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Abstract: Dietary vitamin B3 components, such as nicotinamide and nicotinic acid, are precursors to
the ubiquitous redox cofactor nicotinamide adenine dinucleotide (NAD+). NAD+ levels are thought
to decline with age and disease. While the drivers of this decline remain under intense investigation,
strategies have emerged seeking to functionally maintain NAD+ levels through supplementation
with NAD+ biosynthetic intermediates. These include marketed products, such as nicotinamide
riboside (NR) and its phosphorylated form (NMN). More recent developments have shown that
NRH (the reduced form of NR) and its phosphorylated form NMNH also increases NAD+ levels
upon administration, although they initially generate NADH (the reduced form of NAD+). Other
means to increase the combined levels of NAD+ and NADH, NAD(H), include the inhibition of
NAD+-consuming enzymes or activation of biosynthetic pathways. Multiple studies have shown
that supplementation with an NAD(H) precursor changes the profile of NAD(H) catabolism. Yet, the
pharmacological significance of NAD(H) catabolites is rarely considered although the distribution
and abundance of these catabolites differ depending on the NAD(H) precursor used, the species in
which the study is conducted, and the tissues used for the quantification. Significantly, some of these
metabolites have emerged as biomarkers in physiological disorders and might not be innocuous.
Herein, we review the known and emerging catabolites of the NAD(H) metabolome and highlight
their biochemical and physiological function as well as key chemical and biochemical reactions
leading to their formation. Furthermore, we emphasize the need for analytical methods that inform
on the full NAD(H) metabolome since the relative abundance of NAD(H) catabolites informs how
NAD(H) precursors are used, recycled, and eliminated.

Keywords: NAD+ metabolism; NAD(P)(H) catabolism; nicotinamide; niacin; methyl-nicotinamide;
pyridone

1. Introduction

Dietary vitamin B3 is the naturally occurring source of nicotinamide adenine dinu-
cleotide (NAD+) (Figure 1). NAD+ was discovered by Harden and Young [1,2] in 1906 and
initially characterized by von Euler-Chelpin in 1929. Since then, NAD+ has been found to
be a critical intracellular coenzyme [3] involved in the regulation of energy metabolism [4],
as well as being vital to cellular events such as DNA repair, gene expression, oxidative
stress, aging, and cell death [5]. NAD+ is an obligatory catalyst in energy production path-
ways such as glycolysis, TCA cycle, fatty acid oxidation, and oxidative phosphorylation,
where it is the redox partner of NADH. NAD+ is the only precursor of NADP(H), the
phosphorylated form of NAD(H). Furthermore, unlike NADH, NAD+ is also a substrate
and co-substrate for NAD+-consuming enzymes. These enzymes include ADP-ribosyl
cyclase, SARM-1, NAD hydrolases, mono(ADP-ribosyl)transferases, poly(ADP-ribose)
polymerases, and sirtuins. These enzymes consume NAD+ with the release of nicotinamide.
The activity of these enzymes is under the direct control of NAD+ levels and is unaffected
by NADH [6]. In cells and tissues, perturbations in the NAD+ biosynthetic pathways, and
over-activation of NAD+-consuming enzymes lead to NAD+ depletion [7,8]. Since NAD+
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and its reduced form, NADH, are partners in intracellular redox reactions, perturbations
in the NAD+ levels are predicted to affect NADH levels [9,10]. Similarly, reductive stress,
whereby the NADH to NAD+ ratio is shifted towards NADH can affect the availability of
NAD+ and thus that of NAD+-consuming enzymes [11–13].
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2. NAD(P)(H) Metabolism

NAD(P)(H) biosynthesis: It has been observed by many that a decrease in NAD+

levels can negatively affect mitochondrial and cellular function [14,15]. Mounting ev-
idence also supports that NAD+ levels decrease with aging and the timeline of such
decrease appears to be gender-dependent [7,16]. Ever since the discovery of the con-
nection between NAD+ maintenance and the metabolic consequences of its decline in
age-related and metabolic diseases such as obesity, diabetes, cardiovascular, Parkinson’s,
and Alzheimer’s disease [17–22], approaches to increasing NAD+ levels have become
therapeutic pursuits [23,24]. Some pre-clinical and clinical studies have sought to re-
store declining NAD+ levels by interference with NAD+-consuming processes (e.g., CD38
inhibitors [25,26] or PARP inhibitors [27]), by preventing the loss of NAD+ biosynthetic in-
termediates [28], by boosting nicotinamide conversion to NAD+ [29–31], or by supplementa-
tion with NAD+ precursors [32,33]. NAD+ precursors include nicotinamide [19], niacin [34],
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niacin derivatives [35,36], nicotinamide riboside (NR) [37–39], nicotinamide mononu-
cleotide (NMN) [40–43], and the reduced forms of NR (NRH) and NMN (NMNH) [44–47].
From these precursors, NAD+ can be synthesized by three major biosynthetic pathways:
(1) the de novo pathway or kynurenine pathway from tryptophan; (2) the Preiss–Handler
pathway from niacin; and (3) the salvage pathway from nicotinamide. Two additional
pathways to NAD+ uncovered more recently employ ribosylated biosynthetic intermedi-
ates. The first employs an NR kinase to generate NMN from NR [48–50], while the other
pathway employs the reduced form of NR, NRH, and adenosine kinase for its phospho-
rylation to NMNH [13,44,51–53] (Figure 1). NMN and NMNH have also been shown to
increase NAD+ levels in both cells and animal models although some controversy remains
as to the feasibility of nucleotide transport across cellular membranes [54–56]. In addition
to the presence of numerous phosphatases that convert nucleotides to nucleosides [57],
the equilibrative nucleoside transporters (Figure 1) regulate the levels of nucleoside sup-
plements that make their way to the intracellular space [58], while expression of kinases
and hydrolysis of NR by purine nucleoside phosphorylase [59] and BST-1 [60] control the
pathway by which NAD+ precursors truly affect NAD+ and NADH intracellular levels of
a cell [61].

