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Abstract: Pancreatic lipase (PL) is a key hydrolase in lipid metabolism. Inhibition of PL activity can
intervene in obesity, a global sub-health disease. The natural product is considered a good alternative
to chemically synthesized drugs due to its advantages, such as low side effects. However, traditional
experimental screening methods are labor-intensive and cost-consuming, and there is an urgent need
to develop high-throughput screening methods for the discovery of anti-PL natural products. In
this study, a high-throughput virtual screening process for anti-PL natural products is provided.
Firstly, a predictable anti-PL natural product QSAR model (R2

train = 0.9444, R2
test = 0.8962) were

developed using the artificial intelligence drug design software MolAIcal based on genetic algorithms
and their conformational relationships. 1068 highly similar (FS > 0.8) natural products were rapidly
enriched based on the structure-activity similarity principle, combined with the QSAR model and the
ADMET model, for rapid prediction of a total of five potentially efficient anti-PL natural products
(IC50pre < 2 µM). Subsequently, molecular docking, molecular dynamics simulation, and MMGBSA
free energy calculation were performed to not only reveal the interaction of candidate novel natural
products with the amino acid residues of PL but also to validate the stability of these novel natural
compounds bound to PL. In conclusion, this study greatly simplifies the screening and discovery of
anti-PL natural products and accelerates the development of novel anti-obesity functional foods.

Keywords: pancreatic lipase; dietary flavonoids; quantitative structure-activity relationship; molecular
simulation; molecular mechanics/generalized born surface area

1. Introduction

The increasing prevalence of obesity and its associated complications is becoming a
growing public health problem [1]. Obesity is a significant contributor to the chance of
developing numerous chronic diseases, including cancer, diabetes, hypertension, hyper-
lipemia, and cardiovascular disease [2]. Pancreatic lipase (PL) inhibitors play a key role in
the metabolism of human fat. It breaks down the oil in the food source into small molecules
of glycerol and fatty acids so that the body can absorb these substances and synthesize new
fats through lipid metabolism [3]. Based on this feature, the search and development of
PL inhibitors can control lipolysis at the source and thus intervene in obesity. Orlistat is a
potent, specific, and irreversible inhibitor of pancreatic and gastric lipase, which exerts its
pharmacological activity by forming covalent bonds with the active serine sites of gastric
and PL in the lumen of the gastrointestinal (GI) tract [4]. Therefore, there is an urgent need
to find safe and effective anti-obesity therapies and drugs to address these problems.

Nutrients 2023, 15, 3489. https://doi.org/10.3390/nu15153489 https://www.mdpi.com/journal/nutrients

https://doi.org/10.3390/nu15153489
https://doi.org/10.3390/nu15153489
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com
https://orcid.org/0000-0001-9898-1238
https://orcid.org/0000-0003-2542-9279
https://doi.org/10.3390/nu15153489
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com/article/10.3390/nu15153489?type=check_update&version=1


Nutrients 2023, 15, 3489 2 of 18

Natural products have been applied in anticancer [5], metabolic regulation [6], and
antiviral [7] research due to their structural variety, low toxicity, and wide range of sources.
Flavonoids are a rich and representative branch of natural products that are widely found
in natural plants with polyphenolic structures [8]. Research reports that foods rich in
flavonoids have good anti-obesity effects. Zhang et al. reported that C. tinctoria and its
flavonoid kaempferol showed protective effects against diet-induced disorders of glucose
metabolism and intestinal microbial changes in obese mice [9]. Hao et al. reported that
flavonoids in seed residues of hippophae rhamnoides have inhibitory effects on obesity [10].
In order to clarify the relationship between flavonoids and PL, Li et al. determined the
effects of 26 kinds of dietary flavonoids on PL inhibitory activity and discovered that
flavonoids exhibited stronger PL inhibitory activity [11]. Li et al. employed various spectro-
scopic techniques and computational simulations to study the inhibitory effect of apigenin,
a natural dietary flavonoid, on PL activity and found that apigenin could reversibly inhibit
PL activity in a competitive mode [12]. These results suggest that flavonoids are effective
PL inhibitors as well as functional anti-obesity factors. However, flavonoids with different
structural features, such as different basic units, polymer size, and degree of glycosylation,
showed different PL inhibitory effects [13]. Therefore, exploring the intrinsic link between
the molecular structures of different flavonoids and their PL inhibitory activity and discov-
ering novel, highly active food-derived anti-PL active compounds could help prevent the
risk of obesity as well as reduce the number of obese people.

