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Abstract: Nutritional deficiencies during pregnancy can have serious consequences for the health of
the (unborn) child. This systematic review provides an updated overview of the available food and
nutrient intake data for pregnant women in The Netherlands and an evaluation based on the current
recommendations. Embase, MEDLINE, and national institute databases were used. Articles were
selected if they had been published since 2008 and contained data on food consumption, nutrient
intake, or the status of healthy pregnant women. A qualitative comparison was made with the 2021
Dutch Health Council recommendations and reference values. A total of 218 reports were included,
representing 54 individual studies. Dietary assessments were primarily performed via food frequency
questionnaires. Protein, vitamin A, thiamin, riboflavin, vitamin B6, folate, vitamin B12, vitamin C,
iron, calcium, and magnesium intakes seemed to be adequate. For folate and vitamin D, supplements
were needed to reach the recommended intake. The reasons for concern are the low intakes of fruits,
vegetables, and (fatty) fish, and the intakes of alcohol, sugary drinks, and salt. For several foods and
nutrients, no or limited intake data were found. High-quality, representative, and recent data are
needed to evaluate the nutrient intake of pregnant women in order to make accurate assessments
and evaluations, supporting scientific-based advice and national nutritional policies.
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1. Introduction

Nutritional deficiencies during pregnancy can have serious consequences for the
health of the (unborn) child [1–4]. Iron deficiency, for instance, leads to anemia, which
in turn is associated with impaired fetal development, preterm delivery, and a low birth
weight [3]. Another well-known example is folate deficiency, which is associated with
anemia, but also with neural tube defects, which can lead to infant mortality and serious
disabilities [3]. Adequate nutrition is therefore vital during pregnancy as well as preconcep-
tionally. Previous research in the USA has indicated that significant numbers of pregnant
women do not meet the recommendations for multiple vitamins and minerals [5].

Pregnant women may follow the dietary guidelines for the general female popula-
tion [6]. However, for some foods and nutrients, pregnant women have specific needs that
are related to body maintenance, tissue growth, the development of the fetus, or food safety.
Examples include a higher requirement for folic acid and iodine, and on the other hand,
the prevention of excessive vitamin A intake and the advice not to consume alcohol [3].

Because of these differences, there are specific dietary recommendations and dietary
reference values for pregnant women. For example, the Nordic Nutrition Recommendations
2012 and the Dietary Guidelines for Americans 2020–2025 include specific recommenda-
tions for pregnant women [7,8].

In The Netherlands, the Dutch Dietary Guidelines 2015 describe a healthy diet for
the general population. These guidelines were not specific for pregnant women. Several
organizations have, however, published recommendations for pregnant women, such as
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the use of folic acid supplements. To harmonize these recommendations, and to support
the scientific basis, the Health Council of The Netherlands evaluated the recommendations
in light of new scientific developments. In 2021, the Health Council published dietary
recommendations (see Table 1) and complementary dietary reference values specifically for
pregnant women (see Table 2) [6,9].

Table 1. The Dutch Health Council dietary recommendations for pregnant women [6].

Dietary Recommendations

Healthy and varied food

• Eat plenty of vegetables (at least 200 g), fruits (at least 200 g), and unsalted nuts (at least 15 g)
every day.

• Eat legumes every week.
• Substitute refined cereal products with wholemeal products as much as possible.
• Substitute butter, hard margarine, and cooking fats with soft margarine, liquid cooking fats,

and vegetable oils.
• Limit the consumption of red meat and especially processed meat.
• Drink as few sugary drinks as possible.
• Limit the intake of table salt to a maximum of 6 g per day.

Weight gain and calorie requirements

• The committee makes no recommendation on the optimal weight gain during pregnancy.

Fish and fish fatty acids

• Eat fish twice a week, including one serving of fatty fish and one serving of lean fish, picking
fish species that do not contain excessively high levels of harmful substances. For women
who cannot or do not want to eat this amount of fish, take fish fatty acid supplements
containing 250 to 450 mg of DHA per day.

Calcium-rich products

• Eat enough calcium-rich products to reach at least the dietary reference value of calcium.
• If the intake is consistently too low, take a supplement containing 1000 mg of calcium a day,

starting from the 20th week of pregnancy.

Iron-rich products

• Eat enough iron-rich products.

Iodine-rich products

• Eat enough iodine-rich products to meet the dietary reference value of 200 micrograms of
iodine per day. If you struggle to consistently consume enough iodine, take a supplement
with up to 200 micrograms of iodine.

Beverages

• Avoid alcohol.
• Do not take more than 200 mg of caffeine per day.

Nutrient supplements

• Take a supplement containing 400 micrograms of folic acid a day, starting from at least four
weeks prior to conception up to the 10th week of pregnancy (i.e., 8 weeks after conception).

• Take a supplement containing 10 micrograms of vitamin D per day.
• If the diet appears inadequate on several fronts, multi-vitamin and multi-mineral

supplements may be practical alternatives. It is important to choose a supplement with
dosages that are suitable for pregnancy.

Table 2. Dietary reference values for pregnant women per day [9,10].

Nutrient EAR RDA AI

Protein (g/kg)

0.66 +
First trimester: 0.5 g
Second: 7.2 g
Third: 32 g

0.83 +
First trimester: 1 g
Second: 9 g
Third: 28 g

Vitamin A (µg RAE) 1 580 750
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Table 2. Cont.

Nutrient EAR RDA AI

Thiamin (B1 and
mg/MJ) 0.072

0.1 (1.0 mg/d)
First trimester: 0.9
mg/d
Second: 1.0 mg/d
Third: 1.1 mg/d

Riboflavin (B2 and
mg) 1.5 1.9

Niacin (B3, mg, and
NE/MJ) 1.3

1.6 (16 mg NE/d)
First trimester: 15 mg
NE/d
Second: 16 mg NE/d
Third: 17 mg NE/d

Vitamin B6 (mg) 1.3 1.8
Folate (µg DFE) 2 400
Vitamin B12 (µg) 2.4 3.3
Vitamin C (mg) 85
Vitamin D (µg) 10
Vitamin K1 (µg) 70

Calcium (mg)
<20 weeks gestation:
18–24 year: 860
≥25 year: 750

<20 weeks gestation:
18–24 year: 1.000
≥25 year: 950

≥20 weeks gestation:
1.000

Iron (mg) 7 16
Iodine (µg) 200
Potassium (g) 3.5
Copper (mg) 0.8 1.0
Magnesium (mg) 300
Zinc (mg) 7.0 9.1

EAR = estimated average requirement; RDA = recommended daily allowance; RAE = retinol activity equivalents:
1 µg RAE = 1 µg retinol = 12 µg β-carotene = 24 µg other carotenoids; RE retinal equivalents: 1 µg RAE 1 = 1 µg
retinol = 6 µg β-carotene = 12 µg other carotenoids; MJ = megajoules; NE = niacin equivalents: 1 mg NE = 1 mg
niacin = 60 mg tryptophan; DFE = dietary folate equivalents: 1 µg DFE = 0.6 µg folic acid from fortified foods
or supplement combined with food = 0.5 µg folic acid from supplements taken on an empty stomach. 1 For the
dietary reference values, RAE and RE are interchangeable [11,12]. 2 With an additional 400 µg from supplements
four weeks prior to conception up to the 10th week of pregnancy.

It is important to understand whether women comply with these dietary recommen-
dations and reference values. These insights serve as a basis for developing effective
intervention strategies and policies to prevent potential health risks. In 2021, 179,441 chil-
dren were born in The Netherlands, a decline compared to previous years [13]. The average
number of children per women was 1.62 [13]. For this future generation, a good start in
life is essential. To gain an insight into food and nutrient intake during pregnancy in The
Netherlands, we previously performed a systematic review of the available nutritional data
during the first 1000 days of life (i.e., from conception up to 2 years of age) [14]. At that
time, the dietary recommendations and reference values of the Dutch Health Council were
not yet available. The current review will provide an updated overview of the available
data for pregnant women and will make a comparison with the new recommendations of
the Dutch Health Council.

The aim of the current review is to determine whether the nutritional intake of preg-
nant women in The Netherlands is in line with the Dutch dietary recommendations and
reference values.