Challenges of measuring levels of precursors and NAD(P)(H) in biospecimens:
It should be noted that NRH is readily oxidized in the presence of riboflavin, and free
riboflavin cofactors and other oxidants are readily present in cells and tissue extracts, via
processes that do not require enzymatic catalysis [62]. This oxidation process also occurs
readily upon storage, even at low-temperature, and can also convert NMNH to NMN,
NADH to NAD+, and NADPH to NADP+ (Figure 2). This oxidative process is often
overlooked in the measurements of the NAD+ metabolome. Yet, on many occasions, only
the NAD+ levels are reported, and it is unclear whether NAD+ from NADH oxidation
contributes to this measurement. Similarly, acidic conditions applied during sample
processing of biospecimens affect the levels of NADH and NADPH detected. Under
acidic conditions, the reduced forms can degrade and thus does not contribute to the
overall NAD(P)(H) measurements [63].
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Considering the importance of total NAD(H) to cellular homeostasis (e.g., [64]),
(NAD+ + NADH) levels should be measured simultaneously under conditions that con-
serve both NAD+ and NADH. Overall, conditions applied to sample processing and storage
affect the measurements of the NAD(P)(H) metabolome and overall conclusions. As such,
we recommend that the pH applied to samples is clearly conveyed and attention provided
to reporting temperature and length of storage prior to sample processing. The addition
of a labeled internal standard (e.g., isotopically labeled NAD(P)(H)), NR(H), or NMN(H))
added at the time of the sample collection would mitigate these experimental variables.

Vitamin B3, like other B vitamins, must be ingested regularly to maintain functional
levels of NAD(H) and NADP(H), together with NAD(P)(H), and is catabolized effectively
via multiple pathways [65]. When used as supplements to redress declining levels in
NAD(P)(H), supplementation with these precursors far exceeds (>100 mg/day) [47] the
recommended daily dosage of vitamin B3 sought to be sufficient to maintain NAD+ levels
and prevent pellagra (17 mg/day for an adult male) [66]. The premise for such high dosage
administrations is that NAD+ boosting is transient, and that NAD+ precursors used even
at high dosages are safe. Yet, each one of these NAD+ precursors is ultimately degraded,
with the assumption that the final catabolites are excreted [67–69] without physiological
interference. While some metabolites of NAD+ degradation (i.e., catabolites) are known [70],
much of NAD(P)(H) catabolism remains uncharted. The catabolites that are known and
measured see their abundance and distribution change depending on the precursor applied,
the animal model, the clinical condition being investigated, and the biospecimens being
measured [68,71–73]. Overall, the nature and the effects of catabolites of NAD+ and NADH
and their sustained endogenous increase in disease or upon supplementation remain
poorly understood, although concerns have been raised [73–77]. This warrants the need for
more robust identification and characterization of the catabolites of NAD(P)(H). Here, we
highlight these entities and provide a brief overview of the mechanisms which lead to their
formation, and summarize biological observations directly related to their accumulation.

3. Non-Ribosylated Catabolites of NAD(P)(H)

Primary catabolites of nicotinic acid and nicotinamide: Nicotinic acid and nicotinamide
obtained from dietary sources are used for NAD+ synthesis, and most of the nicotinamide
generated from NAD+ degradation is salvaged back to NAD+. However, excess nicotinamide,
either released from orally administered NAD+ supplements (e.g., nicotinamide, NR, or
NMN) or not recycled to NAD+, is subject to three major enzymatic clearance pathways.
Nicotinamide is a substrate for microbial deamidases and can be converted to nicotinic acid
by the microbiome [78]. In the mammalian gut, nicotinic acid generated from nicotinamide
is adsorbed, enters circulation, and is promptly converted to NAD+ [78,79]. In the liver,
excess nicotinic acid does not enter the NAD+ Preiss–Handler pathway and is metabolized
to nicotinuric acid (NUA) by conjugation with glycine [80]. NUA (Table 1) is found in urine
and is particularly abundant following nicotinic acid intake [81,82]. It has been proposed
that changes in NUA levels can reveal an important pathogenic transition from metabolic
syndrome to diabetes and atherosclerotic cardiovascular disease and thus be a potential
marker of metabolic syndrome disease progression [83].