In recent years, quantitative structure–activity relationship (QSAR) models have been
widely used for the quantitative analysis of the structure–activity relationships of com-
pounds, such as the effects of flavonoids on Alzheimer’s disease, oxidative metabolism, and
influenza virus inhibition [14–16]. However, QSAR studies on flavonoid and PL inhibitory
activity are rarely reported. It is of great significance to automatically screen out suitable
natural analog candidate inhibitors based on rapid matching of the prediction model. In
this study, QSAR models were established based on previous experimental data [13,17].
The 1444 2D molecular descriptors of compounds in the dataset were derived from PaDEL-
Descriptor, and feature filtering and QSAR model construction were performed using
MolAICal’s GA algorithm for predicting PL inhibitory activity of flavonoids [18]. In this
study, we developed a comprehensive computational strategy for the rapid screening of
flavonoids as natural PL inhibitors. Based on this QSAR model, combined with Molnatsim,
1068 structurally similar substances were obtained in the COCONUT natural product clus-
ter library. Five PL inhibitors with the lowest IC50 values were further screened by ADMET
and molecular docking [19]. Finally, molecular dynamics (MD) simulations and molecular
mechanics/generalized born surface area (MMGBSA) energy calculations were performed
to validate the potential pharmacokinetics of these candidate inhibitors and their binding
stability to PL. These results contribute to the search for effective PL inhibitors and provide
an accurate model for the further development of novel PL inhibitor derivatives.

2. Materials and Methods
2.1. Dataset

A total of 40 flavonoids were selected from flavones, flavanones, isoflavones, flavonols,
and flavanols (Table S1), all of which had an obvious inhibitory effect on PL. We set
the IC50 concentrations in µM and calculated the pIC50 value according to the formula
−log IC50 × 10−6. The pIC50 value was used as the dependent variable in the QASR
modeling analysis [19]. The data set was randomly split into two sets: a training set (70%)
and a test set (30%), taking structural variety and bioactivity range into consideration. After
creating a classification model with 29 compounds from the training set, 11 compounds
from the test set were used as additional independent samples to verify the reliability and
stability of the classification model.
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2.2. Molecular Descriptors

The flavonoids in the dataset were searched in the PubChem database [1],
https://pubchem.ncbi.nlm.nih.gov/ (accessed on 26 November 2022), and the SDF format
of their 3D structures was obtained. To remove undesired atomic contacts and geometries,
the 3D structures of all flavonoids were optimized using the Avogadro program [20], and
energy was minimized using the steepest descent method of the MMFF94s force field [21].

Descriptors can convert chemical information encoded in the molecular symbol repre-
sentation into a useful number or some standard experimental result [22]. SDFs of com-
pounds in the dataset were imported into the PaDEL-Descriptor software package to calcu-
late molecular descriptors (version 2.21, http://www.yapcwsoft.com/dd/padeldescriptor/
(accessed on 3 August 2022)) [23]. PaDEL descriptors contain 1875 descriptors (1444 1D and
2D descriptors and 431 3D descriptors). The 2D molecular descriptors represent structural
information that can be calculated from the 2D structure of the molecule, such as the
number of benzene rings, the number of hydrogen bond donors, etc. The 3D molecular
descriptors represent structural details that can only be learned from the molecule’s 3D
representation (e.g., the solvent-accessible and surface area of the structure with a positive
partial charge).

The descriptors were preprocessed before modeling to improve the stability and
sensitivity of the model. To eliminate high covariance parameters (p > 0.9), correlation
analysis was used on the calculated molecular descriptors.

2.3. Model Construction and Prediction of pIC50 Values

QSAR is a powerful computational method for analyzing data based on chemical
structure. In order to predict biological activity with a variety of target chemical products,
the QSAR pharmacophore model was developed by creating a statistical mathematical con-
nection between calculated chemical descriptors of molecular structure and experimentally
measured values of these molecules’ biological activity [24].

In this study, 2D-QSAR models were built by calculating the molecular properties of
the training and test sets using MolAICal. Multiple linear regression (MLR) methods were
used to build 2D-QSAR models. Five descriptors were used as independent variables as
well as pIC50 as the dependent variable to establish statistical linear correlations for the
training set data (29 compounds) [25].