2. Materials and Methods

This systematic review is reported according to the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) 2020 guideline [15].
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2.1. Literature Search

In 2019, a systematic review was published on the food consumption, nutrient intake,
and nutrient status during the first 1000 days of life [14]. Since then, this living systematic
review has been updated via monthly searches. The electronic database Embase was
searched, which includes records from the MEDLINE (Pubmed) and Embase databases.
A search string was created based on the PICO model. The population (P) of interest was
the first 1000 days of life, including pregnant women, mothers during the breastfeeding
period, and children up to two years of age. Included were healthy populations living
in The Netherlands. Intervention (I) studies were excluded, except when baseline data
or data from a healthy control group were available. No comparison (C) was included
due to the nature of this systematic review. The outcomes of interest (O) were data on
food and nutrient intake, dietary supplement use, and biochemical nutrient status markers.
Subsequently articles were selected during the screening phase which contained data from
pregnant women. For the full details on the search string, see Appendix A, Table A1.
Emtree index terms were used and exploded. The search filters for humans, publication
date, and publication type were used. Articles published between January 2008 and January
2023 were included. The starting date of 2008 was chosen as previous recommendations
from the Dutch Healthy Council included literature that was published before and up
to 2008 [16–19]. Scientific congress posters and abstracts were excluded. No language
restrictions were used. In addition to the electronic database, relevant reports from Dutch
institutes and non-peer-reviewed Dutch articles were retrieved. Parallel to the literature
search, a second search was conducted on vitamin D and folate intake and status among
women of childbearing age (see Appendix A, Table A2). Articles relevant for the current
study were identified (n = 57) and added to the review. The database and publication date
ranges of this parallel search were similar to the main literature search.

2.2. Screening and Extraction

Article screening was performed in duplicate by two independent researchers (N.K.
and S.t.B.) based on predefined exclusion criteria. A third reviewer (J.V.-K.) was consulted
in case of uncertainty about the inclusion of an article. The exclusion criteria were as
follows: published before 2008; not containing Dutch data; population with medical illness
or premature infants; population that was not pregnant, breastfeeding, or included children
with a mean age above 2 years; no data on food consumption, nutrient intake, nutrient
status, or supplement use; intervention studies without a healthy control group or baseline
data; paternal preconception data; case studies; duplicate data; and articles for which the
full text could not be retrieved. Exclusion criteria for the parallel search on women of
childbearing age were similar to the main search, with two exceptions. Articles needed
to include information on vitamin D of folate/folic acid, and women with a mean age
younger than 20 years or older than 45 years were excluded.

The articles were subsequently divided amongst the researchers (N.K. and S.t.B.) to
extract the study characteristics. The following study characteristics were extracted: study
name, year of data collection, type of study, location, gestational age, birth weight, age,
ethnicity, BMI, dietary assessment method and validation, supplement use, and which
foods, nutrients, or biochemical markers of nutrient status were reported.

For the current analyses, articles that reported data for pregnant women were selected,
and data on food intake and nutrient intake were subsequently extracted. The extraction
was restricted to the foods and nutrients mentioned in the guidelines and recommendations
for pregnant women of the Dutch Health Council [6,9,10]. If available, data on nutrient
intake, nutrient status, and the trimester at which the assessment took place were extracted.
For data reported per subgroup (e.g., degree of adherence to the Mediterranean diet), a
weighted median was calculated. Multiple articles refer to the same study population. To
prevent duplicate data (i.e., data from the same study population), the article with the
largest sample size was selected and included in the qualitative analysis. For fish and meat,
exemptions were made. Instead of selecting the paper with the largest sample size, the
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most recent record of Stratakis et al. was selected, as it included one additional cohort
and the interquartile range of fish consumption [20]. For meat intake, instead of the article
with the largest sample size, an article that discriminated fresh and processed meats was
selected [21]. The Dutch Health Council also included recommendations on food safety in
their dietary recommendations for pregnant women [6]. Examples are the prevention of
food infections and limiting the exposure to dioxins and lead. We did not include these
aspects of the nutrition recommendations for pregnant women in the current review.

2.3. Evaluation

To gain insight into the adequacy of the intakes of pregnant women, the nutrient intake
data were qualitatively compared to the Dutch dietary recommendations (see Table 1) [6] and
reference values (see Table 2) [9,10] for pregnant women. It was assumed that the distribution
of the nutrient requirements was normal, except for iron [22]. For the qualitative comparison
with the reference values and recommendations, the intakes, as presented in the articles or
reports, were adopted. In general, means with standard deviations or medians with a range
were reported, with no additional information on the distribution. Therefore, it was not
possible to estimate the proportion with inadequate intakes. In addition, food frequency
questionnaires (FFQs) were used. The qualitative comparison therefore only provides a
first indication of potential adequate intakes or too low intakes. Mean or median intakes
above the EAR (estimated average requirement) or AI (adequate intake) were considered
adequate. In cases where the mean or median intakes fell below the EAR, the intake was
considered inadequate for a large proportion of the population. In cases where the mean
or median intakes were above the EAR, the intake was additionally compared to the RDA
(recommended daily allowance). No statement could be made when intakes were below the
AI. To confirm the findings on the intake, information on nutrient status was subsequently
evaluated. For vitamin C, the intake was only compared to the RDA, as no EAR was set by
the Dutch Health Council [9]. Mean or median intakes were considered adequate when above
the RDA, and no statement could be made when intakes were below the RDA. In addition
to the qualitative comparison, results should be interpreted with care due to the quality of
the data (e.g., assessment method, year of assessments; see Section 4.3. Discussion Quality of
the data).

Information on intake, as reported in the articles, was compared with the dietary rec-
ommendations and reference values, except for protein. The estimated average requirement
(EAR) for protein was set as grams per kilogram of body weight. However, the protein
intake was reported in the articles as grams per day. Therefore, the EAR was recalculated
based on a reference body weight. The EAR for protein for women aged 18–29 years was
0.66 g per kg of bodyweight [10]. Based on a reference weight of 64.6 kg, the EAR was 43 g
protein per day [10]. Pregnant women require an additional 0.5 (first trimester), 7.2 (second
trimester), and 23.0 (third trimester) g per day; 43.5, 50, and 66 g per day, respectively. RDA
was calculated to be 54.6, 62.6, and 81.6 g per day.

To interpret the nutrient status data, a qualitative comparison was made by comparing
the mean/median status with cut-off values. The following cut-off values were used, and
status was considered insufficient when mean/median status was below: for vitamin D
(25-hydroxyvitamin D) status of 25 nmol/L [12]; serum or plasma folate levels of 6.8 nmol/L
and red blood cell (RBC) folate levels of 906 nmol/L [23]; ferritin status of 15 µg/L (first
trimester) [24]; urinary iodine-to-creatinine ratio (UI/Creat) concentration of 150 µg/g [25–27].
For vitamins B6 and B12, the status was considered adequate when the mean/median was
within the reference range of 35–110 nmol/L or 130–700 pmol/L, respectively [28]. For copper
and zinc status, no interpretation of insufficiency was made, as serum/plasma concentrations
are considered of limited value for identifying status [29,30]. Figures were included if data
were reported in more than two studies or included multiple subgroups (e.g., dietary
and supplemental intake). In cases of nutrient status data, figures were included when
intakes were below the EAR or AI. The reference software EndNote was used, and study
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characteristics, food and nutrient intake, and nutrient status were gathered in Microsoft
Excel (version 2102). Figures were created using GraphPad PRISM (version 9.1.0).

3. Results

For an overview of the record selection, see the PRISMA flow diagram (Figure 1).
The literature search resulted in 321 reports, including those identified through a previous
search [14]. Of these, 218 reports contained data on pregnant women and were included
in the current review. A total of 54 studies were included. For an overview of the study
characteristics, see Appendix B, Table A3. The oldest study identified was the MEFAB
(1989–1995), and the most recent study identified was APROPOS-II (2019–2021) [31]. The
number of participants varied between 21 and up to 8742 women per study. The most
often used dietary assessment method was the food frequency questionnaire (FFQ). Al-
cohol use and folic acid supplement use were most frequently reported and assessed via
general questionnaires.
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3.1. Dietary Pattern

Concerning the dietary pattern, data were found for fruit, vegetable, and fish intakes
and alcohol use. Limited information (1–3 studies) was available for legumes, fats and oils,
caffeine, sugary drinks, and salt intakes. No information on the consumption of unsalted
nuts, wholemeal products, or red meat was found. The most recent data originated from 2021
(vegetables, fruit, alcohol, and caffeine), 2019 (plant-based diet), 2012 (fish), and 2005 (legumes,
margarines and cooking fats, sugary drinks, and salt intakes) (see Appendix B, Table A3).

3.1.1. Fruits and Vegetables

Most pregnant women did not reach the recommended intake for fruit and vegetables.
The mean intake of vegetables ranged from 136 to 158 g per day (see Figure 2) [32,33].
About 23–35% of the women had an intake equal to or above the recommended 200 g per
day [34,35]. Only half (51–56%) of the women consumed vegetables daily [36,37]. About
26–62% consumed at least two pieces of fruit daily [31,33–35,38]. The intake of fruit was
143 (mean) and 187 (median) grams per day [32,39].
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Figure 2. Vegetable consumption by pregnant women. Squares indicate vegetable intake. The dotted
vertical line represents recommended intake (200 g/d). a = median with interquartile range (IQR);
b = mean with standard deviation; c = mean. Generation R study [39]. KOALA [32]. Merkx et al. [33].