If not converted to nicotinic acid, excess nicotinamide, either from dietary and sup-
plement sources or from NAD+ degradation, can be oxidized to nicotinamide N-oxide
(Figure 3) by CYP2E1 in the liver [84]. This end-product (Table 1) is found in circulation
and as a urinary metabolite [85]. Interestingly, CYP2E1 is an enzyme that participates in the
metabolism of other endogenous substrates, including acetone and fatty acids as well as
exogenous compounds such as anesthetics, ethanol, nicotine, and acetaminophen. Excess
nicotinamide might delay their metabolism.
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Table 1. List of known NAD(P)(H) precursors, biosynthetic intermediates, and catabolites, their
molecular formula, and the biospecimens they are most likely detected from. Shaded colors indicate
the possibility of NRH, NMNH, NADH, and NADPH contributing to the measurement of the NR,
NMN, NAD+, and NADP+ pools.

Name Abbreviation
in Text Formula

Measurable in Reported in
B S/P T U B S/P T U

N
ia

ci
na

m
id

e/
ni

co
ti

na
m

id
e

an
ab

ol
it

es

nicotinamide NAM C6H6N2O
nicotinamide riboside NR C11H15N2O5

+

nicotinamide riboside,
reduced form NRH C11H16N2O5

nicotinamide
mononucleotide NMN C11H16N2O8P+

nicotinamide
mononucleotide, reduced
form

NMNH C11H17N2O8P

nicotinamide adenine
dinucleotide NAD C21H28N7O14P2

+

nicotinamide adenine
dinucleotide, reduced form NADH C21H29N7O14P2

nicotinamide adenine
dinucleotide phosphate NADP C21H29N7O17P3

+

nicotinamide adenine
dinucleotide phosphate,
reduced form

NADPH C21H30N7O17P3

ca
ta

bo
lit

es

methyl-nicotinamide N-Me-Nam C7H9N2O+

methyl-2/4/6-pyridone Me-2/4/6-PY C7H8N2O2

2/4/6-hydroxy-
nicotinamide 2/4/6-PY C6H6N2O2

nicotinamide N-oxide NAM-N-oxide C6H6N2O2

2/4/6-pyridone
carboxamide riboside 2/4/6-PYR C11H14N2O6

2/4/6-pyridone
carboxamide
mononucleotide

2/4/6-PYR-MP C11H15N2O9P

2/4/6-pyridone
carboxamide riboside
diphosphate

2/4/6-PYR-DP C11H16N2O12P2

2/4/6-pyridone
carboxamide riboside
triphosphate

2/4/6-PYR-TP C11H17N2O15P3

2/4/6-pyridone adenine
dinucleotide 2/4/6-ox-NAD C21H27N7O15P2

2/4/6-pyridone adenine
dinucleotide phosphate

2/4/6-ox-
NADP C21H28N7O18P3

Name Abbreviation
in text Formula

Measurable in Reported in
B S/P T U B S/P T U

ni
ac

in

an
ab

ol
it

es

Nicotinic acid NA C6H5NO2

nicotinic acid riboside NAR C11H14NO6
+

nicotinic acid
mononucleotide NAMN C11H15NO9P+

nicotinic acid adenine
dinucleotide NAAD C21H27N6O15P2

+

ca
ta

bo
lit

es nicotinuric acid NUA C8H8N2O3

trigonelline Trig C7H8NO2
+
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The most common degradation pathway for nicotinamide is methylation. Excess
nicotinamide (from supplementation or increased NAD+ consumption) is often associated
with increased plasma, serum, and urinary levels of N-Me-NAM (Table 1) [31,80]. Sun et al.,
demonstrated that excess nicotinamide led to catecholamine degradation in hypertensive
mice resulting from the perturbation of the methylation pool and ultimately leading to
enhanced levels of nicotinamide, homocysteine, and norepinephrine [77]. The enzyme
responsible for the methylation of nicotinamide is now known as nicotinamide N-methyl
transferase (NNMT) [86]. NNMT uses S-adenosylmethionine (SAM) as a co-substrate and
methyl donor and generates N-methyl-nicotinamide (N-Me-NAM) and S-adenosyl homo-
cysteine (SAH) (Figure 3), which is ultimately converted to homocysteine. Excess NAM and
increased levels of N-Me-NAM have been associated with hyper-homocysteinemia and car-
diovascular diseases, although the vasoprotective, anti-inflammatory, and anti-thrombotic
roles of N-Me-NAM have also been documented [87]. More recent work indicates that
methyl-nicotinamide might have a beneficial effect on cancer and cancer metastasis [88],
while NNMT was shown to protect against oxidative stress-induced endothelial injury [89].
Alternatively, the progression of chronic kidney diseases is associated with a trend toward
an increase in methylated catabolites of nicotinamide, whereby NNMT expression induces
NAD+ and methionine metabolism perturbation contributing to renal and hepatic fibro-
sis [90,91]. NNMT hyper-activity not only affects NAD+ and SAM levels but can also
redirect epigenomics and epi transcriptomics events [77,92]. However, a recent publication
reported that NR supplementation (1 g/day) is not associated with altered methylation
homeostasis in Parkinson’s disease [93]. Other studies have shown that nicotinamide
supplementation resulted in a dose-dependent increase in oxidative stress and 8-hydroxy-
2′-deoxyguanosine (8-OHdG)-positive cells both in the liver and kidneys and correlated
with NNMT activity [74].

