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Abstract: Bariatric surgery and pharmacology treatments increase circulating glucagon-like peptide-1
(GLP-1) and peptide YY (PYY), in turn promoting satiety and body weight (BW) loss. However,
the utility of GLP-1 and PYY in predicting appetite response during dietary interventions remains
unsubstantiated. This study investigated whether the decrease in hunger observed following low
energy diet (LED)-induced weight loss was associated with increased circulating ‘satiety peptides’,
and/or associated changes in glucose, glucoregulatory peptides or amino acids (AAs). In total,
121 women with obesity underwent an 8-week LED intervention, of which 32 completed an appetite
assessment via a preload challenge at both Week 0 and Week 8, and are reported here. Visual
analogue scales (VAS) were administered to assess appetite-related responses, and blood samples
were collected over 210 min post-preload. The area under the curve (AUC0-210), incremental AUC
(iAUC0-210), and change from Week 0 to Week 8 (∆) were calculated. Multiple linear regression was
used to test the association between VAS–appetite responses and blood biomarkers. Mean (±SEM)
BW loss was 8.4 ± 0.5 kg (−8%). Unexpectedly, the decrease in ∆AUC0-210 hunger was best associated
with decreased ∆AUC0-210 GLP-1, GIP, and valine (p < 0.05, all), and increased ∆AUC0-210 glycine and
proline (p < 0.05, both). The majority of associations remained significant after adjusting for BW and
fat-free mass loss. There was no evidence that changes in circulating GLP-1 or PYY were predictive of
changes in appetite-related responses. The modelling suggested that other putative blood biomarkers
of appetite, such as AAs, should be further investigated in future larger longitudinal dietary studies.

Keywords: low energy diet; appetite; gastrointestinal peptide; biomarker; amino acid; visual
analogue scale

1. Introduction

Individuals with overweight and obesity are susceptible to cardiometabolic disorders,
such as hypertension, dyslipidemia, and type 2 diabetes [1]. Dietary intervention for
body weight (BW) loss and/or improved metabolic health is commonly the first line of
treatment to delay the onset of these cardiometabolic disorders [2]. Low energy diets (LED)
achieve rapid BW loss and a parallel improvement in multiple metabolic markers [3], with
individuals able to successfully maintain BW loss long-term and likely to achieve the most
favourable outcomes [4]. Regulation of appetite control may be key to this since successful
BW loss has long been proposed to be associated with increased satiety [5,6]. All strategies
to promote BW loss, including diet, exercise, pharmacological treatment and bariatric
surgery, are accompanied by changes in appetite to varying degrees [7–10]. As hunger is a
common obstacle to successful BW loss [11], interventions targeting appetite-regulating
mechanisms to promote satiety during BW loss are of clinical importance.
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BW loss changes body composition and, in turn, physiology, including circulating con-
centrations of glycemic-related parameters, gastrointestinal (GI) peptides, and amino acids
(AAs) [12–14], several of which have been hypothesised as associated and/or causative
of appetite change. GI peptides, such as glucagon-like peptide-1 (GLP-1) and peptide YY
(PYY), have long been proposed to act as “satiety hormones” [15]. GLP-1 and PYY have
convincingly been shown to promote feelings of satiety under specific conditions. For
example, bariatric surgery which is highly successful for BW loss, results in a significant
increase in circulating GLP-1 and PYY, and in turn promotes a parallel increase in sati-
ety [16–19]. The pharmacological administration of (exogenous) GLP-1 analogues is also
notable for promoting satiety [20–23].

Notably, however, neither surgical nor pharmacological treatments present the typical
physiological conditions of an individual undertaking the widespread practice of an energy-
restricted diet for BW loss. It is under these dietary conditions that the causal role of GLP-1
and PYY in promoting satiety has been questioned [20,24]. A widely adopted hypothesis
purports a decrease in circulating GLP-1 and PYY during dietary-induced BW loss to be
undesirable as it is likely associated with decreased satiety and increased energy intake (EI),
potentially leading to BW re-gain [25,26]. However, our review [20] showed that a modest
nutrient-induced postprandial increase in GLP-1 and PYY during dietary interventions
rarely translated into a significant increase in satiety and/or decrease in ad libitum EI.
Although dietary interventions designed to stimulate GLP-1 and PYY secretion have been
proposed to promote satiety and BW loss [27–29], there has not yet been any evidence
demonstrating that higher circulating concentrations of these (endogenous) peptides are
indeed indicative of increased satiety, as per the more invasive bariatric and/or (exogenous)
peptide treatments.

Additionally, the complicated physiological mechanism of appetite regulation may
involve multiple biomarkers, such as circulating glucose and AAs [12,30–32]. Yet, the
associations between these biomarkers and appetite have only been investigated under
conditions of energy balance in acute postprandial studies. In these studies, a postprandial
glucose “dip” below the pre-meal baseline was associated with increased self-reported
hunger [32], and a postprandial AA “rise” was associated with increased self-reported
satiety [30,31,33]. Despite no previous studies investigating these associations in the context
of dietary-induced BW loss, a decrease in circulating glucose and multiple individual AAs
was hypothesised to be associated with decreased satiety, in line with acute postpran-
dial studies.

Given that we have previously reported a decrease in postprandial hunger when
assessed as incremental change relative to fasting baseline in this 8-week LED weight loss
study [12], the primary objective of the current analysis was to investigate whether the
decrease in postprandial hunger may be associated with a concurrent increase in circulating
GLP-1 and PYY, as previously reported in bariatric and pharmacological studies. This
research investigated the association between circulating concentrations of GLP-1, PYY
and satiety during diet-induced BW loss, for which a significant positive association has
been purported but for which there is little underpinning data. Secondly, models were
developed to test the associations between appetite response during BW loss and other
blood biomarkers implicated in appetite regulation in postprandial studies including
glucose, other glucoregulatory peptides and circulating AAs. To our knowledge, this study
is novel in that it is the first study investigating the association of glucose, glucoregulatory
peptides and AAs with appetite responses under the condition of diet-induced BW loss.

2. Materials and Methods
2.1. Trial Design

This is a secondary analysis of a subset of individuals from a previously published LED
intervention study [12]. Briefly, the main intervention was an unblinded, randomised, 4-
arm, 8-week parallel trial aiming to investigate the effect of LED macronutrient composition
on appetite response and BW loss in 121 women with obesity. Participants were randomly
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assigned in a 2 × 2 factorial design to either a higher protein (HP) or normal protein
(NP) diet, in combination with lower carbohydrate (CHO) (LC) or normal CHO (NC). At
the pre-intervention baseline (Week 0) and post-intervention (Week 8), all participants
were required to attend the Human Nutrition Unit (HNU) clinic, Auckland, New Zealand
for clinical assessments. The analysis presented in this study involved 42 participants
who further undertook repeated postprandial blood sampling concurrent with appetite
assessment using a Visual Analogue Scale (VAS) after consuming a standardised breakfast
(Figure 1). Due to the smaller sample size in this secondary analysis, participants in all
treatment groups were pooled and analysed as a single group.
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Figure 1. Study design. Participants completed a preload challenge at the pre-intervention (Week 0)
and post-intervention (Week 8) phases of a low energy diet (LED) weight loss program.

