sufficient to restore the epithelial
function in inflammation in the colon. Many studies have investigated the therapeutic
potential of butyrate oral supplements in gut inflammation in both preclinical studies and
clinical trials. Table 2 summarizes these results (Table 2). Butyrate has been shown to re-
duce gut inflammation and ameliorate symptoms in a dose-dependent manner. Butyrate at
20 mg/kg/day or lower doses was found to have no significant effect, while at 100 mg/kg,
it was effective against inflammation in mice [68,70]. Lee et al. [68] reported that the oral
supplementation of sodium butyrate at 100 mg/kg of body weight daily decreased colitis
scores, prevented body weight loss, and induced histone H3 acetylation in colonic mucosa
in mouse models of acute and chronic colitis. Moreover, butyrate treatment restored the
microbial community diversity and reduced microbiota dysbiosis in gut inflammation [71].

As orally supplemented butyrate is rapidly absorbed in the duodenum, the majority
of the orally administered butyrate would not reach the colon. Moreover, the clinical
application of oral butyrate is limited due to its unpleasant taste and odor. To address
these issues, some studies used colon-targeted formulations and encapsulated butyrate
to test if butyrate in such formulations has better effects in IBD patients, especially UC
patients [67,72,73]. Sabatino et al. [72] demonstrated that enteric-coated butyrate tablets
administration effectively reduced ileocaecal inflammation and maintained clinical remis-
sion in Crohn’s disease patients. Lipophilic microencapsulated sodium butyrate treatment
showed enrichment of butyrogenic colonic bacteria in IBD patients [67]. Wang et al. [74]
developed butyrate micelles so that butyrate is released in the lower gastrointestinal tract.
They found that butyrate micelles significantly improved intestinal barrier function and
reduced disease severity in DSS-induced colitis and CD45RBhiT-cell transfer colitis in mice.

Table 2. Impact of oral butyrate supplements on IBD.

Treatment Name Concentration Colitis Model Effects Authors

Mice Sodium butyrate 0.5% of sodium
butyrate DSS-induced colitis Decreased mucosal

inflammation Vieira et al. [75]

Mice
Butyrate-releasing

polysaccharide
derivative

200 mg/kg DSS-induced colitis

Reduced disease activity index,
rebalanced gut microbiota, and
reversed the imbalance between

pro- and
anti-inflammatory cytokines

Zha et al. [66]

Mice

Balatable
butyrate-releasing

derivative,
N-(1-carbamoyl-2-

phenylethyl)
butyramide (FBA)

42.5 mg/kg DSS-induced colitis Reduced disease activity index Simeoli et al. [76]

Mice Sodium butyrate 200 mM
Citrobacter
rodentium

infection model

Prevented mice from weight
loss and suppressed

intestinal inflammation
Zhou et al. [77]
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Table 2. Cont.

Treatment Name Concentration Colitis Model Effects Authors

Mice Sodium butyrate 200 mM DSS-induced colitis
Suppressed intestinal

inflammation and lowered
pathology scores

Zhou et al. [77]

Mice Sodium butyrate 5 g/L TNBS induced colitis Decreased disease activity index
and suppressed inflammation Chen et al. [78]

Mice Sodium butyrate 100 mg/kg/day
DSS-induced acute

colitis
Piroxicam-induced

chronic colitis

Decreased colitis scores and
prevented weight loss Lee et al. [68]

Mice Sodium butyrate N/A DSS-induced colitis
Decreased disease activity

index, and restored the balance
of gut microbial communities

Dou et al. [71]

Mice Sodium butyrate 150 mM DSS-induced colitis No significant difference in
histologic scores Lee et al. [79]

Human Enteric-coated tablets 4 g/day Crohn’s disease
Induced clinical improvement

and reduced disease
activity index

Sabatino et al. [72]

Human Sodium butyrate
tablets 4 g/day Crohn’s disease Induced clinical improvement

or remission Di Sabatino et al. [80]

Human Microencapsulated
sodium butyrate 1800 mg/day IBD-both CD and UC

Increases the growth of bacteria
able to produce SCFA with

potential
anti-inflammatory action

Faccin et al. [67]

Human Microencapsulated
sodium butyrate 1000 mg/day UC in

clinical remission
Helped to maintain
clinical remission Vernero et al. [73]

Human Sodium butyrate 150 mg/twice a day IBD-both CD and UC
No significant effects in newly

diagnosed children
and adolescents

Pietrzak et al. [81]

5.1.2. Butyrate Enemas

Treatment with butyrate enemas had mixed effects in preclinical and clinical studies
as summarized in Table 3. Butyrate enema showed inhibition of NF-κB activation in the
lamina propria macrophages of UC patients, and it also reduced disease activity [82].
Segain et al. [60] observed a reduction of TNF-α induced NF-κB in colon tissues in butyrate
enema-treated colitis rats. However, some clinical studies found that butyrate enema did
not show any significant improvement in UC patients in remission and in patients with
left-sided UC [83,84].