Finally, the descriptors were further optimized to construct the QSAR-MLR equations
based on the GA algorithm. These parameters and the pIC50 of flavonoids were optimized
iteratively using genetic algorithms separately, and QSAR models were constructed in
which 70% of dipeptide compounds were used as training sets and the remaining 30% as
validation sets. The optimal QSAR model was selected on the basis of three validation
parameters (R2, Q2, and MAE) [26]. All five descriptors incorporated into the model are
characterized in Table 1.

Table 1. QSAR model parameters and cross-validation results.

Train Test

R2 0.9444 R2 0.8962
R2

adj 0.9323 R2
adj 0.8847

MAE 0.1754 MAE 0.2515
RSS 1.3710 RSS 1.0134

SDEC 0.2174 SDEC 0.3035
pIC50pre = 3.83259 + (5.84689) ×MATS1p + (−0.30375) × ATSC6e + (−1.41739) × GATS2p +

(4.23423) × SpMin8_Bhi + (−0.07596) × VR2_D

eATSC6e, centered Broto-Moreau autocorrelation-lag6/weighted by Sanderson elec-
tronegativities; GATS2p, geary autocorrelation-lag2/weighted by polarizabilities; Sp-
Min8_Bhi, smallest absolute eigenvalue of Burden modified matrix-n8/weighted by relative

https://pubchem.ncbi.nlm.nih.gov/
http://www.yapcwsoft.com/dd/padeldescriptor/


Nutrients 2023, 15, 3489 4 of 18

first ionization potential; VR2_D, normalized Randic-like eigenvector-based index from
Barysz matrix/weighted by atomic number.

2.4. Validation of Models and Selection of the Optimal One for Prediction

The parameters R2 fitting, adjusted R2, MAE, RSS, and SDEC were used to assess the
MLR-QSAR model’s predictability and stability. The description and calculation formula
of these parameters are as follows:

R2 fitting: Correlation coefficients between experimental and predicted values, which
were calculated using Equation (1):

R2 = 1− SSres

SStot
= 1− ∑i(yi − fi)

2

∑i(yi − y)2 (1)

R2 adjusted: The adjusted R2 is defined as Equation (2):

adjusted R2 = 1− PRESS/dfe

SStot/dft
(2)

MAE: Mean absolute error was calculated using Equation (3):

MAE =
1
m∑m

i=0|yi − fi| (3)

RSS: Residual sum of squares was calculated using Equation (4):

RSS = ∑i(yi − fi)
2 (4)

SDEC: Standard deviation error in calculation was calculated using Equation (5):

SDEC =

√
RSS

n
(5)

2.5. Natural Product Screening Based on the MCS Algorithm and ADMET

The MolNatSim tool based on the COCONUT database was used to match the sim-
ilarity of each flavonoid in this study for potential PL inhibitors. The MolNatsim tool
was built on a pre-optimized molecular similarity prediction model (molecular ECFP4
fingerprint and Mini Batch K-means algorithm [27]). Finally, the generated MLR-QSAR
models and ADMET prediction analysis were used to assess their potential as natural PL
inhibitors. The PreADMET online program website (https://preadmet.bmdrc.kr (accessed
on 12 March 2023)) was used to assess the water solubility, bioavailability Score, GI ab-
sorption, P-glecoprotein inhibition in vitro, percutaneous permeability coefficient log Kp
(cm/s), and carcinogenicity in rats and mice.

2.6. Molecular Docking

Molecular docking was performed using the AutoDock Vina code (Version 1.1.2). The
structure of human PL (PDB code: 1LPB) was obtained from the RCSB Protein Data Bank
library. To prepare the receptor molecule, the 1LPB was preprocessed in PyMOL by splitting
the A and B chains, using AutoDock 4.0 to fix deletions and terminal residues, removing
water molecules, assigning atom types, and inserting hydrogen atoms. The SDF files of the
small molecules were downloaded from PubChem online, and the MMFF94s force field in
Avogadro was used to minimize the energy of the small molecules. The rotatable bonds of
the ligands were detected and assigned using AutoDocktool. The position of the docking
box was referenced from published literature and adjusted slightly [28].