3.1.2. Fish

Stratakis et al. reported the fish intake of five Dutch cohort studies (i.e., ABCD,
Generation R study, KOALA, LucKi, and PIAMA, see Figure 3) [20]. Pregnant women
consumed fish 0.4 to 1.0 times per week [20,40], which is below the recommended 2 times
per week. The median intake of fatty fish was 0.3 to 0.5 times per week [20,40,41]. The DHA
intake was assessed in two studies: the mean intakes were 70 and 120 mg per day [42,43].
The mean EPA intake was 30 mg per day [43]. For those who do not consume fish, the
recommendation is to use fish fatty acid supplements. One study reported on the use of fish
oil supplements (including EPA and DHA): about 0.2% used these type of supplements [32].
It is, however, unknown whether these women did not consume fish.
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Figure 3. (Fatty) fish consumption by pregnant women. Squares indicate fish intake; dots indicate
fatty fish intake. The dotted vertical line represents recommended intakes for fish (2 servings/week)
and fatty fish (1 serving/week). a = median with interquartile range (IQR); b = median; c = mean.
n.s. = not stated. ABCD study, Generation R study, KOALA, LucKi, PIAMA [20]. Doornbos et al. [40].

3.1.3. Alcohol

The frequency of alcohol consumption was often assessed in studies. The percentage
of women using alcohol during pregnancy varied greatly. Most studies reported that up to
a quarter (23%) of the women consumed alcohol. However, several studies reported higher
percentages of 36–54% [44,45]. The duration of alcohol consumption during pregnancy was
often unclear. Three studies indicated that women stopped or reduced their consumption
as soon as the pregnancy was known. Beijers et al. reported that 33% of the women did
not use alcohol at all during pregnancy, 61% stopped when pregnancy was known, and
5% continued consumption during pregnancy [46]. Poels et al. indicated that 26% of
the women quit consumption before pregnancy was known, 62% quit after pregnancy
was known, and 12% continued the consumption during pregnancy [47]. Gootjes et al.
reported that 51% did not use alcohol during pregnancy, 13% stopped consumption when
pregnancy was known, and 36% continued consumption during pregnancy [44]. A few
studies reported on the quantity of alcohol consumed. Brinksma et al. reported that 81%
were nonusers, 14% of the women consumed less than one glass per week, and 5% reported
one glass or more [48]. Dirix et al. reported that 89% were nonusers and 11% consumed one
glass or more per week [49]. Looman et al. reported daily consumption, with a significant
difference between the trimesters [50]. Nonusers were 55%, 96%, and 92% at preconception,
first trimester, and second trimester, respectively. The percentages of women consuming
up to one glass per week were 39% at preconception, 4% at the first trimester, and 8% at the
second trimester. The percentage of women consuming more than one glass of alcohol per
day decreased from 6% at preconception to 0% at the first and second trimester.

3.1.4. Legumes, Caffeine, Fats and Oils, and Sugary Drinks

Some studies reported on legume intake (up to a mean intake of 9 g per day) [32]. No
data were available on the percentage of pregnant women consuming legumes weekly
and conforming to the recommendation. Three cohort studies (ABCD, APROPOS II, and
Generation R) reported the caffeine intake of pregnant women, of which two reported
intakes below and above 200 mg [31,51,52]. As 58–67% of the women had an intake that was
smaller than the maximum of 200 mg per day, a substantial part (33–42%) still exceeded the
recommendation [51,52]. Only one study reported on the oil, margarine, and butter intake
of pregnant women [21], indicating that women mainly consumed margarine (median
of 15.7 g per day) and vegetable oil (median of 7.8 g per day). The median butter intake
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was 0 g per day (90% range of 0–17.8 g per day). Pregnant women consumed about
two servings of sugary drinks per day (sugar-containing beverages including soda, fruit
juice, and concentrate) [53]. The estimated salt intake was about 8 g per day [54], which
exceeds the maximum limit of 6 g per day.

3.1.5. Nuts, Wholemeal Products, and Meat

It remains unclear whether pregnant women consume the recommended amount of
unsalted nuts: only one study reported nut intake. The median intake of 18 g per day
was above the recommended 15 g; however, the intake probably included salted nuts [21].
Three studies reported on the intake of cereal products; however, none contained details
on the intake of refined or wholegrain products [21,32,39]. No information was available
on the consumption of red meat. One study reported a lower median consumption of
processed meat (25 g per day) compared to fresh meat (53 g per day) [21].

3.2. Nutrient Intake, Status, and Food Supplement Use

Nutrient intake data were available for protein, folate, vitamin B12, and calcium. Limited
data were found for vitamin A, thiamine, riboflavin, niacin, vitamin B6, vitamin C, vitamin D,
iron, and magnesium intakes. No intake data were found for vitamin K1, iodine, potassium,
copper, and zinc. Data on nutrient status were found for vitamin B6, folate, vitamin B12,
vitamin D, iron, iodine, copper, and zinc. Folic acid and vitamin D supplement use were
frequently reported. The most recent data originated from 2019 (folic acid supplement use,
and iodine), 2017 (protein, vitamin B6, folate, vitamin B12, vitamin D, and iron/ferritin), 2015
(vitamin D supplement use and calcium), 2014 (copper and zinc), 2010 (vitamin A, thiamin,
riboflavin, and vitamin C), 2006 (nicotinamide), and 2005 (magnesium).

3.2.1. Protein intake

Protein intake was assessed in four studies (see Figure 4) [50,55–57]. The mean/median
intakes ranged from 75 to 88 g per day. These intakes were above the EARs and RDAs for
the first and second trimesters. No information was available on the protein intake during
the third trimester.
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Figure 4. Protein intake of pregnant women. Squares indicate protein intake. The dotted lines
represent the estimated average requirement (EAR: 43.5 g/d, 50 g/d) and recommended dietary
allowance (RDA: 54.6 g/d, 62.6 g/d) for the first trimester (in gray) and second trimester (in blue).
T0 = preconception; T1 = first trimester; T2 = second trimester. a = mean; b = median; c = median
with 90% range. Generation R study [55]. GLIMP2 study [50]. Hernia study [56]. Voortman et al. [57].
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3.2.2. Folic Acid

The folic acid intake was reported in three studies [43,50,57]. The median dietary
folate intake ranged from 178 to 286 µg per day (see Figure 5) [43,50,57]. The mean dietary
intakes were 286, 284, and 282 µg per day during preconception, the first trimester, and
the second trimester, respectively [50]. The mean/median dietary folate intake was below
the AI of 400 µg per day in dietary folate equivalents. The mean supplemental folic acid
intake was 362 µg (preconception), 625 µg (first trimester), and 396 µg (second trimester)
per day [50]. The supplemental intake during preconception was below the recommended
400 µg per day; the intake during the first trimester was above the recommendation. A large
heterogeneity was seen in folic acid supplement use: 50–98% used folic acid supplements
during pregnancy [31,34,38,45,47,56–77]. Seven studies reported the correct use of folic acid
supplements: 46–71% of women used supplements at least 4 weeks prior to conception and
up to 8 weeks after conception [45,59,64,68,72,75,77]. It is unclear whether they continued
folic acid supplement use during the remainder of their pregnancy. The mean/median
folate status was above the cut-off value of 6.8 nmol/L (see Figure 6). Looman et al.
observed a significant increase in folate status from preconception (29.3 nmol/L) to the first
trimester (41.1 nmol/L) and a significant decrease in the second trimester (29.7 nmol/L),
which was associated with supplement use [50]. Two studies reported the folate status of
supplement users and non-users separately, with a lower status among non-users. Folate
status was above the cut-off value for both supplement users and non-users. The mean
status was 20.8 nmol/L for users and 9.6 nmol/L for non-users [70], and the median status
was 31.3 nmol/L for users versus 12 nmol/L for non-users in the first trimester [78]. The
red blood cell folate status was 1408 nmol/L (median of 97% for supplement users) [79]
and 1480 nmol/L (mean of 98% for supplement users) [57], which is above the cut-off value
of 906 nmol/L.
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Figure 5. Folic acid intake of pregnant women. Squares indicate the dietary folate intake; dots indicate
the intake via supplements. The dotted vertical lines represent the adequate intake (AI: 400 µg DFE/d)
and the recommended intake from supplements (400 µg DFE/d one month before till the 10th week of
pregnancy). T0 = preconception; T1 = first trimester; T2 = second trimester. a = mean with standard
error of the mean (SEM); b = median with 5th and 95th percentiles; c = median with 90% range. GLIMP2
study [50]. HAVEN study [43]. Voortman et al. [57].
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Figure 6. Folate status of pregnant women. Squares indicate the status of non-supplement users; dots
indicate the status of supplement users; triangles indicate the status of the total study population.
The dotted vertical line represents the reference value. T0 = preconception; T1 = first trimester;
T2 = second trimester. a = median with interquartile range (IQR); b = mean with standard deviation
(SD); c = mean with standard error of the means (SEM); d = median with minimum and maximum
value. ABCD study [78]. Generation R study [70]. GLIMP2 study [50]. Rotterdam Predict study [80].
Voortman et al. [57]. Hogeveen et al. [61].