Table 3. Impact of butyrate enemas on IBD.

Concentration Colitis Model Duration Effects Authors

Rat 3 mL of 100 mM DSS-induced colitis 17 days Decreased ulcer index and
myeloperoxidase activity Okamoto et al. [85]

Rat 100 mM
sodium butyrate TNBS-induced colitis Day 5 to 23 Decreased inflammation and improved

clinical recovery Butzner et al. [86]

Rat 3% of
sodium butyrate DSS-induced colitis N/A Decreased mucosal damage, no

difference in the incidence of diarrhea Kanauchi et al. [87]

Rat 100 mM
sodium butyrate TNBS-induced colitis 2 weeks Decreased inflammation and stimulated

mucosal repair Segain et al. [60]

Human 100 mM
sodium butyrate Ulcerative colitis 2 weeks Decreased disease activity index

and inflammation Scheppach et al. [88]

Human 60 mL of 80 mM
sodium butyrate Ulcerative colitis 3 and 6 weeks Nightly butyrate enema was not

efficacious for distal ulcerative colitis Steinhart et al. [84]

Human 60 mL of 100 mM
sodium butyrate Ulcerative colitis 4 and 8 weeks Decreased disease activity index and

mucosal inflammation after 8 weeks Luhrs et al. [82]

Human 60 mL of 100 mM
sodium butyrate Ulcerative colitis 20 days

No significant effects of butyrate
administration on parameters of

oxidative stress were found
Hamer et al. [83]
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5.2. Butyrogenic Diets

As IBD is associated with decreased butyrate-producing bacteria and butyrate produc-
tion in the colon; many investigators have tested if intake of butyrate-producing fermentable
dietary fibers could be beneficial for IBD. Fernandez-Banares et al. [89] observed increased
concentrations of fecal butyrate after the intake of fiber-rich Plantago ovata seeds in UC
patients. Moreover, Plantago ovata seed supplementation showed effectiveness in main-
taining UC remission. Further studies confirmed that butyrogenic diet supplementations
attenuated colonic inflammation by the regulation of the gut microbial balance, increased
production of SCFAs, upregulation of anti-inflammatory cytokines and Treg cells, and
reduced mucosal damage (Table 4). A fiber-rich diet, such as oat bran and germinated
barley foodstuff, has shown positive effects on IBD, especially in reducing the risk of relapse
while maintaining prolonged remission in UC patients [90,91]. It was shown that β-glucan
derived from oats and barley ameliorates colitis through the regulation of tight-junction
proteins and inhibition of proinflammatory factors by increased SCFAs production via
gut microbial fermentation [92,93]. IBD patients showed good tolerability to dietary-fiber
intake, particularly during the clinical-remission stage [91,94]. Despite the beneficial ef-
fects of fiber, IBD patients are advised to reduce fiber consumption during the disease’s
exacerbation period. Thus, the long-term effects of high fiber intake in active CD remain
uncertain due to limited clinical data [95,96].

Table 4. Impact of butyrogenic diet on IBD.

Treatment Disease or Model Effects Authors

Rat Germinated barley
foodstuff DSS-induced colitis

Bloody diarrhea and mucosal
damage were dose

dependently decreased
Kanauchi et al. [87]

Mice Flaxseed oligosaccharides DSS-induced colitis

Decreased disease activity
index, improved colon

histology, and increased cecal
SCFAs levels

Xu et al. [97]

Mice Oat β-glucan DSS-induced colitis

Suppressed colonic
inflammatory infiltration and

increased SCFAs
concentrations

Bai et al. [93]

Mice Butyl-
fructooligosaccharides DSS-induced colitis

Increased cecal butyrate
concentration, increased

occludin mRNA expression
Kang et al. [98]

Mice Soluble dietary fiber from
quinoa bran DSS-induced colitis

Decreased disease activity
index, increased microbial

diversity and SCFAs
Liu et al. [99]

Mice Peanut skin procyanidins
extract DSS-induced colitis

Suppressed inflammatory
responses, increased butyrate

producing bacterial
abundance, and colon SCFAs

Wang et al. [100]

Human Plantago ovata seeds Ulcerative colitis in
remission Increased fecal butyrate levels Fernandez-Banares et al. [89]

Human Oat bran Ulcerative colitis
Increased fecal butyrate and

maintained the
remission phase

Hallert et al. [90]

Human Germinated barley
foodstuff

Ulcerative colitis in
remission

Effective in the maintenance of
prolonged remission Hanai et al. [91]

Human
Prebiotic

oligofructose-enriched
inulin

Crohn’s disease
The relative levels of butyrate
and acetaldehyde increased

compared to the baseline
De Preter et al. [101]

Human Oat bran Ulcerative colitis in
remission

Increased fecal SCFAs,
including butyric acid, and
reduced the risk of relapse

Nyman et al. [94]