In the whole docking process, semiflexible docking is adopted, and the target protein
PL remained rigid at all times while all kinks of the inhibitor were free to rotate. The grid
coordinates used for molecular docking research are as follows: PL (x = 11.282, y = 27.861,

https://preadmet.bmdrc.kr
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z = 48.908). The exhaustivity parameters and the number of models were 200 and 20, re-
spectively. After docking, each protein-ligand complex system had multiple conformations.
The scores are evaluated in order of affinity, and the reasonable posture of the interaction is
judged empirically. The optimal composite system is finally selected to establish the final
conformation and spatial coordinates of the inhibitor as the initial conformation for the
subsequent MD simulation steps [29]. PyMOL was used for graphic display.

2.7. Molecular Dynamics Simulation

Based on the docking result, the ligand lies in the pocket of 1LPB chain B. The function
of MD simulation is to demonstrate how the conformation of a protein-ligand complex
changes during the binding process and to explain how small ligand molecules bind to
receptor proteins [30].

The GROMACS package (version 19.5) is used for MD simulations of protein-ligand
complexes [31]. Subsequently, 100 ns simulations were performed using AMBER14SB [32]
to describe the protein field and GAFF (General AMBER Force Field) to describe the small
ligand molecule. With a minimum distance of 1.0 nm between the atoms of the solute and
the edge of the periodic box, the water box adopted the TIP3P water model. Overlapping
water molecules were removed from the system, and the proper amounts of Na+/Cl− ions
were added to neutralize the system. After minimizing energy using the steepest descent
method, the system is balanced in two steps as follows: (1) Canonical Ensemble (NVT,
0.2 ns) and (2) Isothermal-isobaric (NPT, 0.5 ns), followed by MD start of operation [30]. The
default linear constraint solver algorithm was used to constrain each bond that contained
a hydrogen atom. For the long-range interactions, the particle grid Evald approach was
applied, with a 10 Å cutoff for the van der Waals interactions. A snapshot was taken every
1.0 ps with a time step of 2 fs [29]. Finally, the root mean square deviation (RMSD) and root
mean square fluctuation (RMSF) of the complexes were analyzed using the GROMACS
software package (version 19.5).

2.8. Combined Free Energy Calculation by MMGBSA

The binding free energy of enzyme protein receptor and ligand small molecule
complexes is calculated by Molecular Mechanics/Generalized Born Surface Area (MMG-
BSA) [33]. This algorithm calculates the average binding free energy by extracting the
architecture of a certain time interval from the MD simulation trajectory of the complex
and solving complex interactions between complex molecules by decomposing and cal-
culating the parts that constitute the binding free energy. In this study, we use a software
called gmx_MMPBSA to perform MM/GBSA calculations and analyze the entire trajec-
tory obtained from the GROMACS MD trajectory. gmx_MMPBSA’s functionality can be
divided into two parts, specifically: the first stage is the preparation of the file, where the
software generates the topology and trajectory in Amber format from the MD trajectory
of GROMACS by paramED and determined the list of interacting residues in the energy
decomposition according to a given range. In the second stage of the calculation, the
software calls the sander provided by AmberTools to calculate the binding free energy
using the GBSA model. The calculation of MMGBSA is widely used as a scoring function
in drug design. In the present study, MMGBSA was used to obtain binding-free energies
for the design of PL inhibitors.

3. Results and Discussion
3.1. QSAR Analysis

To evaluate the effect of flavonoids as structural features of PL inhibitors, 40 flavonoids
(Figure 1) were selected as training and testing sets to generate 2D-QSAR models (The
first 29 are the training set, followed by the test set). PaDEL-Descriptor software [23] was
used to generate 1444 2D descriptors to comprehensively characterize the 2D structure of
flavonoids. The iterative modeling of descriptors and activity pIC50 values was optimized
by a genetic algorithm-based MoAIcal program [18]. The methods of partial least squares
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and MLR were used to perform the 2D-QSAR model by establishing statistical linear
correlations for five descriptors as independent variables and pIC50 as the dependent
variable of the training data (29 compounds), resulting in the MLR-QSAR model. Based
on the prediction results of the QSAR model, we were able to more accurately assess
the inhibitory effect of flavonoids on PL in terms of structural features. The best model
was selected on the basis of statistical parameters via the observed squared correlation
coefficient (R2 > 0.6), which is a relative measure of the quality of fit. The cross-validated
squared correlation coefficient (Q2) should be high as a good indicator for predicting the
power of the QSAR model, and the difference between Q2 and R2 should not be more
than 0.3 [25].
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Figure 1. Tree structure, representing the structuring of the flavonoid compounds by the position
and nature of their substituents in the aromatic ring, which were tested for their inhibitory activity
against the pancreatic lipase.