The LED intervention complied with the Good Clinical Practice, received ethical ap-
proval from the New Zealand Human Disability Ethics Committee (Reference: 18/CEN/238)
on 18 December 2018, and was prospectively registered with the Australia New Zealand
Clinical Trial Registry (Reference: ACTRN12619000209190). Participants received a Partici-
pant Information Sheet and provided written informed consent before data collection.

2.2. Participant Recruitment and Eligibility

Recruitment methodology was previously published [12]. In summary, the LED
intervention study included participants who were (i) female, (ii) aged 18–65 years, and
(iii) had a body mass index (BMI) in the range 30–45 kg/m2 with a maximum BW of
130 kg. A single gender was selected for this LED intervention due to evidence that
(i) appetite responses may differ between genders [34,35] and (ii) the metabolic response
following LED intervention may also differ between genders [36]. Since females are more
likely to participate in structured weight loss programs [37,38], women were enrolled in
the intervention.

Exclusion criteria were (i) BW change > 5% in the previous 3 months; (ii) current
participation in an active diet program; (iii) current medications or conditions known to
affect BW and/or appetite; (iv) prior bariatric surgery; (v) impaired liver or kidney function;
(vi) significant current disease, such as stage 2 hypertension, type 2 diabetes, cardiovascular
disease, cancer, or digestive disease; (vii) depression or anxiety; (viii) smokers or ex-smokers
≤ 6 months; (ix) pregnant or breastfeeding; (x) unable or unwilling to consume food items
included in the study; or (xi) unwilling or unable to comply with other aspects of the
study protocol. Additional requirements to participate in this sub-study were (i) consent to
undergo venous cannulation; (ii) suitability to complete the cannulation procedure; (iii) no
surgical or medical procedures of the digestive or endocrine system. The sub-study was
offered to all eligible participants until the required sample size (n = 42) was achieved.
Since the primary outcome of the study was to explore the association between the 8-
week longitudinal change in VAS–appetite responses and circulating biomarkers, only
participants who completed the preload challenge at both Week 0 and Week 8 are reported
here (n = 32). The participant flow chart is shown in Figure 2.
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Figure 2. CONSORT flow diagram of participants. HPLC, higher protein lower carbohydrate; HPNC,
higher protein normal carbohydrate; NPLC, normal protein lower carbohydrate; NPNC, normal
protein normal carbohydrate; HNU, human nutrition unit.

2.3. LED Intervention

The LED was a partial diet replacement (PDR) regime, with breakfast comprising a
participant-prepared oatmeal porridge supplemented with whey protein (Nutra Whey
Natural, Nutratech Ltd., Tauranga, New Zealand), 2 commercial meal replacement sachets
(Cambridge Weight Plan, New Zealand) as lunch and a mid-afternoon snack, and a din-
ner comprising a participant-prepared meal which was consumed ad libitum to appetite.
Daily EI was approximately 40% of the calculated daily energy requirement following our
previously published equation [12]:

40% of estimated daily energy requirement
= 0.4 × Basal Metabolic Rate (BMR, Harris-Benedict Equation for women) × Estimated

Physical Activity Level (PAL)
= 0.4 × (655 + (9.6 × weight in kg) + (1.8 × height in cm) − (4.7 × age in years)) × 4.184

(conversion from kcal to kJ) × 1.375 (assumed undertaking light activity at work)

(1)

To promote compliance with the study protocol, participants attended fortnightly
dietary consultation meetings with registered dietitians.

2.4. Clinic Visits and Preload Challenge Protocol

A summary of the appetite assessment protocol at Week 0 and Week 8 is presented in
Figure 3. Participants were requested to refrain from vigorous physical activity, alcohol,
and unusually large or small meals 24 h prior to attending the clinic visit at Week 0 and
Week 8, and adhere to the LED intervention until attending the clinic visit at Week 8.
Participants arrived at HNU at 0800h after 10–14 h overnight fasting, consumed 250 mL
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water, had BW and anthropometry measurements conducted as previously reported [12],
and had an indwelling venous cannula inserted. At 0900h, participants received a 1.8 MJ
standardised mixed breakfast meal as a preload (27en% protein, 33en% fat, 37en% available
CHO, and 3en% fibre), comprising toast with peanut butter, a hard-boiled egg, commercial
meal replacement soup (chicken and mushroom) (Cambridge Weight Plan, Auckland, New
Zealand) and 250 mL water. The energy content was similar to the median energy content
of preloads as previously identified in our review of preload studies [20]. The higher
protein content (27en%, 30 g) was intended to maximise the response of glucoregulatory
peptides, GI peptides and AAs, and promote postprandial satiety. Participants consumed
the breakfast in its entirety within 15 min. Subjective feelings of appetite were rated using
paper-and-pen VAS and blood samples were collected in the fasted state (0855h, t = 0 min,
baseline) and postprandial state (t = 15, 30, 60, 90, 120, 150, 180, 210 min), until 1230 h. The
VAS was a 100 mm scale, with extreme feelings anchored at both ends of the scale, and
consisted of questions previously used at the HNU to assess hunger, fullness, thoughts
of food (TOF), and satisfaction [39]. The experiment setting adhered to international
guidelines for appetite studies [40], also as previously described [39]. At Week 0 and
Week 8, fat mass (FM) and fat-free mass (FFM) were assessed using dual-energy X-ray
absorptiometry (DXA, iDXA software version 15, GE-Lunar, Madison, WI, USA) at the
Auckland City Hospital, Grafton.
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dual-energy X-ray absorptiometry; VAS, visual analogue scale.

2.5. Laboratory Analysis

Blood samples were collected in a BDTM Vacutainer (Becton, Dickinson and Company,
Franklin Lakes, NJ, USA) containing fluoride oxidase for measuring plasma glucose, a
BDTM Vacutainer containing dipotassium ethylenediaminetetraacetic acid (K2EDTA) for
measuring plasma AAs, and a BDTM P800 Vacutainer containing a proprietary cocktail of
peptide inhibitors for measuring plasma insulin, glucagon, gastric inhibitory polypeptide
(GIP), total GLP-1 (GLP-1), and PYY. Plasma samples were obtained by centrifuging the
Vacutainers at 1500× g for 10 min at 4 ◦C. Plasma and serum aliquots were stored at −80 ◦C
until batch analysis. Plasma glucose was measured using a Cobas® c311 analyser (Roche,
Mannheim, Germany). Plasma insulin, glucagon, GIP, GLP-1 and PYY were measured
using a MILLIPLEX® MAP Human Metabolic Hormone Magnetic Bead Panel 96-Well
Plate Assay (HMHEMAG-34K, Merck Millipore, Germany); the intra-assay and inter-assay
coefficient of variant (CV) were ≤10.2% and ≤18.8%, respectively, in the laboratory. Plasma
AAs were measured using an Ultra-High-Performance Liquid Chromatography assay with
pre-column derivatisation using AccQ-Tag [41,42]; the intra-assay and inter-assay CV were
≤16.2% and ≤26.1%, respectively, in the laboratory.
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2.6. Statistical Analysis