Another methylated vitamin B3 derivative is trigonelline (Table 1). Trigonelline
(Figure 4) is methylated nicotinic acid. Although not a known catabolite or precursor
of NAD or NAAD, trigonelline is thought to have beneficial effects on human health. It is
generated in plants by methylation of nicotinic acid, a process that mammalian NMNT is
not known to carry out [94]. It is found in greater abundance in coffee beans, for which
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the levels increase upon torrefaction [95]. Trigonelline is not perceived to be a mammalian
metabolite. However, it is often found in urinary specimens of coffee drinkers. A risk as-
sessment of trigonelline consumption was recently conducted [96]. Although there was no
evidence of adverse effects after acute exposure, no conclusion could be drawn on chronic
exposure to isolated trigonelline due to the lack of data. Yet, trigonelline ingested as a com-
ponent of coffee or coffee by-products was concluded to be safe for human health [96]. The
effects of trigonelline on the overall levels of NAD(P)(H) and its precursors in biospecimens
remain unexplored.
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While these examples of correlations between excess nicotinamide and diseases can
be potentially ascribed to a modulation in the intracellular abundance of SAM and NAD+,
the full picture of induced dysfunction concerning excess nicotinamide is not yet acquired.
Therefore, the need for monitoring the NAD+ catabolites of nicotinic acid and nicotinamide
more systematically is warranted. For example, urinary and serum nicotinuric acid inform
how well nicotinic acid is scavenged from microbial sources and used to generate systemic
NAD+ via the Preiss–Handler pathway. Additionally, the accumulation of circulating
and excreted methylated nicotinamide catabolites informs how much NAD+ consumption
is required to maintain cellular homeostasis, which informs on the activity of sirtuins,
ARTs, SARM1, BST1, and CD38. Similarly, the relative abundance of NAM-N-oxide, N-Me-
NAM, and NUA compared with circulating NAM and NA is an indicator of the relative
contribution made by the salvage and the Preiss–Handler pathways while maintaining
intracellular NAD+ pools. Overall, a relative abundance of nicotinuric acid, nicotinamide N-
oxide, and methyl-nicotinamide catabolites offer a window into systemic NAD+ metabolism
and the use of its precursors for NAD(P)(H) level maintenance.

Oxidation of NAD(P)(H) primary catabolites: Among metabolic reactions, the oxi-
dation of heteroaromatics accounts for the most predominant bioconversion in drug
metabolism. Degradation of NAD+ metabolites through oxidation is therefore common and
these species are the most encountered NAD+ catabolites in biospecimens [97]. The position
of the resulting carbonyl with respect to the carboxamide of nicotinamide indicates the
isomer formed upon oxidation. In mice, the 6 and the 4 isomers (as depicted in Figure 3) are
the most frequently found isomers. In humans, the isomer Me-6-PY is most often reported
as being the only detected isomer, and thus thought to be the predominant N-Me-NAM
catabolite. Critically, Me-6-PY (Figure 3) is most frequently reported in the literature as
2-PY or Me-2-PY. This later nomenclature is particularly confusing since non-methylated
oxidized nicotinamide, also labeled PY, can be detected in biological samples, although
their levels are substantially lower than that of the methylated species. Furthermore, the
nomenclature 2PY (aka. 6-Me-PY) positions the carboxamide of nicotinamide at the C5 of
the pyridine ring. In nicotinamide, the carboxamide is located at the C3 of the pyridine ring.
To avoid nomenclature confusion, we retain the same numbering for the carboxamide moi-
ety on the oxidized pyridine ring as for nicotinamide with the pyridine nitrogen numbered
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as 1 and the carboxamide at position 3. As such, for all the isomers discussed henceforth,
the carboxamide position can be mapped to that of nicotinamide and methyl-nicotinamide.