The QSAR model describing the inhibition of PL by flavonoids was developed, the
pIC50 MLR equation was obtained, and results were shown in Table 1 and Figure 2. The
R2 of the model equation was 0.9444, R2

adj = 0.9323, and the determination coefficient
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R2 of the model was larger than the adjusted R2, indicating that the model was not over-
parameterized. The determination coefficient R2 (0.9444) was able to explain more than 94%
of the variation in the activity values for the compounds in the data set. Figure 2 showed
a good correlation between the experimental pIC50 and the predicted pIC50 based on the
QSAR model.

Nutrients 2023, 15, x FOR PEER REVIEW 8 of 25 
 

 

good correlation between the experimental pIC50 and the predicted pIC50 based on the 
QSAR model. 

 
Figure 2. MLR-QSAR linear regression models. Predicted inhibitory activity against the experi-
mental inhibitory activity of dataset compounds. 

Table 2 shows the experimental and predicted pIC50 values of the PL inhibition activ-
ities of 40 flavonoids. It can be seen from the residuals that the experimental values are 
very close to the predicted results, suggesting that the model has good predictive ability. 
To further evaluate the models’ predicting ability, the MAE, RSS, and SDEC parameters 
of the models were calculated (Table 1). The MAE of the model is 0.1754, RSS is 1.3710, 
and SDEC is 0.2174. A testing set was used to verify the accuracy of the model, and the R2, 
R2adj, MAE, RSS, and SDEC of the testing set were 0.8962, 0.8847, 0.2515, 1.0134, and 0.3035, 
respectively. These results showed that the variance between the predicted and actual 
values is small and the bias error is low, which further verified the prediction ability of 
the model. 

Table 2. Experimental and predicted pIC50 values of pancreatic lipase inhibition activities of 40 fla-
vonoids (The training set has 29 and the test set has 11). 

Flavonoid pIC50 a pIC50pre b Residual 
Daidzein 4.081 4.037 0.044 
Genistein 4.222 4.050 0.172 

3′,4′,7-Trihydroxyisoflavone 4.155 3.957 0.198 
CHEMBL4870006 4.036 4.051 0.015 
Maduraktermol H 4.201 3.977 0.224 
CHEMBL4878391 4.060 4.072 0.011 

7,3′,4′-Trimethoxyisoflavone 3.444 3.838 0.394 
CHEMBL4874262 3.914 3.707 0.207 

Wogonin 3.813 3.765 0.049 
Oroxylin A 4.251 4.007 0.244 

(−)-Epiafzelechin 3-O-gallate 5.588 5.912 0.323 

Figure 2. MLR-QSAR linear regression models. Predicted inhibitory activity against the experimental
inhibitory activity of dataset compounds.

Table 2 shows the experimental and predicted pIC50 values of the PL inhibition
activities of 40 flavonoids. It can be seen from the residuals that the experimental values
are very close to the predicted results, suggesting that the model has good predictive ability.
To further evaluate the models’ predicting ability, the MAE, RSS, and SDEC parameters
of the models were calculated (Table 1). The MAE of the model is 0.1754, RSS is 1.3710,
and SDEC is 0.2174. A testing set was used to verify the accuracy of the model, and the
R2, R2

adj, MAE, RSS, and SDEC of the testing set were 0.8962, 0.8847, 0.2515, 1.0134, and
0.3035, respectively. These results showed that the variance between the predicted and
actual values is small and the bias error is low, which further verified the prediction ability
of the model.

Table 2. Experimental and predicted pIC50 values of pancreatic lipase inhibition activities of
40 flavonoids (The training set has 29 and the test set has 11).

Flavonoid pIC50 a pIC50pre b Residual

Daidzein 4.081 4.037 0.044
Genistein 4.222 4.050 0.172

3′,4′,7-Trihydroxyisoflavone 4.155 3.957 0.198
CHEMBL4870006 4.036 4.051 0.015
Maduraktermol H 4.201 3.977 0.224
CHEMBL4878391 4.060 4.072 0.011

7,3′,4′-Trimethoxyisoflavone 3.444 3.838 0.394
CHEMBL4874262 3.914 3.707 0.207
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Table 2. Cont.