Descriptive data were reported as mean ± standard deviation (SD), and efficacy data
as estimated marginal mean ± standard error of mean (SEM), unless otherwise stated.
Continuous variables were checked for normal distribution and outliers. Extreme outliers
were defined as data that lie > 3 interquartile range (IQR) away from the third quartile or the
first quartile using a boxplot, and were excluded. The area under the curve (AUC0-210) and
incremental area under the curve above fasted baseline (iAUC0-210) were also calculated
for postprandial appetite ratings and postprandial concentrations of biomarkers using
the trapezoid method. The difference in measurements between Week 0 and Week 8 was
compared using paired T-tests, and the change at Week 8 from Week 0 was calculated as
delta (∆). First, the associations between parameters of appetite ratings and biomarkers
were explored using a correlation matrix. Then, multiple linear regression (MLR) models
were developed to predict ∆AUC appetite from ∆AUC biomarkers after adjusting for
multiple covariates. In Model 1, AUCWeek 0 appetite and AUCWeek 0 biomarkers were
included as fixed effect covariates. We acknowledge that changes in BW and FFM are
known to associate with changes in appetite and biomarkers [43–45]. Therefore, Model
2 included covariates in Model 1 plus age, BWWeek 0, and ∆BW, and Model 3 included
covariates from Model 1 plus age, FFMWeek 0, and ∆FFM. The proportion of variance
predicted by the ∆AUC biomarker after controlling for other covariates in the MLR model
was expressed as partial r2, summarised using a heatmap. IBM’s Statistical Package for the
Social Sciences (SPSS) software (version 28; IBM Corp., Armonk, NY, USA) [46] was used
to perform statistical analyses. Statistical significance was set at p < 0.05. A priori sample
size calculation using G*Power (Version 3.1.9.7, Kiel, Germany) [47] showed that to detect a
partial r2 = 0.2 with 80% power using a fixed effect MLR with 6 predictors, 34 participants
were required. Accounting for dropouts, 42 participants were recruited for this analysis.

3. Results
3.1. Body Weight Change and Body Composition

Thirty-two participants with a mean (± SD) age of 40.0 ± 10.7 years and a mean BMI
of 34.4 ± 3.2 kg/m2 completed the preload challenge protocol at both Week 0 and Week 8.
BW and body composition at Week 0 and Week 8 are summarised in Table 1. The 8-week
LED intervention significantly decreased mean (±SEM) BW (−8.4 ± 0.5 kg, p < 0.001), BMI
(−3.2 ± 0.2 kg/m2, p < 0.001), total body FM (−6.6 ± 0.4 kg, p < 0.001), percentage FM
(−3.7 ± 0.3%, p < 0.001), and total body FFM (−1.3 ± 0.2 kg, p < 0.001).

Table 1. Body weight and composition at Week 0 and Week 8.

Characteristics Week 0 Week 8 ∆Week 8 p-Value

Weight (kg) 90.9 ± 8.7 82.6 ± 8.9 −8.4 ± 0.5 <0.001
BMI (kg/m2) 34.4 ± 3.2 31.2 ± 3.4 −3.2 ± 0.2 <0.001
FM (kg) 41.6 ± 6.3 35.0 ± 6.5 −6.6 ± 0.4 <0.001
Percentage FM (%) 45.9 ± 3.9 42.2 ± 4.9 −3.7 ± 0.3 <0.001
FFM (kg) 48.7 ± 4.8 47.3 ± 4.8 −1.3 ± 0.2 <0.001

BW and body composition at Week 0 and Week 8 are reported as mean ± SD (n = 32). The changes from baseline
Week 0 to Week 8 (∆Week 8) are reported as mean ± SEM, analysed using paired T-test. BMI, body mass index;
FM, fat mass; FFM, fat-free mass.

3.2. Effect of LED Intervention on VAS–Appetite Responses and Blood Biomarkers
3.2.1. VAS

The effect of the 8-week LED intervention on VAS –appetite responses is summarised
in Table 2. There was a non-significant trend towards an increase in fasted baseline hunger
(∆ = 10 ± 6 mm, p = 0.100), and a significant increase in fasted baseline TOF (∆ = 8
± 4 mm, p = 0.029). In contrast, postprandial hunger and TOF significantly decreased
over 8 weeks when calculated as incremental change from the fasted baseline (iAUC0-210
hunger, ∆ = −2757 ± 1084 mm×min, p = 0.016; iAUC0-210 TOF, ∆ = −2323 ± 605 mm×min,
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p = 0.016), likely driven by the increase in fasted ratings from Week 0 to Week 8. Conse-
quently, the direction of the effect on fasted hunger and TOF was opposite to the effect on
postprandial iAUC0-210. There was no significant change in postprandial hunger or TOF
when calculated as AUC0-210 (p > 0.05, both). There was no significant difference in any
measures of fullness and satisfaction following the LED intervention (p > 0.05, all). The
repeated measures plots are available in Supplementary Figure S1.

Table 2. Participant appetite responses at Week 0 and Week 8.

VAS–Appetite
Responses Week 0 Week 8 ∆Week 8 p-Value

Fasted hunger (mm) 41 ± 19 51 ± 27 10 ± 6 0.100
AUC0-210 hunger
(mm×min) 6213 ± 3207 5647 ± 3215 −566 ± 633 0.378

iAUC0-210 hunger
(mm×min) −2403 ± 3949 −5160 ± 5644 −2757 ± 1084 0.016

Fasted fullness (mm) 33 ± 17 31 ± 20 −2 ± 3 0.548
AUC0-210 fullness
(mm×min) 12,970 ± 3525 13,824 ± 3900 854 ± 608 0.170

iAUC0-210 fullness
(mm×min) 6146 ± 4181 7449 ± 4905 1303 ± 663 0.058

Fasted TOF (mm) 52 ± 16 60 ± 15 8 ± 4 0.029
AUC0-210 TOF
(mm×min) 7279 ± 2945 6621 ± 3549 −657 ± 584 0.269

iAUC0-210 TOF
(mm×min) −3616 ± 3839 −5939 ± 4280 −2323 ± 605 0.001

Fasted satisfaction (mm) 32 ± 15 32 ± 18 0 ± 3 0.952
AUC0-210 satisfaction
(mm×min) 12,338 ± 3268 13,309 ± 3487 970 ± 513 0.068

iAUC0-210 satisfaction
(mm×min) 5658 ± 3619 6751 ± 4323 1093 ± 623 0.089

Fasted, AUC and iAUC VAS–appetite responses at Week 0 and Week 8 are reported as mean ± SD (n = 32). The
change from Week 0 to Week 8 (∆Week 8) is reported as mean ± SEM, analysed using paired T-test. AUC0-210,
area under the curve measured over 210 min; iAUC0-210, incremental AUC measured over 210 min; TOF, thoughts
of food; VAS, visual analogue scale.

3.2.2. Blood Biomarkers

The effect of the LED intervention on GI peptides, glucose, glucoregulatory peptides
and AAs is summarised in Table 3. When fasting, the LED intervention significantly de-
creased plasma glucose over 8 weeks (p = 0.006), in addition to AAs threonine, tryptophan,
glutamic acid, alanine, tyrosine, and proline (all, p < 0.05), and significantly increased
plasma serine (p = 0.006). When the postprandial response was calculated as an incremental
change from the fasted baseline (iAUC0-210), the LED intervention significantly decreased
plasma serine (p = 0.028), and significantly increased plasma glucose, GIP, and proline (p <
0.05, all). Conversely, when the response was calculated as AUC0-210, the LED intervention
significantly decreased plasma phenylalanine, threonine, tryptophan, glutamic acid, ala-
nine, tyrosine, proline, and citrulline, and significantly increased plasma GIP and serine (p
< 0.05, all). The direction of change in AUC0-210 predominantly resembled the change in
the fasted concentration for these parameters. The repeated measures plots are available in
Supplementary Figures S2 and S3.