It has been established that in mice, N-Me-NAM, like other arylamines, is oxidized
by aldehyde oxidases [98] to generate these methyl pyridones (Figure 4; Table 1) and
that this oxidative process can associate with the onset of Type 2 diabetes [99]. Pyridone
derivatives of N-methyl-nicotinamide are major urinary metabolites of nicotinamide in
humans and most mammals studied (comprehensively reviewed by Lenglet in 2018 [100]).
Briefly, in humans, the N-methyl-2-pyridone-5-carboxamide, hence referred to as N-methyl-
3-carboxamide-6-pyridone, (Figures 3 and 4, N-Me-6-PY), is the predominant urinary end-
product of NAD+ degradation to nicotinamide by NAD+-consuming enzymes, and nicoti-
namide surplus. In murine models, the N-methyl-3-carboxamide-4-pyridone
(Figures 3 and 4, N-Me-4-PY) is the most abundant catabolite [101]. Mammalian aldehyde
oxidases (AOX) oxidize N-methyl-nicotinamide to the N-Me-4-PY and N-Me-6-PY [98].
These metabolites and the less abundant N-methyl-3-carboxamide-2-pyridone (Figure 4,
N-Me-2-PY) have been proposed to be generated from the breakdown of NAD and NADP,
rather than excess nicotinamide, although no evidence has been provided to support such
a mechanism [101,102]. Other metabolites of nicotinamide include the less often measured
6-hydroxy-nicotinamide, also known as 6-hydroxy-3-carboxamide pyridine, 6-OH-Nam,
or 6-PY (Table 1) (Figure 3), the non-methylated form of Me-6-PY [103]. However, the
non-methylated pyridone 2-PY and the 4-PY (Table 1; Figure 4) may also be present but
not measured.

In mice administered nicotinamide or nicotinic acid, the 4 and 6 isomers of Me-PY
(Figure 4) can be readily detected and are most abundant when the nicotinamide dose is in
excess compared with that of nicotinic acid (NA), indicating that the mice microbiome can
only handle so much nicotinamide before it releases it for use by the host [80]. In humans,
Me-6-PY is often a major metabolite observed in urine and serum of subjects administered
NAD+ precursors like nicotinamide [80], NR, and NMN [37,104]. Interestingly, Mierze-
jewska demonstrated that nicotinamide catabolites can serve as biomarkers to study the
pathogenesis of bladder cancer [105]. They revealed that the concentration of N-Me-NAM
was considerably decreased in bladder cancer patients with a concomitant increase in the
NAM metabolites such as Me-6-PY. Nicotinamide end-products, as well as nicotinamide
itself, are present in human and rat plasma, urine, whole blood, and erythrocytes, and their
concentrations are elevated in animals with experimental chronic renal failure [68]. In mice,
the plasma concentration of N-Me-4-PY is higher than that of N-Me-6-PY. This finding is
contrary to that in humans with chronic renal failure where N-Me-6-PY is the predominant
catabolite. Surprisingly, chronic kidney disease (CKD) patients show increased levels of
N-methyl-4-pyridone-carboxamide (Me-4-PY) in addition to that of Me-6-PY [97,105–108],
although Me-4-PY is not a known product of human AOXs [98,100]. Rutkowski et al. also
demonstrated in rats that NAM end products can accumulate in different tissues and can
ultimately lead to multiorgan impairment in the uremic state [71]. Importantly, Me-6-PY
was shown to inhibit PARP in vitro and therefore potentially affect DNA repair capacity
in CKD patients [109]. For further details on the subject, Lenglet and Massy provided a
comprehensive review of the catabolites of methyl nicotinamide in 2016 [100].

The 2, 4, and 6 isomers of Me-PY can be synthesized [70] and used as standards
in analyses by liquid chromatography coupled with mass spectrometry (LC-MS). Under
such circumstances, it is more likely that all three isomers can be found and quantified
in a biospecimen without pre-established assumptions. We found that in untargeted LC-
MS, the Me-2-PY and Me-4-PY tend to co-elute unless the elution method is specifically
optimized for their separation, but at the detriment of other catabolites. It is therefore
easy to misconstrue their identity. Yet we must succeed in differentiating them if we are to
characterize the pharmacological effects of endogenous, intracellular Me-PYs. For instance,
AOX1 was shown both in animals and in vitro to catalyze the oxidation of Me-NAM and
the formation of Me-4-PY [98]. On the other hand, the enzymatic conversion of Me-NAM
to Me-2-PY and Me-6-PY remains speculative [100]. Consequently, the relative circulating
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abundance of Me-NAM to Me-PY in serum or urinary samples should offer an indication
of the overall oxidative catabolic capacity of the organism. With emerging studies on NAD
supplementations in murine models and human clinical trials, measurements of Me-NAM
and Me-6-PY have become more widely reported [110]. By all accounts, supplementation
with an NAD+ precursor, be it NAM, NR, NMN, NRH, or NMNH, leads to a substantial
increase in Me-NAM and even more so in Me-4-PY and Me-6-PY. Yet, the pharmacological
information that can be garnered from these measurements is limited to the translational
assumption that NAD precursors are converted linearly to these catabolites, overlooking
the importance of NUA, and nicotinamide-N-oxide, and that of the non-methylated PY
species. Furthermore, it is likely that the role of each one of these catabolites while being
generated endogenously, are different from their function once they enter circulation. Just
like for NAM, NR, NRH, NMN, and NMNH, circulating catabolites of NAD+ might be
subject to active transport in certain tissues or activate extracellular signaling sequences
where they might be beneficial or nefarious. As such, a more comprehensive understanding
of their pharmacokinetic properties is warranted.