Flavonoid pIC50 a pIC50pre b Residual

Wogonin 3.813 3.765 0.049
Oroxylin A 4.251 4.007 0.244

(−)-Epiafzelechin 3-O-gallate 5.588 5.912 0.323
(−)-Epicatechin 3-O-gallate 6.345 6.070 0.275

(−)-Epigallocatechin 3-O-gallate 6.457 6.181 0.276
(−)-Epigallocatechin 3-O-p-coumaroate 6.053 6.256 0.203

(−)-Gallocatechin 3-O-gallate 6.360 6.181 0.178
8-C-ascorbyl (−)-epigallocatechin 6.190 6.268 0.079

Tangeretin 4.833 4.763 0.070
Nobiletin 4.880 4.876 0.004

5-Demethylnobiletin 5.379 5.294 0.085
Quercetin 3.836 4.134 0.298
Bilobetin 5.447 5.133 0.315
Ginkgetin 5.161 5.706 0.545

5,7,3′,5′-Tetrahydroxyflavanone 4.087 4.182 0.094
8-Prenylnaringenin 4.114 4.190 0.076
Cudraflavanone A 5.187 5.229 0.041

2′,5,7-Trihydroxy-4,5′-(2,2-
dimethylchromeno)-8-(3-hydroxy-3-

methylbuthyl)flavanone
4.073 4.330 0.257

Luteolin 3.573 3.755 0.182
Kaempferol-3-Orutinoside 5.538 5.335 0.203

Rutin 3.827 3.850 0.023
Formononetin * 3.921 3.765 0.156

7,8-Dihydroxy-4′-methoxyisoflavone * 4.032 4.128 0.097
CHEMBL4859886 * 4.000 3.998 0.002

(−)-Epicatechin 3-O-(3′-O-methyl)gallate * 6.167 5.755 0.413
(−)-Catechin 3-O-gallate * 6.265 6.039 0.226

8-C-ascorbyl (−)-epigallocatechin
3-O-gallate * 6.102 6.696 0.594

5-Demethyltangeretin * 5.444 5.793 0.349
Isoginkgetin * 5.538 5.421 0.117
Sciadopitysin * 4.893 4.674 0.219

Cudraflavanone D * 5.046 5.493 0.448
Cudracuspiflavanone A * 4.261 4.115 0.146

a. pIC50 means experimental value. b. pIC50pre means predicted pIC50 values. * test set.

The MLR equation consists of five key descriptors: MATS1p, ATSC6e, GATS2p, Sp-
Min8_Bhi, and VR2_D (Table 1). MATS1p has the highest coefficient of 5.84689, followed by
SpMin8_Bhi of 4.23423. GATS2p, which shows that when the values of these three descriptors
are larger, their inhibition of PL is greater. ATSC6e and VR2_D have negative coefficients of
−1.41739,−0.30375, and−0.07596, indicating that the compounds can only inhibit PL if these
descriptors have negative values. To further analyze the relationship between the structural
properties of the flavonoids and the pIC50 values, we analyzed the importance of the descriptors
in the model according to the percentage of coefficients (Figure 3). MATS1p corresponds to the
Moran autocorrelation function/weighted polarization rate, which is used to determine whether
there is autocorrelation in the space. The MATS1p value will be distributed between [−1, 1],
with the range of [0, 1] indicating a positive correlation in the degree of aggregation among the
structures and between [−1, 0] indicating a negative correlation. Since the coefficient of MATS1p
in the equation is 5.84689, the different values of MATS1p will have a greater contribution to the
model prediction, and the higher the absolute value of the values in the range of [0, 1] as well as
[−1, 0], the more positive/negative contribution to the model and consequently the more poten-
tial for PL inhibition [34]. For example, the compounds predicted to have superior inhibition
(CNP0186639, CNP0221970, and CNP0358253) had higher MATS1p and were all 0.244810577
(Table S1), suggesting a positive correlation in the degree of aggregation between their structures
and thus a better effect on PL inhibition. ATSC6e corresponds to the centered Broto-Moreau
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autocorrelation, weighted by the Sanderson electronegativity. Similarly, the ATSC6e numerical
distribution is in both the positive and negative domains and therefore contributes differently to
the model depending on the positive and negative domains. SpMin8_Bhi is the minimum abso-
lute eigenvalue of the Burden correction matrix—n8/weighted by the relative first ionization
potential [26]. The coefficient of SpMin8_Bhi has positive values, and since the value distribu-
tions of the compounds are positive, SpMin8_Bhi is positively correlated to the predictive power
of the model. GATS2p is the molecular descriptor of Geary autocorrelation—lag2/weighted
by polarization rate [34]. VR2_D indicates the normalized Landecker eigenvector index based
on the topological distance matrix to describe the topological distance [35]. In contrast, the
distribution of the values of GATS2p and VR2_D were both positive, but due to their negative
coefficients, GATS2p and VR2_D values are negatively correlated with the model prediction
results, while VR2_D’s contribution is small.
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The model descriptor correlation matrix illustrated in Figure 4 based on Pearson’s cor-
relation coefficients showed that the inter-correlation between most of the two descriptors
of the model is less than 0.5, indicating that the descriptors are orthogonal to each other
and there is no multicollinearity problem in the model. Therefore, the constructed model
can be used to quantify the inhibitory activity of natural flavonoids on PL.
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3.2. Discovery of Natural PL Inhibitors and ADMET Analysis