3.2.3. Vitamin B12

Vitamin B12 intakes were reported in three studies [50,57,81] and were above the EAR
of 2.4 µg per day and below and above the RDA of 3.3 µg per day. The mean/median
dietary intakes were 3.1–5.0 µg per day (see Figure 7). The total mean intakes (including
supplements) ranged from 6.6 to 8.8 µg per day. No significant differences were observed
between the trimesters of pregnancy [50]. The mean/median vitamin B12 status ranged
from 172 to 308 pmol/L [50,57,65,80–82]. The active vitamin B12 status was assessed
in one study, with a median of 42 pmol/L [82]. Looman et al. reported a significant
decrease in the mean vitamin B12 status during pregnancy: 308 pmol/L at preconception,
258 pmol/L in the first trimester, and 210 pmol/L in the second trimester [50]. The
mean/median vitamin B12 statuses were within the reference range of 130–700 pmol/L.
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Figure 7. Vitamin B12 intake of pregnant women. Squares indicate the dietary folate intake; dots
indicate the intake via supplements; triangles indicate the total intake. The dotted vertical lines repre-
sents the estimated average requirement (EAR: 2.4 µg/d) and the recommended dietary allowance
(RDA: 3.3 µg/d). T0 = preconception; T1 = first trimester; T2 = second trimester. a = mean with
standard error of the mean (SEM); b = median with interquartile range (IQR); c = median with 90%
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range. GLIMP2 study [50]. KOALA [81]. Voortman et al. [57].

3.2.4. Calcium

Three studies reported the calcium intake of pregnant women (see Figure 8). The
mean/median dietary calcium intakes were between 798 and 1145 mg per day [57,83,84].
The study populations had a mean age above 25 years, and the calcium intakes were above
the age corresponding EAR of 750 mg per day and below and above the RDA of 950 mg per
day. Based on these studies, not all women may reach the recommended adequate intake
of 1000 mg per day at 20 weeks of gestation; 60% of the women had intakes below 1000 mg
per day for up to 16 weeks of gestation [83]. Willemse et al. reported a total mean calcium
intake of 950 mg per day [83]. Seventy percent of the women used a calcium-containing
(prenatal) multivitamin supplement; two percent used a calcium-specific supplement. The
median calcium intake from supplements was 395 mg per day.
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Figure 8. Calcium intake of pregnant women. Squares indicate the dietary folate intake; triangles
indicate the total intake. The dotted vertical lines represent the estimated average requirement (EAR:
750 mg/d) and recommended daily allowance (RDA: 950 mg/d) for women aged 25 year and older.
a = mean with standard deviation (SD); b = median with 90% range. Expect study I [83]. Generation
R study [84]. Voortman et al. [57].

3.2.5. Vitamin A, Riboflavin, Niacin, and Vitamin B6

Vitamin A intake was assessed in one study [57]. The median intake was 877 mg
retinol equivalent (RE), which is above the EAR of 580 mg RAE and the RDA of 750 mg
RAE. The same study assessed the thiamine intake of pregnant women [57]. The median
intake was 1.2 mg per day (about 0.137 mg/MJ) and exceeded the RDA. Riboflavin intake
was assessed in two studies, and it was found to be below or equal to EAR, with median
intakes of 1.4 (assessed 16 months after pregnancy) and 1.5 mg per day [43,57]. Data on
nutrient status are needed to verify whether there is an insufficient intake. Niacin intake
was assessed in one study [43]. The intake of 15 mg per day was at the RDA for the first
trimester but not above the RDA for the second and third trimesters. The intake, however,
did not include the niacin synthesis from tryptophan [85], and was assessed 16 months
after pregnancy.

The total mean/median vitamin B6 intakes were above the EAR and RDA (see
Figure 9) [50,57]. Looman et al. reported the intake of women in different trimesters.
No significant differences were found in the total intake, dietary intake, and supplemental
intake between the preconception, first, and second trimester periods. The mean vitamin
B6 status was significantly lower in the second trimester (80.0 nmol/L) compared to pre-
conception and first trimester levels (89.8 and 88.7 nmol/L, respectively); however, all were
within the reference range of 35–110 nmol/L.
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Figure 9. Vitamin B6 intake of pregnant women. Squares indicate the dietary folate intake; dots indicate
the intake via supplements; triangles indicate the total intake. The dotted vertical lines represent the
estimated average requirement (EAR: 1.3 mg/d) and recommended daily allowance (RDA: 1.8 mg/d).
T0 = preconception; T1 = first trimester; T2 = second trimester. a = mean with standard error of the mean
(SEM); b = median with 90% range. GLIMP2 study [50]. Voortman et al. [57].

3.2.6. Vitamin D

Vitamin D intake was reported in one study [50] (see Figure 10). The mean dietary
vitamin D intake during preconception was 3.5 µg per day and 3.3 µg per day in the first
and second trimesters. The mean total vitamin D intakes during preconception, the first
trimester, and the second trimester were 7.7, 10.4, and 8.9 µg per day. The mean total
intake during the first trimester was above the adequate intake of 10 µg per day. The
increased intake in the first trimester was related to the supplemental intake [50]. Eight
studies reported vitamin D supplement use [32,69,86–90]. Supplement use ranged from
3% (vitamin D-specific supplement) to 89% (including multivitamins), with about half
of the women using a supplement with the recommended dosage of 10 µg [32,88,90].
One study reported on supplement use in more detail: 46% of pregnant women used
a supplement containing vitamin D during pregnancy, of which 54% used vitamin D
supplements throughout the entire duration of their pregnancy [86]. The supplement dose
was in line with the recommendation: 97% used a multivitamin supplement containing
10 µg. The mean (46–89 nmol/L) or median (47–84 nmol/L) vitamin D status was above
the reference value (see Figure 11, measured throughout the year) [50,88,91–93].
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Figure 10. Vitamin D intake of pregnant women. Squares indicate the dietary folate intake; dots
indicate the intake via supplements; triangles indicate the total intake. The dotted vertical line
represents the adequate intake (AI: 10 µg/d). T0 = preconception; T1 = first trimester; T2 = second
trimester. a = mean with standard error of the mean (SEM). GLIMP2 study [50].
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Figure 11. Vitamin D status of pregnant women. Dots indicate the vitamin D status. The dotted
vertical line represents the reference value. T0 = preconception; T1 = first trimester; T2 = second
trimester. a = mean with standard deviation (SD); b = median with 95% range; c = mean with standard
error of the means (SEM); d = median with minimum and maximum value. ABCD study [93].
Generation R study [92]. GLIMP2 study [50]. KOALA [91]. ZOOG [88].

3.2.7. Iron

The mean/median dietary iron intake was between 10.5 and 12.2 mg per day (see
Figure 12) [50,57,94]. The iron intakes were above the EAR and below the RDA. As it
cannot be assumed that the distribution of the iron requirement is normal, a comparison
with the EAR will underestimate the risk of an inadequate intake [22]. Looman et al.
reported an increase in the total iron intake during pregnancy due to an increased intake
via supplements [50]. Three studies reported on iron supplement use, indicating that 18
and 36% of the women used iron-containing supplements during pregnancy [65,94,95].
The mean iron status was 17 and 22 µmol/L [65,96]. The mean/median ferritin status
ranged from 12.8 to 52.2 µg/L [50,65,96]. Looman et al. reported a significant decrease
in the ferritin status in the second trimester (12.8 µg/L) compared to preconception and
the first trimester (31.7 and 31.4 µg/L, respectively) [50]. Ferritin status was above the
reference value during preconception and the first trimester. As the WHO reference value
is for the first trimester only, no evaluation of the status during the second trimester could
be made. One study, on hematological parameters, identified that about 20% of their study
population (in the third trimester of pregnancy) had a suspected latent iron deficiency [97].
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Figure 12. Iron intake of pregnant women. Squares indicate the dietary folate intake; dots indicate the
intake via supplements; and triangles indicate the total intake. The dotted vertical lines represent the
estimated average requirement (EAR: 7 mg/d) and recommended daily allowance (RDA: 16 mg/d).
T0 = preconception; T1 = first trimester; T2 = second trimester. a = median with 25th and 75th percentiles;
b = mean with standard deviation (SD); c = median with 90% range. Generation R study [94]. GLIMP2
study [50]. Voortman et al. [57].

3.2.8. Vitamin C, Iron, and Magnesium

Only one study reported on vitamin C intake [57] and one on magnesium intake [98].
The median vitamin C intake was 102 mg per day and above the RDA. The mean magnesium
intake was 339 mg per day, which is above the adequate intake of 300 mg per day.