4. Ribosylated Catabolites of NAD(P)(H)

While less often measured than Me-PYs, carboxamide pyridone ribosides (PYRs) have
been detected in biological samples since the 1970s and were more formally characterized
and isolated from human urine in the 1980s [111,112]. Once again, three isomeric forms exist
based on the site of oxidation (Figure 5; Table 1). In human urine, the 1-ribosylpyridin-4-
one-3-carboxamide (4-PYR; Figure 1) is found to be the most abundant circulating PYR [113].
The next most abundant isomer is 1-ribosylpyridin-6-one-3-carboxamide (6-PYR; Figure 5),
also sometimes referred to 1-ribosylpyridin-2-one-5-carboxamide in the literature [114].
The last isomer is 1-ribosylpyridin-2-one-3-carboxamide (2-PYR), found to be much less
abundant. Only a few of the PYR phosphorylated derivatives (Figure 5) have been de-
scribed and characterized in the literature to date (Table 1). These derivatives include
the nucleotide series, for which PYR can be mono, di, or triphosphorylated (PYR-NP), or
conjugated to an adenosine diphosphate unit, as a pyridone adenine dinucleotide (ox-NAD;
Figure 5) [111,114–118].
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Although PYR derivatives in bio-specimens have been quantified for more than
40 years, their origin remains mostly speculative. A biochemical relationship between the
methylated (N-Me-PYs) and ribosylated (PYRs) forms of the pyridone species has been
proposed but has yet to be identified. Instead, we posit that such a relationship does
not exist and that PYRs were generated from the ribosylated forms of nicotinamide by
over-oxidation of the pyridinium ring. The 2 and the 6 isomer ribosylated catabolites of
NR, NMN, NAD, and NADP can be generated by Fenton chemistry [70]. However, this
chemistry does not account for the formation of the 4 isomer. Alverti observed that an
over-oxidized form of ox-NADP (Figure 5) could be generated by the flavin oxidoreductase,
adrenodoxin (FDXR [119–121], while we observed that in the presence of oxygen, NQO2
could oxidize NRH but not NR to 4-PYR [62,122]. This observation indicates that electron
transfer to oxygen via FADH2 is necessary and sufficient to enable the reaction between
superoxide and pyridinium ring to generate the 4-hydroxylated pyridinium that then iso-
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merizes to the pyridone. This mechanism is supported by the fact that NQO2 can generate
superoxide [123], that can react with the pyridium ring of NR+. One can consider that
NQO1, a component of complex I, might facilitate NAD+ over-oxidation (4-ox-NAD [124],
Figure 6) under conditions that favor superoxide formation rather than electron transport
during oxidative phosphorylation. The over-oxidation of NAD+ to 4-ox-NAD offers the
platform for the formation of 4-PYR-MP via pyrophosphatase activity, and 4-PYR via phos-
phatases, offering a mechanism for the formation of circulating 4-PYR. Aside from the
potential of 4-PYR as a possible indicator of tumor burden in malignancy [125], its abun-
dance has been closely associated with the aging process and nephrotic dysfunction [126].
4-PYR was also identified as one of the markers of good prognosis for survival in AIDS
patients, and an independent predictor for AIDS progression [127]. Unlike the 2-PYR or
the 6-PYR, this isomer of the pyridone series possesses a quinonoid structure that can act
as an electrophile and interact with nucleophiles like cysteine and glutathione, in addition
to DNA in a manner like a quinone.
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In the year 1979, Dutta and his team isolated and characterized 4-PYR from the urine
samples of chronic myelogenic leukemia patients which was reported as the first pyridine-
containing nucleoside derived from patient urine samples [112]. 4-PYR is commonly found
in the plasma of healthy individuals in the nano-molar range (0.013 ± 0.006 µM). Increased
concentrations of 4-PYR was found in the urinary excretions of several pathological con-
ditions such as chronic renal failure [128], breast cancer [129], and chronic myelogenous
leukemia patients [130] and was associated with tryptophan metabolism [116]. In patients
with chronic renal failure, 4-PYR can accumulate substantially (>50 fold) [97]. Slominska
and Rutkowski described the distribution of purine nucleotides in uremic fluids and tis-
sues [131,132] and several studies have provided further insight into the abundance, role,
and function of the PYR family.