Nutrients 2023, 15, 2399 8 of 20

Table 3. Blood biomarkers at Week 0 and Week 8.

Biomarkers Week 0 Week 8 ∆Week 8 p-Value

Glucose and glucoregulatory peptides
Fasted Glucose (mM) 5.7 ± 0.95 5.2 ± 0.5 −0.5 ± 0.2 0.006
AUC0-210 Glucose (mM×min) 1160 ± 237 1124 ± 118 −36 ± 37 0.330
iAUC0-210 Glucose (mM×min) −30 ± 81 30 ± 102 61 ± 20 0.004
Fasted Insulin (pg/mL) 981.2 ± 1006.4 985.7 ± 1137.5 4.5 ± 64.5 0.945
AUC0-210 Insulin (pg/mL×min) 387,611 ± 242,789 387,372 ± 221,294 −239 ± 19,712 0.990
iAUC0-210Insulin (pg/mL×min) 181,711 ± 125,434 180,575 ± 107,820 −1136 ± 124,721 0.939
Fasted Glucagon (pg/mL) 53.9 ± 32.0 43.9 ± 23.4 −9.9 ± 5.2 0.066
AUC0-210 Glucagon (pg/mL×min) 15,877 ± 7385 13,550 ± 5336 −2327 ± 1161 0.054
iAUC0-210 Glucagon (pg/mL×min) 4562 ± 4192 4330 ± 3134 −232 ± 864 0.790
Fasted GIP (pg/mL) 58.2 ± 52.8 49.9 ± 31.2 −8.3 ± 9.2 0.375
AUC0-210 GIP (pg/mL×min) 50,651 ± 16,790 65,093 ± 19,705 14,442 ± 2688 <0.001
iAUC0-210 GIP (pg/mL×min) 38,426 ± 16,778 54,617 ± 17,795 16,191 ± 3155 <0.001

Gastrointestinal peptides
Fasted GLP-1 (pg/mL) 181.0 ± 89.9 164.1 ± 98.3 −17.0 ± 17.2 0.332
AUC0-210 GLP-1 (pg/mL×min) 54,909 ± 21,691 56,045 ± 20,956 1136 ± 3734 0.763
iAUC0-210 GLP-1 (pg/mL×min) 16,818 ± 13,534 20,222 ± 13,727 3405 ± 3459 0.333
Fasted PYY (pg/mL) 44.9 ± 40.8 45.7 ± 38.9 0.9 ± 3.6 0.807
AUC0-210 PYY (pg/mL×min) 12,750 ± 8158 14,031 ± 7697 1281 ± 699 0.076
iAUC0-210 PYY (pg/mL×min) 3374 ± 3071 4428 ± 4349 1054 ± 842 0.220

Branched-chain amino acids
Fasted Leucine (µM) 121.6 ± 27.8 124.4 ± 29.5 2.7 ± 5.8 0.638
AUC0-210 Leucine (µM×min) 38,018 ± 6546 37,007 ± 6665 −1011 ± 1188 0.401
iAUC0-210 Leucine (µM×min) 12,472 ± 4106 10,889 ± 3834 −1584 ± 927 0.098
Fasted Isoleucine (µM) 64.3 ± 18.4 68.3 ± 19.4 4.0 ± 3.3 0.228
AUC0-210 Isoleucine (µM×min) 21,996 ± 4115 22,095 ± 4449 99 ± 696 0.888
iAUC0-210 Isoleucine (µM×min) 8498 ± 2904 7754 ± 2503 −745 ± 591 0.217
Fasted Valine (µM) 239.7 ± 62.9 242.3 ± 55.3 2.6 ± 11.1 0.815
AUC0-210 Valine (µM×min) 63,751 ± 12,903 62,849 ± 10,001 −902 ± 1891 0.637
iAUC0-210 Valine (µM×min) 13,422 ± 4928 11,970 ± 4494 −1452 ± 1147 0.215

Other essential amino acids
Fasted Phenylalanine (µM) 56.4 ± 10.9 54.0 ± 6.7 −2.4 ± 2.1 0.268
AUC0-210 Phenylalanine (µM×min) 151,82 ± 1759 14,407 ± 986 −775 ± 244 0.003
iAUC0-210 Phenylalanine (µM×min) 3340 ± 1556 3062 ± 1220 −278 ± 351 0.435
Fasted Methionine (µM) 27.6 ± 9.1 24.2 ± 5.9 −3.3 ± 1.9 0.083
AUC0-210 Methionine (µM×min) 6572 ± 1939 5903 ± 1414 −669 ± 378 0.086
iAUC0-210 Methionine (µM×min) 786 ± 846 814 ± 726 28 ± 177 0.876
Fasted Lysine (µM) 83.5 ± 14.2 82.1 ± 15.2 −1.4 ± 3.4 0.687
AUC0-210 Lysine (µM×min) 22,271 ± 3451 21,541 ± 3926 −731 ± 840 0.391
iAUC0-210 Lysine (µM×min) 786 ± 846 814 ± 726 28 ± 177 0.876
Fasted Histidine (µM) 52.3 ± 12.3 58.6 ± 14.0 −6.2 ± 3.2 0.058
AUC0-210 Histidine (µM×min) 11,643 ± 2729 12,449 ± 2524 806 ± 586 0.179
iAUC0-210 Histidine (µM×min) 656 ± 2165 153 ± 1712 −503 ± 539 0.359
Fasted Threonine (µM) 118.0 ± 23.3 106.9 ± 27.6 −11.1 ± 4.6 0.022
AUC0-210 Threonine (µM×min) 27,652 ± 6083 24,870 ± 6143 −2782 ± 1125 0.019
iAUC0-210 Threonine (µM×min) 2881 ± 3185 2420 ± 2683 −461 ± 775 0.556
Fasted Tryptophan (µM) 42.8 ± 10.4 37.8 ± 7.1 −5.0 ± 2.0 0.020
AUC0-210 Tryptophan (µM×min) 9861 ± 1696 8899 ± 1074 −962 ± 273 0.001
iAUC0-210 Tryptophan (µM×min) 884 ± 1344 970 ± 1238 86 ± 352 0.809
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Table 3. Cont.