3.2.9. Vitamin K1, Iodine, Potassium, Copper, or Zinc

No data were found for the vitamin K1, iodine, potassium, copper, or zinc intakes
of pregnant women. For iodine, copper, and zinc, several studies were found reporting
the status data of these nutrients. Two cohort studies reported urinary iodine concentra-
tions. Dineva et al. reported a median urinary iodine to creatinine ratio of 210 µg/g [26],
which is above the cut-off value of 150 µg/L for insufficiency. Mayunga et al. reported,
however, a median ratio of 141 µg/g, where 58% of the women had insufficient iodine
concentrations [99]. A total of 40% of the women used iodine-containing supplements, of
which 29% used a dose of 75 µg per day and 17% a dose of 150 µg per day [99]. Women
who were not consuming iodine-containing supplements had a significantly lower urinary
iodine to creatinine ratio (130 µg/g) than those consuming a 75 (148 µg/g) or 150 µg iodine
supplement (171 µg/g) [99]. One study reported the copper and zinc status and intake
of these micronutrients via supplements in pregnant women [87]. About 73% of women
used a copper- and zinc-containing supplement during early pregnancy. No significant
differences were found in the copper and zinc status for supplement users compared to
non-users: the copper status was 26.29 µmol/L and 26.25 µmol/L, and the zinc status was
12.57 µmol/L and 12.55 µmol/L, respectively.

3.2.10. Multivitamin Supplements

The Dutch Health Council recommends the use of folic acid and vitamin D supplements
during pregnancy. The use of a supplement containing multiple vitamins and minerals is not
recommended; however, it may be useful when a diet appears inadequate for several nutrients
due to dietary restrictions (e.g., not consuming fish). Multivitamin supplement use was reported
in several studies and ranged from 18% to 80% [56,58,69,71,74,76,84,87,91,100,101]. Prenatal-
specific supplement intake increased during early pregnancy: 29% of the women started the use
before pregnancy, and at 8 weeks of pregnancy, 61% used this type of supplement [102]. The
general multivitamin use decreased from 8% before pregnancy to 5% at 8 weeks of gestation.
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4. Discussion

This systematic review provides a comprehensive overview of the food and nutrient
intakes of pregnant women in The Netherlands. In addition, it compares the intakes to the
2021 Health Council dietary recommendations and reference values for pregnant women.

Based on the current literature review, pregnant women living in The Netherlands
seem to have adequate intakes of protein, vitamin A, thiamin, riboflavin, vitamin B6, folate,
vitamin B12, vitamin C, iron, calcium, and magnesium. For folate and vitamin D, additional
intake through supplements was needed to reach the recommended intake. The use of
these supplements varied greatly, and the correct use (recommended dose and timing) may
be improved. Calcium intake may not be sufficient after 20 weeks of gestation. About
half of the women had a caffeine intake that was above the recommendation. The reasons
for concern are the intakes of fruits, vegetables, and (fatty) fish, which were below the
recommendations, and the intakes of alcohol, sugary drinks, and salt, which exceeded the
recommendations. No data were available to evaluate the intake of unsalted nuts, weekly
legume consumption, wholegrain cereal products, red and processed meat, niacin, vitamin
K1, potassium, copper, zinc, and iodine.

4.1. Previous Research

Blumfield et al. published a meta-analysis on the dietary intake of micronutrients
in developed countries [103]. In line with our findings, they concluded that there is an
adequate intake of thiamin, riboflavin, niacin, vitamin B12, vitamin C, and calcium in
most countries. In contrast, they found an inadequate intake of iron. This conclusion was,
however, based on the EAR results, which were 2–3 times higher than the one used in
the current review. As in our review, vitamin D and folate dietary intakes were found to
be inadequate. Blumfield et al. found information on the vitamin A and zinc intakes of
pregnant women in Italy, Finland, Sweden, the UK, Norway, and Spain. Intakes were above
the EARs. As in our review, no data were found for iodine and vitamin K intakes.

Pregnant women did not adhere to the recommendations for fruit, vegetables, (fatty)
fish, alcohol, sugary drinks, and salt. Similar findings were observed in the general Dutch
population [104,105]. In the general population, changes were, however, seen over time,
with a small increase in vegetable and fruit consumption, a small decrease in alcohol
consumption, and a significant decrease in sugary drinks (2012–2016). In addition, the
intake of legumes and unsalted nuts increased, and the intake of (red) meat and processed
meat decreased. It is, however, unclear whether this trend over time is also seen among
pregnant women. The estimated salt intake was about 8 g among pregnant women. This
high intake is in line with the intake of the general Dutch population [106]. Recent data
(2020–2021), based on 24 h urine excretion, indicated that women had a median intake
of 8.5 g per day. Although the salt intake has decreased over the past 15 years, it still
exceeds the recommendations. Reducing one’s salt intake will lower blood pressure;
there is, however, insufficient evidence to support an effect for the prevention of pre-
eclampsia [107,108].

The current review did not identify iodine intake data for pregnant women. One
cohort reported the iodine status based on spot-urine analyses assessed in 2002–2006 [26].
The authors concluded that pregnant women were iodine-sufficient (median iodine-to-
creatinine ratio of 210 µg/g, 25–75th percentiles: 140–303 µg/g). About 29% of women
were below the urinary iodine-to-creatinine ratio cut-off value of 150 µg/g. A second study,
however, assessed in 2018–2019, concluded that iodine status was insufficient (median
iodine-to-creatinine ratio of 141 µg/g, range: 42–1938 µg/g), with 58% of women below
150 µg/g [99]. Based on a recent study among the general Dutch population, iodine intake
was sufficient, but should not decrease any further [109]. The median intake among women
decreased over the past 15 years (from 234 µg/d to 153 µ/d), which is similar to our
findings for pregnant women. This decrease is, at least partly, the result of a change in the
legislation in 2008, resulting in reductions in iodine fortification in bread [110]. Pregnant
women have an increased iodine need for a properly functioning thyroid gland, which
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is important for the child’s growth and brain development [6]. The Iodine in Pregnant
Women Study (Jodium in Zwangere vrouwen Onderzoek, JOZO) is currently ongoing to
determine the iodine status among pregnant women in The Netherlands [111].

4.2. Supplement Use

Dietary vitamin D and folate intakes were inadequate; however, we also found that
supplementation helped to fill the gap. This is in line with the current recommendation
for pregnant women to use vitamin D and folate supplements. Adherence to these rec-
ommendations is, however, not optimal. Supplement use varied greatly among pregnant
women. Folic acid supplement use ranged from about 50–100%, and vitamin D use ranged
from 3–89%. Another finding was that folic acid supplements are often not used during the
entire recommended period. These findings are in line with a recent publication on folic
acid supplement use in The Netherlands [112]. Although the percentage of non-users was
low (3%), women often did not follow the guidelines correctly (34%). Supplementation was
started too late (92%), or women stopped too early (12%). The overall use improved over
time (2014–2019); however, the correct use did not improve, indicating that knowledge
about the importance of folic acid use improved but a better understanding of correct use
is required. Women up to 25 years old with a low or middle education level, women not
born in The Netherlands, and women not with a first pregnancy were identified as risk
groups for incorrect folic acid supplement use. It is, however, unclear whether this resulted
in an increased risk for neural tube defects. The possible reasons for not adhering to rec-
ommendations may be an overestimation of their own health, their perceived knowledge,
or a possible underestimation of their health risks [31]. The knowledge and correct use of
folic acid supplements were found to be higher among women with a higher education
compared to those with a lower education [64]. For vitamin D, about half of the women did
not use the recommended dosage. This may be due to the changed recommendation. In
2008, the Health Council thought it desirable to use vitamin D supplements; in 2012, supple-
mentation was recommended as a precautionary, and in 2021, vitamin D supplementation
was advised for all pregnant women [6,16,113].

The literature suggests that women often start prenatal multivitamin supplement
use during early pregnancy [102]. Although the use of a multivitamin supplement is not
generally recommended by the Health Council, women might choose such a supplement for
practical reasons (i.e., containing both folic acid and vitamin D). In the case of multivitamin
supplement use, the Health Council recommends the use of supplements specifically
developed for use during pregnancy to ensure adequate dosages and prevent undesirable
high dosages.