Detailed investigations on this metabolite unveiled the fact that it becomes phos-
phorylated to its phosphate derivatives (Figure 6) such as 4-pyridone-3-carboxamide-1-
β-D-ribonucleoside monophosphate (4-PYR-MP) and 4-pyridone-3-carboxamide-1-β-D-
ribonucleoside triphosphate (4-PYR-TP) [115,117,131]. Multiple laboratories observed that
in erythrocytes, extracellular 4-PYR was the precursor to intracellular 4-PYR-TP via 4-PYR-
MP and adenosine kinase [117,118], although they observed a preferential accumulation of
4-PYR-MP over 4-PYR-TP during the incubation of 4-PYR. Later, Smolenski et al., observed
that other tissues were able to metabolize, circulating 4-PYR to PYR-TP. They demonstrated
that just like erythrocytes, other tissues could process 4-PYR including the liver, heart, kid-
neys, lungs, and skeletal muscles [113]. In addition, they showed that 4-PYR accumulated
as 4-PYR-MP in all these tissues except the kidneys.
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Measurements of 4-PYR-MP and 4-PYR-TP in human biospecimens revealed that
4-PYR-MP, and 4-PYR-TP are low in healthy adults but become elevated in the patients
with chronic renal failure, which links the toxicity of these metabolites to renal anemia [132].
Furthermore, plasma concentration of 4-PYR in patients with chronic renal failure was
found to be very high compared with that of healthy subjects. Initially, it was hypothesized
that 4-PYR was either rapidly removed from circulation by renal clearance or converted to
4-PYR-TP at a faster rate in healthy subjects to clear this toxic metabolite from the plasma.
The need for an effective renal clearance of 4-PYR would point to its possible toxicity and
pathological conditions that might result from its accumulation. It was then proposed that
prominent 4-PYR accumulation in circulation and peripheral tissues might further impair
renal function.

To further investigate the effects of 4-PYR metabolites on the various metabolic pro-
cesses that consume ATP or NAD, the effects of 4-PYR and its phosphorylated deriva-
tive 4-PYR-MP were evaluated against the enzymes involved in nucleotide metabolism
and cellular metabolism [131,133,134]. While 4-PYR showed significant activation of S-
adenosylhomocysteine hydrolase (SAHH), 4-PYR-MP was a potent inhibitor of adenosine
monophosphate deaminase (AMPD) in erythrocyte lysate (IC50: 74 µM) and heart ho-
mogenates (IC50: 55 µM). Furthermore, the intracellular production of 4-PYR-MP from
4-PYR led to the inhibition of the AMP deamination pathway. It has been proposed that
this inhibition contributes to the accumulation of adenine nucleotide observed in the
erythrocytes of patients with chronic renal failure.

Using a widely studied animal model of atherosclerosis that shares many similarities
to human pathology, Smolenski et al. observed that mice exposed to 4-PYR exhibited an
increased deposition of lipids in their aortas as indicated by an increased area of atheroscle-
rotic plaques in the abdominal region [126,135]. Furthermore, circulating 4-PYR accelerated
atherosclerosis in these mice [136]. Extracellular adenosine deaminase activity was also
enhanced upon 4-PYR treatment, decreasing intravascular adenosine levels. Wistar rats’
hearts perfused with 4-PYR were used to evaluate the 4-PYR metabolic pathways and dis-
covered that 4-PYR was a precursor to yet another metabolite, 4-ox-NAD (Figure 6) [133].
4-PYR-TP (Figure 6) and 4-ox-NAD could be detected in tissues following a 5 min exposure
with 4-PYR solution, indicating a very effective uptake of circulating 4-PYR by tissues
and conversion to nucleotides (Figure 1). Short-term exposure to 4-PYR on rat hearts did
not affect the heart functions. 4-PYR had no acute cardiovascular toxicity but prolonged
exposure to 4-PYR adversely affected the metabolism of endothelial cells, a process that
has been proposed to lead to atherosclerosis. Slominska et al. later reported on the impact
of 4-PYR metabolism on cellular energetic balance in endothelial cells which [134] included
a decrease in NAD+ levels upon exposure to 4-PYR. Inhibition of the ENT transporter
by dipyridamole abrogated these effects. Overall, 4-PYR conversion to its triphosphate
and adenine dinucleotide was shown to have an adverse effect on energy balance in
endothelial cells [137].