Biomarkers Week 0 Week 8 ∆Week 8 p-Value

Non-essential amino acids
Fasted Glycine (µM) 237.1 ± 68.2 249.2 ± 72.8 12.1 ± 8.0 0.139
AUC0-210 Glycine (µM×min) 49,349 ± 13,475 51,714 ± 14,718 2365 ± 1819 0.203
iAUC0-210 Glycine (µM×min) −434 ± 5734 −612 ± 5522 −178 ± 1339 0.895
Fasted Aspartic acid (µM) 6.0 ± 4.2 4.7 ± 3.1 −1.3 ± 1.0 0.210
AUC0-210 Aspartic acid (µM×min) 1218 ± 368 1029 ± 447 −189 ± 99 0.065
iAUC0-210 Aspartic acid (µM×min) 107 ± 474 39 ± 662 −68 ± 175 0.698
Fasted Asparagine (µM) 48.1 ± 8.2 47.5 ± 6.4 −0.6 ± 1.8 0.727
AUC0-210 Asparagine (µM×min) 12,610 ± 2299 12,159 ± 2018 −451 ± 397 0.266
iAUC0-210 Asparagine (µM×min) 2506 ± 2064 2189 ± 1569 −317 ± 430 0.467
Fasted Glutamic acid (µM) 45.3 ± 20.8 35.2 ± 15.7 −10.1 ± 3.9 0.014
AUC0-210 Glutamic acid(µM×min) 9408 ± 4765 7400 ± 2627 −2008 ± 684 0.006
iAUC0-210 Glutamic acid (µM×min) −111 ± 3370 4 ± 2947 115 ± 852 0.893
Fasted Glutamine (µM) 551.5 ± 92.0 540.5 ± 77.9 −11.0 ± 14.7 0.460
AUC0-210 Glutamine (µM×min) 122,671 ± 18,948 118,172 ± 16,194 −4499 ± 2660 0.101
iAUC0-210 Glutamine (µM×min) 6864 ± 11,086 4668 ± 11,034 −2196 ± 2469 0.381
Fasted Arginine (µM) 72.5 ± 13.2 79.0 ± 19.0 6.4 ± 3.6 0.085
AUC0-210 Arginine (µM×min) 20,122 ± 3943 20,601 ± 4232 479 ± 901 0.598
iAUC0-210 Arginine (µM×min) 4894 ± 4121 4022 ± 2840 −872 ± 900 0.340
Fasted Alanine (µM) 422.2 ± 95.8 347.6 ± 74.9 −74.5 ± 17.4 <0.001
AUC0-210 Alanine (µM×min) 94561 ± 20,182 79,243 ± 14,554 −15,318± 4134 <0.001
iAUC0-210 Alanine (µM×min) 5909 ± 10,503 6244 ± 12,105 335 ± 2589 0.898
Fasted Serine (µM) 107.3 ± 29.4 122.0 ± 23.8 14.7 ± 5.0 0.006
AUC0-210 Serine (µM×min) 25,181 ± 6155 27,432 ± 5421 2251 ± 973 0.028
iAUC0-210 Serine (µM×min) 2647 ± 3699 1812 ± 846 −835 ± 1053 0.006
Fasted Tyrosine (µM) 67.7 ± 13.8 58.5 ± 10.4 −9.2 ± 2.3 <0.001
AUC0-210 Tyrosine (µM×min) 17,822 ± 2604 16,303 ± 2234 −1518 ± 423 0.001
iAUC0-210 Tyrosine (µM×min) 3613 ± 2154 4026 ± 1579 413 ± 479 0.396
Fasted Proline (µM) 230.7 ± 81.5 182.0 ± 64.7 −48.7 ± 8.6 <0.001
AUC0-210 Proline (µM×min) 60,677 ± 16,967 53,784 ± 14,143 −6892 ± 1864 <0.001
iAUC0-210 Proline (µM×min) 12,220 ± 7582 15,557 ± 4997 3337 ± 1578 0.043

Non-proteogenic amino acids
Fasted Hydroxyproline (µM) 13.7 ± 6.7 11.5 ± 3.3 −2.2 ± 1.4 0.115
AUC0-210 Hydroxyproline (µM×min) 2714 ± 1203 2341 ± 595 −374 ± 238 0.127
iAUC0-210 Hydroxyproline (µM×min) −161 ± 367 −74 ± 225 87± 83 0.302
Fasted Taurine (µM) 95.7 ± 39.4 100.5 ± 38.2 4.9 ± 10.1 0.632
AUC0-210 Taurine (µM×min) 16,472 ± 3967 17,009 ± 3313 536 ± 699 0.449
iAUC0-210 Taurine (µM×min) −4054 ± 7619 −4103 ± 8700 −49 ± 2216 0.983
Fasted Citrulline (µM) 28.9 ± 6.0 26.7 ± 6.9 −2.2 ± 1.2 0.071
AUC0-210 Citrulline (µM×min) 6021 ± 1196 5631 ± 1118 −390 ± 167 0.026
iAUC0-210 Citrulline (µM×min) −48 ± 865 14 ± 738 63 ± 194 0.749
Fasted Ornithine (µM) 36.0 ± 16.1 32.9 ± 15.6 −3.1 ± 2.5 0.217
AUC0-210 Ornithine (µM×min) 11,389 ± 5152 10,047 ± 3190 −1342 ± 681 0.058
iAUC0-210 Ornithine (µM×min) 3831 ± 2815 3142 ± 352 −689 ± 513 0.189

Fasted, AUC and iAUC biomarkers at Week 0 and Week 8 are reported as mean ± SD (n = 32). The change from
Week 0 to Week 8 (∆Week 8) is reported as mean ± SEM, analysed using paired T-test. AUC0-210, area under
the curve measured over 210 min; iAUC0-210, incremental AUC measured over 210 min; GIP, gastric inhibitory
polypeptide; GLP-1, glucagon-like peptide-1; PYY, peptide YY.

3.3. Associations between VAS–Appetite Responses and Blood Biomarkers

When the postprandial response was calculated as an incremental change from the
fasted baseline, there was a significant decrease in iAUC0-210 hunger and TOF in response to
the standardised breakfast meal, yet only 4 biomarkers were significantly altered at the same
time. Conversely, when calculated as absolute change, there was no significant change
in AUC0-210 VAS–appetite responses, yet as many as 10 biomarkers were significantly
altered at the same time. Consequently, there was no obvious link between appetite-related
response and biomarkers at the group level.
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3.3.1. Incremental Increase in Postprandial VAS–Appetite Responses Were Strongly
Inversely Predicted by Fasted Responses

In the exploratory correlation analysis, iAUC0-210 hunger, fullness, TOF, and satis-
faction had strong inverse correlations with their respective fasted ratings at both Week
0 and Week 8, as well as with change from Week 0 to Week 8 (∆fasted). The correlation
between ∆fasted and ∆iAUC0-210 appetite-related responses was r = −0.83 for hunger
(p < 0.001), r = −0.60 for fullness (p < 0.001), r = −0.64 for TOF (p < 0.001), and r = −0.69
for satisfaction (p < 0.001), confirming that the postprandial decrease in iAUC0-210 hunger
and TOF previously observed was indeed strongly related to the increase in fasted base-
line hunger and TOF. This inverse correlation was unexpected and likely unusual for
physiological parameters.

Therefore, to investigate whether the LED-driven decrease in hunger or TOF was
positively associated with an increase in circulating GLP-1 and PYY, ∆AUC0-210 data were
used in the MLR where postprandial response was not inversely driven by fasting levels.
Similarly, ∆AUC0-210 data were used to explore the association between VAS–appetite
responses and other biomarkers. Although the LED did not significantly change mean
∆AUC0-210 appetite-related responses, there was wide between-individual variability with
approximately half of the cohort reporting an increase, and the other half a decrease, in
postprandial feelings of hunger, fullness, TOF, and satisfaction (Figure 4). When biomarkers
were calculated as ∆AUC0-210, an outlier in the GLP-1 and glycine data was identified.
These outliers were removed from the subsequent modelling analyses to maintain normally
distributed data.
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3.3.2. High Circulating GLP-1 was Unexpectedly Positively Associated with Hunger and
TOF and Inversely Associated with Fullness and Satisfaction