4.3. Quality of the Data

All dietary assessments were performed with FFQs. Although FFQs are often used in
large-scale studies due to their relatively low costs and limited participant burden, they
do not accurately assess the individual’s daily intake, but they are valid for ranking the
subjects according to their intakes [114,115]. FFQs are often developed to cover the main
dietary sources of a specific nutrient and include pre-specified foods. An example is the
FFQ used by Willemse et al., which was specifically designed to assess calcium intake [102].
Based on their preselected foods, they were able to capture over 60% of the total dietary
calcium intake, and adjustments were made in the analysis to reflect the total intake. This
type of information on the performance of the FFQ is often lacking in publications, and
FFQs are seldom validated in pregnant women. We identified only one study that used 24 h
recalls, in which a semi-quantitative FFQ was validated against three non-consecutive 24 h
recalls [57]. The study showed good validity for the FFQ assessment of folate and vitamin
B12; however, validity was not assessed for other micronutrients and was unknown. The
results of the 24 h recalls were not included in this review; however, based on the results of
the 24 h recalls, the conclusions remained the same, except for riboflavin. Riboflavin intake
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was 1.7 mg/d above the EAR based on the 24 h recalls, whereas based on the FFQ intake, it
was at the EAR (1.5 mg/d).

Dietary assessment methods are not always appropriate for assessing certain nutrients,
such as salt intake [116]. Salt added during the preparation of the meal or at the table is
difficult to assess accurately. Urine sodium excretion studies are therefore more appropriate
for assessing the salt intake. The current review, however, did not identify such studies
among pregnant women. It is desirable that future research include urine excretion assess-
ments. In addition, research is needed on sensitive and specific biochemical nutrient status
markers (e.g., copper and zinc status) in order to identify marginal deficiencies before the
onset of severe deficiencies [29].

In addition to the methodology, the time span and national representativeness affect
the usability of the identified studies for evaluating the nutrient intake of pregnant women
in The Netherlands [14]. Dietary assessments were performed between 1989 and 2021
and were often limited to a few nutrients. For several nutrients, only a single study was
identified with intake data, which makes the conclusions for these nutrients less strong. In
addition, none of the studies were nationally representative of pregnant women living in
The Netherlands. The time span may have influenced our findings, as recommendations
differed at the time the dietary intake was assessed compared to the current 2021 recom-
mendations. For example, the recommended fish consumption has increased from once
per week (in 2015) to two times per week (2021) [6]. Another example is the use of vitamin
D supplements, as described before. Recent data are therefore essential for evaluating the
current recommendations.

4.4. Strengths and Limitations

It must be noted that the results should be interpreted with care. Most studies only
reported the mean or median and did not provide insights into the intake or status dis-
tributions. As such, we had to base our evaluation on what was reported, resulting in a
qualitative comparison of the mean/median with the EAR. For most nutrients, the propor-
tion with an intake below the EAR is an estimate of the proportion with inadequate intakes.
When the mean/median intake is below the EAR, a large part of the population is expected
to have low intakes. When the mean/median intake is above the EAR, a proportion of
the population might still be at risk of nutrient inadequacies. Additional information on
the intake distribution is needed to make quantitative statements on nutrient inadequacy
(i.e., calculation of the percentage falling below the EAR).

The literature search was designed and performed with great care. However, we might
have missed certain publications due to publication bias or recent research that had not yet
been published. In addition, we performed a general search on nutrient status and may
have missed specific publications on biochemical nutrient markers of metabolic function
(e.g., methylmalonic acid [117]). As the review includes over 200 articles, representing
50 (cohort) studies, we expect that our findings reflect the available nutritional data for
pregnant women in The Netherlands.

4.5. Future Research

Our study showed that although there are several studies among pregnant women
collecting data on nutrient or food intake or status, the reported data are often not sufficient
for evaluating the dietary intakes and status of Dutch pregnant women. Therefore, the
potential risks of nutrient inadequacies for mothers and their children are unknown, and
no scientific-based advice or policies can be set.

Based on the current findings, we are unable to propose effective intervention strate-
gies and potential policies, as additional high-quality data and behavior research are needed.
For several foods and nutrients, no intake data were found. It is important to assess these
foods and nutrients and monitor their intake in order to evaluate the intakes and inform
nutritional policies [103]. In addition, potential barriers and facilitators for adhering to the
recommendations and guidelines should be studied in order to develop evidence-based
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interventions. Existing interventions and policies, such as for folic acid supplements, are
currently being studied and evaluated. The ‘Power 4 a Healthy Pregnancy’ study is ongo-
ing [118]. The diet quality will be assessed based on the 2021 Health Council guidelines,
which will provide valuable information on, amongst others, legume, red/processed meat,
and wholegrain product consumption. In addition, it will identify the potential barriers for
pregnant women, midwives, and dietitians and study the effectiveness of counselling on
diet quality.

The study by Looman et al. was the only study that measured nutrient intake and
status at several timepoints during pregnancy and identified differences between these
endpoints [50]. This shows that it is important to monitor intake and status during the entire
pregnancy. In addition, this information will help improve nutrition recommendations
during pregnancy, as the current recommendations are generally one value for the entire
pregnancy due to a lack of information [9,24]. Physiological changes during pregnancy and
inflammatory measures may affect nutritional status [24,50]. Better insight into these effects
on the interpretation of nutritional status data is warranted [119]. In addition, monitoring
and optimizing the nutrient intake of women of childbearing age is of importance, as the
status of certain nutrients relies on the pre-pregnancy nutrient stores [103]. A proportion
of Dutch women of childbearing age were found to have potential inadequate nutrient
intakes [104], suggesting that their nutrient stores may be sub-optimal for pregnancy. The
Dutch Health Council indicates that restricting the intake of animal-derived products
may cause challenges in reaching certain recommendations and may increase the risk
of inadequate intakes of fish (fatty acids), calcium, iron, iodine, and vitamin B12 [6]. In
addition, the Health Council recommends vitamin B12 supplementation for those following
a vegan diet. Data on vegetarian and vegan diets among pregnant women are, however,
limited. Currently, almost 10% of Dutch women follow vegan or vegetarian diets [120].
Regarding the protein transition and the shift to a more plant-based diet, monitoring the
diet, nutrient intake, and status is important.

A survey among midwives and obstetricians indicated that 60% and 24%, respectively,
discussed maternal dietary preferences during their first prenatal consult [121]. However,
they often considered their knowledge insufficient to provide advice on a strict plant-based
diet. It is of interest to study how dietary preferences will evolve in the future and whether
pregnant women are able to fill a potential gap through food choices, fortified foods, such
as meat and dairy alternatives, or supplements, and whether they need additional advice.
Midwives and obstetricians may receive additional training to increase their knowledge
regarding plant-based diets during pregnancy.

There is a need for high-quality data. As mentioned before, representative and recent
data are needed to evaluate the nutrient intake of pregnant women. The current review only
provides a first indication of potential adequate intakes and too low intakes. A suggestion
is to include multiple 24 h dietary recalls in future (cohort) studies or include pregnant
women in food consumption surveys. This enables us to accurately estimate the habitual
intake, determine the intake distribution, and quantify potential nutrient deficiencies.
New technologies such as online 24 h dietary recalls and smart-phone food records may
lower participant burden [122]. Subsequently, when using the same methodology, data
from different (local) studies may be combined to form a (more) representative sample of
pregnant women in The Netherlands. In addition, biochemical nutrient status markers
may be assessed in a (sub) population to complement (e.g., urinary sodium and iodine) or
confirm findings from the dietary assessment.

5. Conclusions

The current review identified several studies among pregnant women collecting
data on nutrient intake, food intake, or status of Dutch pregnant women. However, the
reported data are often not sufficient for evaluating dietary intake and status due to the
methodology, time span, and national representativeness. For several foods and nutrients,
no or limited intake data were found. Based on the available literature, pregnant women
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living in The Netherlands seem to have adequate intakes of protein, vitamin A, thiamin,
riboflavin, vitamin B6, folate, vitamin B12, vitamin C, calcium, and magnesium. For
folate and vitamin D, additional intake through supplements was needed to reach the
recommended intake. The use of these supplements varies greatly, and the correct use
(recommended dose and timing) may be improved. Calcium intake may not be sufficient
after 20 weeks of gestation. About half of the women had a caffeine intake that was above
the recommendation. The reasons for concern are intakes of fruits, vegetables, and (fatty)
fish that are below the recommendations and intakes of alcohol, sugary drinks, and salt
that exceed the recommendations. There is a need for high-quality, representative, and
recent nutritional research in order to make accurate assessments and evaluate nutrient
intakes, supporting scientific-based advice and national nutritional policies.
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Appendix A

Table A1. Embase search string used to identify records. No changes were made since the previous
systematic review [14].

No. Query

#41
#40 AND (‘article’/it OR ‘article in press’/it

OR ‘editorial’/it OR ‘letter’/it OR ‘note’/it OR
‘review’/it)

#40 #39 AND [humans]/lim AND (2008–2017)/py
#39 #6 AND #30 AND #38

#38 #31 OR #32 OR #33 OR #34 OR #35 OR #36 OR
#37

#37 ‘food frequency questionnaire’/exp
#36 ‘nutritional assessment’/exp
#35 ‘nutritional deficiency’/exp
#34 ‘nutritional status’/exp
#33 ‘maternal nutrition’/exp
#32 ‘dietary intake’/exp
#31 ‘child nutrition’/exp
#30 #20 NOT #29
#29 #24 OR #28
#28 #25 OR #26 OR #27
#27 hospitalized:ti,ab
#26 ‘patient*’:ti,ab
#25 ‘patient’/exp
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Table A1. Cont.