Crucially, 4-PYR-MP is converted to 4-ox-NAD via the NAD+ biosynthetic enzyme,
NMNAT. This conversion was observed in human neuroblastoma cells, human malignant
melanoma cells, stem cells derived from human adipose and bone marrow, human dermal
microvascular endothelial cells, and human embryonic kidney cells [137]. Although 4-PYR
was not shown to affect mitochondrial function, it was found to be detrimental to glycolysis
and overall cellular bioenergetics [137]. In an NMNAT3 KD experiment, ATP, NAD,
4-PYR-MP, and 4-ox-NAD levels were affected by 4-PYR exposure. Surprisingly, 4-PYR-MP
did not accumulate in these cells. This would be indicative of a very dynamic 4-PYR-MP
metabolism, whereby 4-PYR-MP can either be hydrolyzed back to 4-PYR or metabolized
to the triphosphate (PYR-TP). Unfortunately, these species were not measured in these
experiments. Under NT5C2 KD conditions, the same cells responded to 4-PYR treatment
with a 2-fold increase in 4-PYR-MP levels and a trend towards the increase in 4-ox-NAD
levels. Importantly, ATP levels decreased to similar levels to that observed when NMNAT-3
KD was applied, linking increased ox-NAD levels to disturbance of bioenergetics.
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Important developments associated with the physiological role of 4-PYR in the context
of cancer have emerged more recently, whereby a higher concentration of 4-PYR is observed
in the plasma of non-small cell lung cancer patients. Furthermore, an association between
higher plasma 4-PYR concentrations and endothelial damage was observed in lung cancer
patients. It was then proposed that the observed toxicity of 4-PYR towards the endothelium
could lead to cancer cell proliferation, invasiveness, and inflammatory signaling [138].
Since then, circulating levels of 4-PYR and its metabolites have been closely associated with
nicotinamide metabolism in bladder and breast cancer [105,139] and shown to correlate
with breast cancer metastasis.

5. Discussion

There is growing evidence that NAD(P)(H) catabolites increase upon supplementation
with NAD precursors, and that their distribution can inform on certain physiological end-
points and pathological progressions. In general, non-phosphorylated species are detected
most reliably in extracellular matrices (e.g., serum, plasma, and urine; Table 1), while
metabolites that are phosphorylated, e.g., nucleotides, are usually found intracellularly
(e.g., whole blood and tissues; Table 1). When phosphorylated species are found in biospec-
imens that do not include cells or tissues, one should consider the possibility of lysis prior
to or upon biospecimen sample collection rather than anticipate the presence of substantial
levels of circulating nucleotides as contributing factors to the measurements.

Not only do circulating precursors and functional NAD(P)+ and NAD(P)H levels need
to be reliably measured and benchmarked, identification and quantification of their respec-
tive catabolites should be included in such systematic reporting. Overall, the important
role of NAD(P)(H) catabolism has mainly gone unnoticed and is often referred to as a
correlation when diagnosing an underlying cause of a disease or monitoring the effect of
supplementation. These catabolites can be biomarkers of disease and disease progression
or potentially even healthy aging. It is now clear that the NAD(P)(H) metabolome is
growing. Unfortunately, the identification, characterization, and quantification of new
as well as known catabolites is limited by the chemical standards that are available to
the analysts seeking their measurements. We generated Table 1 to provide a list of the
known metabolites of nicotinamide and nicotinic acid that have been measured by LC-MS
in biospecimens (except NAADP and NAADPH, as these remain elusive metabolites). For
detection by mass spectrometry, most metabolites and catabolites respond well to positive
ionization with a M+H+ ion. To help with this process, we provided the molecular formula
of each molecular entity in Table 1. We hope that it advances the field in generating a more
complete picture of the NAD(P)(H) metabolome with the view of exploiting it as a systemic
biomarker of health.

6. Conclusions

There is no question that vitamin B3 is essential for human health. The observation
that NAD+ declines with age coupled with the fact that NAD+ precursors (vitamin B3s
included) need to be obtained through the diet have led to increased interest in supple-
mentation. Furthermore, NAD+ boosting, enabled by a flurry of NAD+-boosting strategies
in heathy and diseased states, has garnered increased attention worldwide. Yet, the bal-
ance that needs to be struck between increasing NAD+ levels and maintaining a healthy
NAD(P)+ to NAD(P)H ratio relies on a complex network of gene regulation and protein
expression that has yet to be fully unraveled. Although boosting NAD+ levels has gained
scientific recognition over the past decades for its potential to address metabolism-related
disorders, a possible concomitant increase in intracellular and circulating NAD+ catabolites
can unexpectedly affect cellular and systemic homeostasis, and blur the functional gains
achieved through NAD+ boosting. Although the methylated catabolites of nicotinamide
are consistently measured in serum, blood, and tissues of interest, many other catabolites
usually go unreported. Yet, they too have a story to tell. Overall, there is a dire need to
investigate the physiological role of NAD+ catabolites as they are endogenously generated.
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The current state-of-the-art methods that assess the vitamin B3 metabolome to predict
NAD+-derived biology remain limited in the context of NAD+ catabolites’ quantifications.
The entire approach to measuring the NAD metabolome requires improvements. If their
detection was standardized and cross-referenced with other markers of dysfunction, much
can be unraveled from the status of the NAD(P)(H) metabolome and use of NAD+ precur-
sors in healthy and diseased states. Understanding the type of catabolites generated and
the ensuing biological consequence of their formation and circulation can open more astute
treatment and functional supplementation programs.
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