5.3. Combination Therapies

A combination therapy is a treatment modality that combines two or more therapeutic
agents. It is found in most of the studies that combination therapies with butyrate and
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other agents are more effective than single therapy in the treatment of IBD or colitis models.
Please see Table 5 for a summary of the outcomes of the studies (Table 5). Combinations of
butyrate with other SCFAs, prebiotics, and probiotics have been investigated. A mixture
of butyrate, Pistacia atlantica, and Lactobacillus casei or butyrate, Lactobacillus casei, and
L-carnitin showed synergistic effects than a single agent in a TNBS-induced rat colitis
model [102,103]. Combination of SCFAs, mainly acetate, propionate, and butyrate, showed
increased effects against colitis [79]. However, treatment with a SCFAs rectal enema (sodium
acetate, propionate, and butyrate) did not improve the histological and clinical state of
left-sided UC [104]. Coadministration of sodium butyrate and mesalazine improved the
efficacy of oral mesalazine in UC patients [105].

Table 5. Effects of butyrate combination therapies on IBD.

Treatment Name Concentration Colitis Model Duration Effects Authors

Mice SCFAs
67.5 mM acetate,
40 mM butyrate,

25.9 mM
propionate

DSS-induced
colitis N/A

No significant
difference in

histologic scores
but IL-17A

producing T cells
increased

Lee et al. [79]

Rat
Pistacia atlantica,

butyrate,
Lactobacillus casei

25 mg/kg
atlantica, 0.5%

butyrate, and 108
CFU of

Lactbacillus

TNBS-induced
colitis 10 days

Reduced the
severity of

inflammation
Gholami et al. [102]

Human
Plantago ovata

seeds and
mesalamine

20 g seeds and
1.5 g

mesalamine/day

Ulcerative colitis
remission 12 months

Effective in
remission

maintenance
Fernandez-Banares

et al. [89]

Human Sodium butyrate
and mesalazine

4 g/day butyrate
and 2.4 g/day
mesalamine

Ulcerative colitis 6 weeks
Improved the

efficacy of
mesalazine

Vernia et al. [105]

Human

Calcium
magnesium

butyrate along
with Mezavant

treatment

1.2 g/day
magnesium
butyrate and

4.8 g/day
mezavant

Ulcerative colitis N/A Relief of
symptoms Gibbs and Brown. [106]

6. Discussion and Conclusions

Studies in the last two decades or so have shown that butyrate plays a critical role in
the regulation of gut immune function and maintenance of barrier function and intestinal
homeostasis. Butyrate regulates these functions by distinct transcriptional regulatory
mechanisms, including inhibition of NF-κB and HDACs activation. The effects of butyrate
on intestinal barrier function are in a dose-dependent manner, as high concentrations may
induce apoptosis of epithelial cells and interrupt barrier function [41]. Most of the animal
and human studies showed the positive effects of butyrate as a potential therapeutic agent
to prevent inflammation and maintain remission in IBD. Butyrate oral supplements and
butyrogenic diets are found to be effective in decreasing disease activity index and reducing
inflammation. However, among nine preclinical studies on the effect of oral butyrate
supplements in mouse models of colitis, one study showed no significant reduction in
colon inflammation by butyrate supplement [79]. In that study, sodium butyrate was shown
to modulate gut microbial composition compared to the control and colitis groups [79].
Similarly, in all four clinical studies, only one study reported no significant difference
between sodium butyrate supplements [81]. Pietrzak et al. [81] assessed the effect of
oral sodium butyrate along with standard therapy in newly diagnosed IBD children and
adolescents and reported no significant effects comparing the sodium butyrate group with
the placebo group. Butyrate administration is largely safe, though a few adverse effects
have been noted [107]. Lin et al. [107] noticed that butyrate at excessive doses (more
than 150 mmol/L) induced minimal mucosal damage in the colon and distal ileum in
newborn rats.
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A limitation of this review is that we did not perform any statistical analysis such
as meta-analysis for the included studies. This is mainly due to the scarcity of data and
heterogeneity of the studies, as various doses, forms, and administration routes of butyrate
have been used in these studies. More clinical trials are required to determine the effective
doses and forms of butyrate supplements for IBD patients.

In conclusion, butyrate at appropriate concentrations helps to maintain intestinal
barrier function and regulate the immune response in the gut. Clinical trials and animal
studies have shown that butyrate can reduce mucosal inflammation and improve barrier
function in UC and CD. Butyrate formulations and butyrogenic compounds may represent
alternative therapeutic approaches for IBD. Combination therapies with butyrate and other
SCFAs may further increase the efficacy of butyrate in the treatment of IBD. Although most
of the studies have shown the beneficial effects of butyrate in colitis models and IBD patients,
more clinical studies are needed to understand the impact of butyrate administration alone
or with standard therapy in the management of IBD.
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