The proportion of variance in ∆AUC0-210 appetite-related responses explained by
∆AUC0-210 biomarkers is summarised as partial r2 using a heatmap (Figure 5). GLP-1, GIP,
valine, glycine and proline were among the biomarkers consistently and significantly asso-
ciated with two or more VAS–appetite responses, after adjusting for covariates. Contrary
to the hypothesis, ∆AUC0-210 GLP-1 was positively associated with ∆AUC0-210 hunger and
TOF, while inversely associated with ∆AUC0-210 fullness and satisfaction in all models
(p < 0.05, all) (Table 4). This was an unexpected finding. In Model 1, the association between
∆AUC0-210 GLP-1 and ∆AUC0-210 appetite-related responses yielded a partial r2 between
0.15 and 0.28. The association was stronger after adjusting for BW in Model 2 (partial
r2 = 0.28–0.43) and after adjusting for FFM in Model 3 (partial r2 = 0.33–0.51). Similarly yet
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unexpectedly, ∆AUC0-210 GIP was also positively associated with ∆AUC0-210 hunger and
inversely associated with ∆AUC0-210 fullness in Models 2 and 3 (p < 0.05, all) (Table 4).
Furthermore, branched-chain amino acid (BCAA) valine was also positively associated
with ∆AUC0-210 hunger and TOF in all models (p < 0.05, all) (Table 4). The strength of
association was smaller for GIP and valine than for GLP-1. PYY was not significantly
associated with any VAS–appetite response in any of the predictive models (p > 0.05, all)
(Table 4).
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Figure 5. Heat map. Proportion of variance in appetite explained by biomarkers (∆AUC) was
presented as partial r2, following multiple linear regression models. Model 1: ∆AUC Appetite = Week
0 AUC Appetite + Week 0 AUC Biomarker + ∆AUC Biomarker; Model 2: ∆AUC Appetite = Age
+ Baseline BW + ∆BW + Week 0 AUC Appetite + Week 0 AUC Biomarker + ∆AUC Biomarker;
Model 3: ∆AUC Appetite = Age + Baseline FFM + ∆FFM + Week 0 AUC Appetite + Week 0 AUC
Biomarker + ∆AUC Biomarker. ∆AUC, change in area under the curve from Week 0 to Week 8; GLP-1,
glucagon-like peptide-1; PYY, peptide YY; GIP, gastric inhibitory polypeptide.
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Table 4. Linear regression analysis of the association between the change in AUC biomarkers and AUC appetite responses after adjusting for covariates.

∆AUC
Biomarker ∆AUC Hunger ∆AUC Fullness ∆AUC TOF ∆AUC Satisfaction

Estimates p-Value ηp
2 Model

R2 Estimates p-Value ηp
2 Model

R2 Estimates p-Value ηp
2 Model

R2 Estimates p-Value ηp
2 Model

R2

Model 1
GLP-1 a 0.074 ± 0.034 0.037 0.15 0.44 −0.104 ± 0.032 0.004 0.28 0.39 0.082 ± 0.036 0.029 0.17 0.28 −0.078 ± 0.030 0.017 0.19 0.31

PYY 0.145 ± 0.151 0.346 0.03 0.34 −0.050 ± 0.164 0.763 0.00 0.15 0.101 ± 0.156 0.523 0.02 0.15 −0.060 ± 0.137 0.666 0.01 0.16
GIP 0.071 ± 0.036 0.059 0.12 0.42 −0.075 ± 0.038 0.057 0.12 0.27 0.033 ± 0.039 0.396 0.03 0.17 −0.013 ± 0.034 0.698 0.01 0.17

Valine 0.164 ± 0.063 0.015 0.20 0.45 −0.142 ± 0.071 0.055 0.13 0.25 0.175 ± 0.064 0.011 0.21 0.33 −0.113 ± 0.060 0.069 0.11 0.23
Glycine a −0.172 ± 0.066 0.014 0.20 0.51 0.109 ± 0.078 0.172 0.07 0.25 −0.113 ± 0.069 0.114 0.09 0.33 0.107 ± 0.064 0.107 0.09 0.27
Proline −0.169 ± 0.054 0.004 0.26 0.51 0.123 ± 0.059 0.047 0.13 0.38 −0.178 ± 0.057 0.004 0.26 0.37 0.083 ± 0.054 0.136 0.08 0.25

Model 2
GLP-1 a 0.096 ± 0.031 0.005 0.28 0.67 −0.132 ± 0.031 <0.001 0.43 0.61 0.100 ± 0.034 0.007 0.27 0.55 −0.111 ± 0.028 0.001 0.39 0.57

PYY 0.150 ± 0.139 0.291 0.04 0.53 −0.043 ± 0.158 0.790 0.00 0.32 0.113 ± 0.140 0.428 0.03 0.41 −0.063 ± 0.129 0.633 0.01 0.36
GIP 0.092 ± 0.034 0.013 0.22 0.63 −0.101 ± 0.039 0.016 0.21 0.45 0.030 ± 0.040 0.455 0.02 0.41 −0.023 ± 0.037 0.530 0.02 0.31

Valine 0.125 ± 0.059 0.046 0.15 0.59 −0.111 ± 0.071 0.134 0.09 0.35 0.129 ± 0.062 0.047 0.15 0.49 −0.086 ± 0.060 0.160 0.08 0.35
Glycine a −0.284 ± 0.055 <0.001 0.53 0.77 0.193 ± 0.082 0.027 0.19 0.43 −0.197 ± 0.067 0.007 0.26 0.57 0.150 ± 0.070 0.042 0.16 0.43
Proline −0.155 ± 0.059 0.014 0.22 0.62 0.142 ± 0.068 0.047 0.15 0.46 −0.147 ± 0.062 0.026 0.18 0.50 0.083 ± 0.061 0.186 0.07 0.37

Model 3
GLP-1 a 0.098 ± 0.029 0.003 0.32 0.67 −0.138 ± 0.028 <0.001 0.50 0.64 0.108 ± 0.031 0.002 0.33 0.56 −0.115 ± 0.023 <0.001 0.51 0.69

PYY 0.118 ± 0.141 0.409 0.03 0.51 −0.041 ± 0.162 0.802 0.00 0.28 0.081 ± 0.146 0.586 0.01 0.34 −0.069 ±0.127 0.593 0.01 0.38
GIP 0.093 ± 0.034 0.012 0.23 0.62 −0.108 ± 0.038 0.009 0.25 0.45 0.046 ± 0.039 0.250 0.05 0.37 −0.049 ± 0.033 0.152 0.08 0.41

Valine 0.128 ± 0.061 0.046 0.15 0.57 −0.129 ± 0.073 0.089 0.11 0.34 0.143 ± 0.065 0.037 0.16 0.46 −0.109 ± 0.057 0.066 0.07 0.43
Glycine a −0.241 ± 0.055 <0.001 0.45 0.74 0.142 ± 0.081 0.092 0.11 0.36 −0.144 ± 0.067 0.043 0.16 0.50 0.126 ± 0.063 0.055 0.15 0.47
Proline −0.155 ± 0.052 0.006 0.26 0.63 0.126 ± 0.060 0.045 0.15 0.48 −0.152 ± 0.057 0.013 0.22 0.49 0.084 ± 0.051 0.110 0.10 0.47

Mean estimates (±SEM), p-value, and partial r2 (ηp
2) are presented for each biomarker of interest, n = 32. Model 1: ∆AUC Appetite = Week 0 AUC Appetite + Week 0 AUC Biomarker +