No. Query

#24 #21 OR #22 OR #23
#23 preterm:ti,ab
#22 ‘premature labor’/exp
#21 ‘prematurity’/exp
#20 #11 OR #16 OR #19
#19 #17 OR #18
#18 ‘pregnancy’/exp
#17 ‘pregnant woman’/exp
#16 #12 OR #13 OR #14 OR #15
#15 ‘fetus’/exp
#14 ‘embryo’/exp
#13 ‘perinatal period’/exp
#12 ‘prenatal period’/exp
#11 #7 OR #8 OR #9 OR #10
#10 ‘child care’/exp
#9 ‘preschool child’/exp
#8 ‘toddler’/exp
#7 ‘infant’/exp
#6 #1 OR #2 OR #3 OR #4 OR #5
#5 dutch:ti,ab
#4 ‘dutchman’/exp
#3 ‘netherlands’:ca
#2 ‘netherlands’:ti,ab
#1 ‘netherlands’/exp

Table A2. Embase search string for the additional literature search on vitamin D and folate intake
and status in women of childbearing age.

No. Query

#29 #28 AND ([adult]/lim OR [young adult]/lim)
#28 #23 NOT #27
#27 #24 OR #25 OR #26
#26 ‘older individual*’:ti,ab
#25 ‘elderly’:ti,ab
#24 ‘older adult*’:ti,ab

#23 #22 AND (‘article’/it OR ‘article in press’/it OR
‘editorial’/it OR ‘letter’/it OR ‘note’/it OR ‘review’/it)

#22 #21 AND [humans]/lim AND [2008–2017]/py
#21 #6 AND #14 AND #20
#20 #15 NOT #19
#19 #16 OR #17 OR #18
#18 hospitalized:ti,ab
#17 ‘patient*’:ti,ab
#16 ‘patient’/exp
#15 ‘female’/exp
#14 #7 OR #8 OR #9 OR #10 OR #11 OR #12 OR #13
#13 ‘folate status’:ti,ab
#12 ‘folic acid status’:ti,ab
#11 ‘vitamin d status’:ti,ab
#10 ‘folic acid’/exp
#9 ‘folic acid deficiency’/exp
#8 ‘vitamin d’/exp
#7 ‘vitamin d deficiency’/exp
#6 #1 OR #2 OR #3 OR #4 OR #5
#5 dutch:ti,ab
#4 ‘dutchman’/exp
#3 ‘netherlands’:ca
#2 ‘netherlands’:ti,ab
#1 ‘netherlands’/exp
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Appendix B

Table A3. Overview of study characteristics.

Study Name and References Study Design Year(s) of Data
Collection

Number of
Participants 1

Participant
Characteristics

Parameters Assessed 2 Method

Food
Consumption Nutrient Intake 3

Nutrient
Supplement

Intake

Biochemical
Nutrient Status

Dietary
Assessment

Biochemical
Nutrient

Status

ABCD [20,52,65,78,89,93,123–140] Longitudinal
cohort study 2003–2004 235–8267

15–44 years
T1

Amsterdam

(Fatty) fish,
alcohol, and

caffeine

Folic acid,
vitamin B12,

vitamin D, and
iron

Folate,
vitamin B12,
vitamin D,

ferritin, and
iron

FFQ and
questionnaire Serum

APROPOS-II [31] Cross-sectional
study 2019–2021 1077

29–33 years
T1

The
Netherlands

Vegetables, fruit,
Alcohol, and

caffeine
Folic acid Questionnaire

DACE [141,142] Longitudinal
cohort study 1998–2002 101

Age n.s.
T1–T3

Northern
Netherlands

Alcohol Questionnaire

DELIVER [66,143–145] Cross-sectional
study 2009–2011 1097–6107

16–48 years
T1–T3

Across The
Netherlands

Vegetables, fruit,
and

alcohol
Folic acid Questionnaire

Dutch Monitor on Substance Use and
Pregnancy [67]

Cross-sectional
study 2016 1858

>18 years
T1–T3

Across The
Netherlands

Alcohol Folic acid Questionnaire

EUROCAT 4 [68,146] Case-control
study 1996–2005 448–3012

15–50 years
Trimester n.s.

Northern
Netherlands

Alcohol Folic acid Questionnaire

EuroPrevall Birth Cohort [69] Cohort study 2005–2010 976

Age range n.s.
T3–4 weeks
after birth

Amsterdam

Folic acid,
vitamin D, and
multivitamin

Questionnaire
administered by

trained
interviewer

Expert study I [83,102] Cohort study 2013–2015 2477

>18 years
T1

Southeastern
Netherlands

Calcium Calcium Questionnaire
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Table A3. Cont.

Study Name and References Study Design Year(s) of Data
Collection

Number of
Participants 1

Participant
Characteristics

Parameters Assessed 2 Method

Food
Consumption Nutrient Intake 3

Nutrient
Supplement

Intake

Biochemical
Nutrient Status

Dietary
Assessment

Biochemical
Nutrient

Status

Generation
R [20,21,26,39,41,44,51,53–

55,70,82,84,92,94,96,98,116,124,147–242]

Longitudinal
cohort study 2001–2005 59–8742

20–40 years
T1

Rotterdam

Vegetables, fruit,
nuts, bread,
(breakfast)

cereal, pasta,
rice, legumes,
vegetable oil,

margarine,
butter, meat,
fresh meat,

processed meat,
sugar-

containing
drinks, (fatty)
fish, alcohol,
caffeine, and

salt

Protein,
calcium, iron, and

magnesium

Folic acid,
multivitamin,

and iron

Folate,
vitamin B12,
vitamin D,

iodine, ferritin,
and iron

FFQ 5 and
questionnaire

Plasma,
serum, and

urine

GLIMP2 [50] Cohort study 2015–2017 53–67

Age range n.s.
T0, T1, or T2

Eastern
Netherlands

Alcohol

Protein,
vitamin B6,

folate,
vitamin B12,

vitamin D, and
iron

Folic acid,
vitamin B12,

vitamin D, and
iron

Vitamin B6,
folate,

vitamin B12,
vitamin D, and

ferritin

FFQ 5
Whole blood,
plasma, and

serum

HAPPY [87] Longitudinal,
cohort study 2013–2014 2041

Age range n.s.
T1

Southeastern
Netherlands

Alcohol Vitamin D and
multivitamin

Copper and
zinc Questionnaire Plasma

HAVEN [43,71,243] Case-control
study 2003–2006 251–324

25–40 years
FFQ

assessment 16
months after
pregnancy;
alcohol and

supplement use
4 weeks prior to

8 weeks post
conception.
Rotterdam,
Leiden, and
Amsterdam

Alcohol
DHA, EPA,
riboflavin,

niacin, and folate

Folic acid and
multivitamin

FFQ 6 and
questionnaire

Healthy pregnant [72] Case-control
study 2004–2009 529

Age range n.s.
Trimester n.s.

Veendam,
Groningen

Alcohol Folic acid Questionnaire
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Table A3. Cont.

Study Name and References Study Design Year(s) of Data
Collection

Number of
Participants 1

Participant
Characteristics

Parameters Assessed 2 Method

Food
Consumption Nutrient Intake 3

Nutrient
Supplement

Intake

Biochemical
Nutrient Status

Dietary
Assessment

Biochemical
Nutrient

Status

HERNIA [56] Case-control
study 2006–2009 46

Age range n.s.
T2

Rotterdam
Protein Folic acid and

multivitamin
FFQ 5 and

questionnaire Serum

IROSTAT [95] Case-control
study 2011–2012 313

Age range n.s.
T1–T3

Den Haag,
Rotterdam

Iron Questionnaire

JOZO [99] Cohort study 2018–2019 292

21–43 years
T1–T3

Northern
Netherlands

Iodine Iodine n.s. Urine

KOALA [20,32,42,81,89,91,124,244] Cohort study 2000–2002 913–2834

Age range n.s.
T3

Central and
South

Netherlands

Vegetables, fruit,
bread,

(breakfast)
cereals,

legumes, meat,
processed meat

and poultry,
and alcohol

DHA,
vitamin B12

Fish oil,
vitamin B12,

vitamin D, and
multivitamin

Vitamin B12 and
vitamin D Questionnaire Plasma

Lifelines [73] Cohort study Children born
in 1993–2013 5602

15–>40 years
Trimester n.s.

Northern
Netherlands

Alcohol Folic acid Questionnaire

LINC [245] Cohort study 2011–2013 59

23–40 years
Trimester n.s.

Region of
Zwolle

Alcohol Questionnaire

LucKi [20] Cohort study 2006-n.s. 543

Age range n.s.
Trimester n.s.

The
Netherlands

(Fatty) fish Questionnaire
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Table A3. Cont.

Study Name and References Study Design Year(s) of Data
Collection

Number of
Participants 1

Participant
Characteristics

Parameters Assessed 2 Method

Food
Consumption Nutrient Intake 3

Nutrient
Supplement

Intake

Biochemical
Nutrient Status

Dietary
Assessment

Biochemical
Nutrient

Status

Maastricht cohort and intervention study
about pregnancy-related girdle pain [74] Cohort study 2000–2002 7526

Age range n.s.
Trimester n.s.
Control group
in positional

plagiocephaly
cohort

Southeastern
area of The

Netherlands

Folic acid and
multivitamin Questionnaire

MEFAB [246,247] Cohort study 1989–1995 242–292

Age range n.s.
Assessed at

follow-up visit
outpatient clinic

in
Maastricht,

which is south
of The

Netherlands

Alcohol Questionnaire Plasma

MINDS-Leiden [248] Longitudinal
study n.s. 150

17–25 years
T3

Leiden
Alcohol Questionnaire

Parents to Be [75] RCT 2000–2003 422

18–40 years
2 months after

birth
Leiden

Alcohol Folic acid Questionnaire

‘Peiling melkvoeding van zuigelingen’
[249] National survey 2015 1678

17–48 years
Until 7 months
after pregnancy

The
Netherlands

Alcohol (use
before

conception)
Questionnaire

PIAMA [20,36,37,76,124] Cohort study 1996–1997 3335–3963

Age range n.s.
T1–T3

The
Netherlands

Vegetables, fruit,
nuts, and fish

Folic acid and
multivitamins

FFQ and
questionnaire

Pregnancy Anxiety and Depression
[46,250] Cohort study 2011–2013 1340

Age range n.s.
T2

The
Netherlands

Alcohol Questionnaire

RESPECT study [38] Cohort study 2012–2014 3684

Age range n.s.
T1

Central region
of The

Netherlands

Fruit Folic acid Questionnaire
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Table A3. Cont.

Study Name and References Study Design Year(s) of Data
Collection

Number of
Participants 1

Participant
Characteristics

Parameters Assessed 2 Method

Food
Consumption Nutrient Intake 3

Nutrient
Supplement

Intake

Biochemical
Nutrient Status

Dietary
Assessment

Biochemical
Nutrient

Status

Rotterdam Predict
Study [35,77,79,80,100,251–258] Cohort study 2009–2016 74–638

22–45 years
T1, women who

conceived
naturally or via

IVF/ICSI
treatment
Rotterdam

Vegetables, fruit,
and

alcohol

Folic acid and
multivitamin

Folate and
vitamin B12, Questionnaire RBC and

serum

TRAILS [48,259] Cohort study 2001 1667

Age range n.s.
T1–T3

Northern part
of The

Netherlands

Alcohol Questionnaire

ZOOG [88,101] Intervention
study 2014–2015 36

21–38 years
T2

Northern part
of The

Netherlands

Vitamin D and
multivitamin Vitamin D Questionnaire

Belderbos et al. [86] Cohort study 2006–2009 156
Age range n.s.

T1–T3
Utrecht

Vitamin D Questionnaire

Bliek et al. [58] Case-control
study 1998–2003 258

Age range n.s.
15 months after

birth
The

Netherlands

Folic acid and
multivitamin Questionnaire

Cooijmans et al. [260] RCT 2016–2018 60
Age range n.s.

T3
Nijmegen

Alcohol Questionnaire

de Smit et al. [59] Controlled trial 2007–2008 21

Age range n.s.
11 months
after birth

Eastern part of
The

Netherlands

Folic acid Questionnaire

Diepeveen et al. [261] Case-control
study n.s. 253

Age range n.s.
10 days after

birth
The

Netherlands

Alcohol Questionnaire
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Table A3. Cont.

Study Name and References Study Design Year(s) of Data
Collection

Number of
Participants 1

Participant
Characteristics

Parameters Assessed 2 Method

Food
Consumption Nutrient Intake 3

Nutrient
Supplement

Intake

Biochemical
Nutrient Status

Dietary
Assessment

Biochemical
Nutrient

Status

Dirix et al. [49] Case-control
study n.s. 90

Age range n.s.
T3

Southern
Limburg

region

Alcohol Questionnaire

Doornbos et al. [40] RCT n.s. 36

Age range n.s.
T1, T2 and 3
months after

birth
Region n.s.

(Fatty) fish FFQ

Groen in ’t Woud et al. [60] Case-control
study

delivery date
1990–2013 2601

Age range n.s.
Trimester n.s.,
Netherlands

Folic acid Questionnaire

Hogeveen et al. [61] Cross-sectional
study 2002–2004 366

Age range n.s.
T3

Nijmegen
Folic acid Folate Questionnaire Plasma

Lamb et al. [262] Cohort study 2008 410
Age range n.s.

At birth
Nijmegen

Alcohol Questionnaire

Meulenbroeks et al. [121] Survey 2019–2019
121 midwives

and 179
obstetricians

Age range and
trimester n.a.

The
Netherlands

Plant-based diet Questionnaire

Merkx et al. [33] Cross-sectional
study 2012 455

Age range n.s.
Trimester n.s.

Southern part of
The

Netherlands

Vegetables, fruit,
and fish FFQ 4

Obermann-Borst et al. [62] Cohort study 2003–2007 120

Age range n.s.
17 months after

birth
Rotterdam

Folic acid Questionnaire

Poels et al. [47] Case-control
study 2015–2016 283

16–>35 years
Within 1 year

after birth
Zeist

Alcohol Folic acid Questionnaire

Pop et al. [263] Cohort study 2013–2014 1903

19–43 years
T1

Southeastern
part of The

Netherlands

Alcohol Questionnaire



Nutrients 2023, 15, 3071 28 of 41

Table A3. Cont.

Study Name and References Study Design Year(s) of Data
Collection

Number of
Participants 1

Participant
Characteristics

Parameters Assessed 2 Method

Food
Consumption Nutrient Intake 3

Nutrient
Supplement

Intake

Biochemical
Nutrient Status

Dietary
Assessment

Biochemical
Nutrient

Status

Schoorl et al. [97] Case-control
study n.s. 145

Age range n.s.
T3

Region n.s.
Hemoglobin Blood

Stern et al. [264] Longitudinal
study n.s. 187

21–43 years
During

pregnancy up to
12 months
after birth

The
Netherlands

Alcohol Questionnaire

TNO et al. [63] Controlled trial 2006–2007 333

Age range n.s.
Trimester n.s.

The
Netherlands

Folic acid Questionnaire

van Dijk et al. [34] RCT 2014–2017 109

18–45 years
Non-pregnant

and T1
beginning T2

Rotterdam

Vegetables and
fruit Folic acid Questionnaire

Voortman et al. [57] FFQ validation
study 2010 83

Age range n.s.
T2

Rotterdam

Protein,
thiamine,
riboflavin,
vitamin B6,

folate,
vitamin B12,
vitamin C,

calcium, iron, and
retinol

Folic acid Folate and
vitamin B12

FFQ, 3
non-consecutive
24 h-recalls, and

questionnaire

RBC and
plasma

Vujkovic et al. [45] Case-control
study 1999–2001 81

Age range n.s.
14 months after

birth
The

Netherlands

Folic acid Questionnaire

Weernink et al. [90] Case-control
study 2009–2010 548

Age range n.s.
2–4 months
after birth

The
Netherlands

Vitamin D Questionnaire
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Table A3. Cont.

Study Name and References Study Design Year(s) of Data
Collection

Number of
Participants 1

Participant
Characteristics

Parameters Assessed 2 Method

Food
Consumption Nutrient Intake 3

Nutrient
Supplement

Intake

Biochemical
Nutrient Status

Dietary
Assessment

Biochemical
Nutrient

Status

Zetstra-van der Woude et al. [64] Cross-sectional
study 2009 486

Age range n.s.
T1–T3

Northern part
of The

Netherlands

Folic acid Questionnaire

1 As multiple references were available, the minimum and maximum number of the reported sample size are stated. In case of a RCT or case-control study the number of participants in the
control group are stated; 2 limited to those recommended by the Health Council of The Netherlands [5,11,12]; 3 may include nutrient intake from supplements; 4 Northern Netherlands
register on congenital anomalies; 5 dietary assessment method was reported as validated; 6 modified version of a validated questionnaire; vitamin D status = 25(OH)D = 25-hydroxyvitamin D;
FFQ = food frequency questionnaire; IVF/ICSI = in vitro fertilisation/intracytoplasmic sperm injection; n.a. = not applicable; n.s. = not stated; RBC = red blood cells; RCT = randomized
controlled trial; T0 = preconception, T1 = first trimester 1–3 months; T2 = second trimester 4–6 months; T3 = third trimester 7–9 months.
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