∆AUC Biomarker; Model 2: ∆AUC Appetite = Age + Baseline BW + ∆BW + Week 0 AUC Appetite + Week 0 AUC Biomarker + ∆AUC Biomarker; Model 3: ∆AUC Appetite = Age +
Baseline FFM + ∆FFM + Week 0 AUC Appetite + Week 0 AUC Biomarker + ∆AUC Biomarker. a n = 31, after excluding outlier. TOF, thoughts of food; GLP-1, glucagon-like peptide-1;
PYY, peptide YY; GIP, gastric inhibitory polypeptide.
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3.3.3. Glycine as a Potential Biomarker for VAS–Appetite Responses

Glycine, a non-essential amino acid (NEAA), was identified as a biomarker with a
high partial r2 value and inversely associated with hunger (Table 4). In Model 1, ∆AUC0-210
glycine was inversely correlated with ∆AUC0-210 hunger (partial r2 = 0.20, p = 0.014), but
not associated with other appetite-related responses. The association between ∆AUC0-210
glycine and ∆AUC0-210 appetite-related responses was stronger after adjusting for BW in
Model 2, whereby ∆AUC0-210 glycine was inversely associated with ∆AUC0-210 hunger
(partial r2 = 0.53, p < 0.001) and TOF (partial r2 = 0.26, p = 0.007), while positively associated
with ∆AUC0-210 fullness (partial r2 = 0.19, p = 0.027) and satisfaction (partial r2 = 0.16,
p = 0.042). After adjusting for FFM in Model 3, ∆AUC0-210 glycine remained inversely
associated with ∆AUC0-210 hunger (partial r2 = 0.45, p < 0.001) and TOF (partial r2 = 0.16,
p = 0.043), while its positive association with satisfaction was trending towards significance
(partial r2 = 0.15, p = 0.055). Another NEAA, ∆AUC0-210 proline, was also inversely
associated with ∆AUC0-210 hunger and TOF and positively associated with ∆AUC0-210
fullness in all models (p < 0.05, all).

4. Discussion

The biomarkers of appetite in the current analysis were modelled using our prior 8-
week LED weight loss study [12] since the intervention led to a clinically significant decrease
of 8.2 kg BW (8% of baseline BW), paired with a favourable decrease in self-reported hunger
when assessed as a postprandial change from fasted baseline levels.

Surprisingly, this decrease was largely predicted by the inverse increase in self-
reported fasted baseline hunger. Therefore, VAS–appetite responses were modelled using
absolute (AUC0-210) and not incremental (iAUC0-210) measures, which, in turn, allowed the
fasted VAS–appetite parameters to vary as a response to the 8-week LED intervention rather
than fixing the baseline values to zero. Despite no significant change in mean postprandial
(AUC0-210) VAS–appetite responses after LED intervention, approximately half of the popu-
lation reported an increase in hunger and half reported a decrease. This between-individual
variability was likely of great physiological relevance. For example, the lowest and highest
change in mean postprandial (AUC0-210) hunger was −5655 mm×min and +9473 mm×min
over 210 min, translated to an average of −27 mm and +45 mm difference in VAS-assessed
hunger, while notably only a 10 mm difference was hypothesised to be clinically significant
for changing eating behaviour [40]. Consequently, this analysis was deemed necessary to
understand the physiological factors that drove this huge between-individual variability,
in agreement with Gibbons et al. [48].

Whilst it has been commonly hypothesised that a decrease in self-reported hunger
is inversely associated with an increase in circulating GLP-1, the current study showed
that GLP-1 and PYY did not predict the hypothesised change in VAS–appetite responses as
previously reported in bariatric surgery [17,18,49–51] or pharmacological [21–23] treatment
studies. The current study also showed, using MLR modelling, that a decrease in both
GIP and the BCAA valine, and an increase in NEAAs glycine and proline, constituted the
biomarker profiles best associated with decreased hunger at the end of the 8-week LED
weight loss intervention.

4.1. The Utility of Measuring Circulating GLP-1 and PYY during Appetite Assessments

In this study, the mean postprandial concentrations of GLP-1 and PYY did not differ
before or after the 8-week LED intervention and BW loss, as also shown in previous LED
studies [52–55]. Puzzlingly, the current study found that GLP-1 was positively correlated
with self-reported hunger. This observation was unexpected, given the biological mecha-
nisms by which GLP-1 interacts with GLP-1 receptors to promote satiety [56–58]. Notably,
changes in BW and FFM are potential confounders for VAS–appetite responses [45]. When
adjusting for BW and FFM loss, the positive association between GLP-1 and self-reported
hunger and TOF became stronger. The partial r2 (0.28–0.43 in Model 2; 0.33–0.51 in Model 3)
suggested that this association was unlikely to be a false positive outcome.



Nutrients 2023, 15, 2399 14 of 20

This unexpected observation contradicted the bariatric Roux-en-Y gastric bypass
(RYGB) studies, whereby higher postprandial concentrations of GLP-1 and PYY were in-
versely associated with self-reported hunger or positively associated with self-reported
fullness [17,49,50]. Furthermore, Papamargaritis and le Roux [59] recently showed that
hunger suppression following RYGB was attenuated by GLP-1 and PYY receptor antago-
nists, supporting the hypothesis that GLP-1 and PYY are involved in suppressing hunger
or promoting satiety after RYGB. Yet, similar supporting evidence is missing in dietary-
induced BW loss studies, whereby these studies reported no significant association between
GI peptides and VAS–appetite responses [58–62]. Nevertheless, the positive association
between GLP-1 and self-reported hunger in the current study was unexpected.

GLP-1 and PYY have been described to promote satiety via the endocrine pathway and
the neural pathway. In the endocrine pathway, GLP-1 and PYY released from the enteroen-
docrine L-cells enter the peripheral circulatory system, and diffuse across the blood–brain
barrier to target the arcuate nucleus in the hypothalamus [57,58]. In the neural pathway,
GLP-1 and PYY activate the local vagus nerve proximate to their site of secretions, relaying
neural signals to the nucleus of the solitary tract in the brainstem to promote satiety [57,58].
In the current study, total GLP-1 was measured, comprising both the active and inactive
forms following degradation by dipeptidyl peptidase-4 (DPP-IV) in peripheral circulation.
Total GLP-1 was assumed to have captured both GLP-1 currently active in circulation and
GLP-1 which had interacted with the neural pathway but subsequently degraded [63].
Notably, there are huge practical challenges in measuring the flux and utilisation of GLP-1
and PYY around their site of secretion and at the peptide receptors. Whilst we do not reject
the role of these biological mechanisms in promoting satiety, the significance of the current
findings was that simply measuring the peripheral circulating concentrations of GLP-1
and PYY, as has been undertaken in many appetite studies following dietary intervention,
could not reliably predict the change in VAS–appetite responses.

4.2. The Utility of Measuring Circulating GIP during Appetite Assessments

The current study also showed that postprandial concentrations of GIP increased
following the 8-week LED intervention and BW loss, in agreement with the Danish study
of Iepsen et al. [64] in a cohort of 20 healthy individuals with obesity. There are very
limited dietary-induced BW loss studies investigating the effect of GIP and its association
with appetite. GIP is closely associated with GLP-1; both are incretin hormones known to
trigger insulin secretion from pancreatic β-cells and to affect gastric motility, potentially
influencing appetite perception [65,66]. Activation of the GIP receptor in the hypothalamus
has been shown to reduce food intake in mouse models [67]. Moreover, GIP and GLP-1 dual
agonists are successful pharmacology therapies for type 2 diabetes treatment, employed to
promote BW loss [68]. In the current study, an increase in postprandial GIP was observed,
but along with GLP-1, it was surprisingly also positively associated with self-reported
hunger. The mechanism is unknown.

4.3. The Utility of Measuring Circulating AAs during Appetite Assessments

Dietary and circulating AAs have long been implicated in appetite regulation in the
postprandial phase [30,31,33]. Whilst diet-derived AAs can stimulate the secretion of GLP-
1 to promote satiety [69], the brain AA sensing mechanism is also involved in appetite
regulation. A higher concentration of leucine in the brain has been shown to inhibit food
intake in rodent models [70]. A higher concentration of tryptophan is also hypothesised
to increase brain serotonin, a neurotransmitter known to suppress appetite [71], and the
deficiency of essential AAs, hence, relatively higher levels of non-essential AAs, in a meal
lead to premature termination of the present meal [72].

However, the role of AAs in long-term appetite regulation following dietary-induced
BW loss has not previously been assessed, nor have its mechanisms of action. The decrease
in the fasted concentration of many circulating AAs generally reflects an improvement in
cardiometabolic risk [13,73–76]. In our current study, when the postprandial concentration
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of AAs was assessed as AUC, the LED intervention significantly decreased plasma pheny-
lalanine, threonine, tryptophan, glutamic acid, alanine, tyrosine, proline, and citrulline, and
significantly increased plasma GIP and serine. Yet, MLR showed that the strength of associ-
ation between most AAs and VAS–appetite responses was not significant, except for valine,
glycine and proline. Glycine had the strongest association with VAS–appetite responses,
whereby glycine was inversely associated with self-reported hunger, which was also pre-
viously reported in recent postprandial studies [33,77]. Karnani et al. [78] hypothesised
that glycine may lower reward-seeking behaviour by reacting with the hypocretin/orexin
neurons in the hypothalamus. Furthermore, low concentrations of circulating glycine may
also be an important marker of obesity and type 2 diabetes [79,80]. Therefore, dietary
interventions that can promote an increase in circulating glycine may be interesting to
explore with a possible role in promoting satiety, in turn BW loss and decreasing type 2
diabetes risk. There was no prior evidence supporting the role of valine and proline on
appetite responses; hence, future investigations may be required to confirm this association.

4.4. Considerations When Modelling the Biomarkers of Appetite

During the exploratory correlational analysis, the strong inverse association between
fasted and postprandial VAS–appetite responses when calculated as a change from a
fixed baseline (iAUC0-210) was surprising. Interestingly, this relationship was previously
reported by King et al. [81] in a trial which investigated the effect of exercise-induced BW
loss on appetite control in 58 individuals with obesity. The authors concluded that exercise-
induced BW loss promoted an orexigenic drive to eat, but also increased meal-induced
satiety. We were cautious as a result of this and did not conduct the MLR models based on
iAUC0-210 values.

An important difference between biomarkers and VAS assessments is the observation
that VAS are limited by a finite scale (0–100 mm), whereas biomarkers are not. Therefore,
when the initial hunger rating is low, the finite VAS scale cannot detect a substantial
suppression in postprandial hunger relative to the fasted baseline prior to meal ingestion,
in line with observations by Dalton et al. [82] and Barkeling et al. [83]. Whether this
observation is physiologically relevant or is a methodological limitation is unclear.

We propose that studies which report iAUC VAS–appetite must clearly also describe
the ‘raw’ fasted appetite ratings and consider whether the change in iAUC VAS–appetite is
physiologically correct or rather a limitation of the methodology linked to the difference
in appetite ratings in the fasted state. Although iAUC has been widely used for many
biomarkers, the international methodology for appetite studies has favoured the use of
AUC over iAUC when reporting VAS [40]. We acknowledge that the outcomes of MLR
models may have been different had incremental postprandial changes from a fixed fasting
baseline (iAUC values) been used.

4.5. Strengths and Limitations

The current study had several strengths. Despite reporting a subset of participants
from our 8-week LED weight loss study, anthropometry and appetite outcomes were
comparable with the full cohort. Of note, the increase in fasting hunger was statistically
significant in the full cohort of 121 women but was not significant in this smaller subset
(p = 0.010) due to the large variability. Furthermore, MLR was performed to evaluate the
8-week longitudinal association between VAS–appetite and an array of blood biomarkers.
Whilst a limited number of studies had previously investigated the association between
VAS–appetite and GI peptides following dietary weight loss interventions [58–60,84], the
current study is the first to explore the association between glucose, glucoregulatory
peptides, AAs and VAS using an LED-induced weight loss model.

Conversely, the study is limited to a single-gender intervention, and only women with
obesity undergoing a specific LED regime were evaluated. Hence, the current findings may
not be generalisable to a wider population undergoing varied dietary BW loss regimes.
Furthermore, with limited sample size and an unbalanced number of completers in this
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sub-study cohort, the statistical power to assess the effect of the intervention on the post-
prandial response of biomarkers was limited. We also acknowledge that LC, but not HP,
significantly promoted postprandial TOF and satisfaction in the full LED cohort of this
study [12]. However, pooling the intervention groups in this smaller cohort is not expected
to alter the main conclusion of the current analysis. Considering that GLP-1 and PYY were
hypothesised to be predictive of subjective feelings of appetite, GLP-1 and PYY would have
been inversely associated with hunger or positively associated with fullness, irrespective of
macronutrient composition of the diet.

4.6. Recommendations for Future Studies

Mixed-gender, large sample size, long-term longitudinal studies are needed to better
evaluate the utility of purported ‘satiety peptides’ and other biomarkers, such as AAs, in
predicting VAS–appetite responses. Furthermore, assessment of appetite and biomarker
data at multiple visits (for example, at Week 0, Week 4 and Week 8) would improve the
robustness of the regression model. Other putative anorexigenic (e.g., β-hydroxybutyrate,
and leptin) and orexigenic (e.g., active ghrelin) appetite biomarkers could also be measured
and added to the multi-metabolite model. In addition, future methodological studies could
investigate whether the inverse relationship between fasted and postprandial changes in
VAS–appetite responses from a fixed fasted baseline is of physiological relevance or is a
methodological limitation.

5. Conclusions

In conclusion, there was no evidence that circulating concentrations of GLP-1 and
PYY were associated with enhanced satiety following an 8-week LED intervention which
induced 8% BW loss in a cohort of women with obesity. This study, along with our previous
findings, has shown changes in circulating concentrations of GLP-1 and PYY as commonly
reported in dietary appetite studies are not reliable predictive markers of VAS–appetite
responses. Notably, the flux and utilisation of GLP-1 and PYY at peptide secretion and
receptor sites may be more relevant to their contribution as predictors of subjective feelings
of appetite and eating behaviour than commonly measured circulating concentrations.
The current study identified that a decrease in GLP-1, GIP and BCAA valine, in addition
to increased NEAAs glycine and proline, constituted the biomarker profile predictive of
increased postprandial satiety specific to this LED intervention. Despite GLP-1 and PYY
being routinely measured and termed as “satiety peptides” in dietary studies, there is as yet
little evidence to demonstrate the association between circulating concentrations of these
peptides and subjective feelings of appetite in these interventions. The current modelling of
other blood biomarkers including AAs is novel and provides data to underpin the design
of future studies to further investigate putative biomarkers of appetite regulation under
the conditions of dietary-induced weight loss.
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