QSAR models were developed to predict the inhibitory activity of compounds in
COCONUT (https://coconut.naturalproducts.net, accessed on 10 December 2022), a nat-
ural product library. The MolNatSim program, developed based on molecular smiles
and clustering algorithms, was used to scan all molecules in the COCONUT database.
1061 clustered molecules matching 40 flavonoids were retrieved. The pIC50 values of
the preliminary screened flavonoids were subsequently predicted by the QSAR model,
and the results were ranked in descending order. The top five substances in the pIC50
prediction results were screened for analysis (Table S2). ADMET prediction and manual
examination were carried out, respectively. Of the 5 ligands considered in this study, com-
pounds [4-[5,7-dihydroxy-3-(3,4,5-trihydroxybenzoyl)oxy-3,4-dihydro-2H-chromen-2-yl]-
2,6-dihydroxyphenyl]2,3,4-trihydroxybenzoate (CNP0186639), Epigallocatechin 3,3′,-Di-O-
Gallate (CNP0221970), [5-[5,7-dihydroxy-3-(3,4,5-trihydroxybenzoyl)oxy-3,4-dihydro-2H-
chromen-2-yl]-2,3-dihydroxyphenyl]2,3,4-trihydroxybenzoate (CNP0358253), Isoorientin
2′′-O-Gallate (CNP0286940), and 3-O-Galloylmucic acid (CNP0206087) (Table 3) were se-
lected due to their relatively lower IC50pre of 0.49, 0.61, 0.73, 0.85, and 1.27 µM, respectively.

PreADME was used to analyze the ADMET processes of the target compounds after
intake and to assess bioavailability, and the results are shown in Table 3. All five natural
products were moderately soluble, which would facilitate GI absorption and blood dis-
tribution. However, the bioavailability score and GI absorption predictions for all five
target compounds were low, so future consideration could be given to changing the admin-
istration mode or selecting a suitable carrier administration to improve their absorption
and utilization. Pgp is a transporter protein responsible for the excretion of harmful sub-
stances, and the results showed that none of the natural products were substrates of Pgp,
suggesting that selected compounds will not be metabolized by Pgp and excreted very
quickly. Toxicological results showed that only CNP0286940 was not expected to exhibit
carcinogenicity in rats, while all target compounds did not exhibit carcinogenicity in mice.
The percutaneous permeability coefficient log Kp (cm/s) results can further evaluate the
potential of the target compound as a topical dressing. The analysis of the above results
provides complementary data support for our model to predict the outcome of natural
PL inhibitors.

In particular, both CNP0186639 and CNP0358253 carry the structure of gallic acid
on the B ring, and the only difference between them is the position of the gallic acid
on the C ring, whereas CNP0186639 has a strong inhibitory effect on PL with an IC50pre
value of 0.49 µM. In other studies, gallic acid has shown significant PL inhibition and
reduced obesity [17]. Considering that groups such as gallic acid are more hydrophobic,
this suggests that these groups may enhance the inhibitory effect of the compounds on PL
by increasing the hydrophobic binding capacity.

https://coconut.naturalproducts.net
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Table 3. QSAR prediction and ADMET analysis of potential natural pancreatic lipase inhibitors.

Compounds Molecular Structure IC50pre (µM) Water Solubility BS GI Absorption Pgp Substrate log Kp (cm/s) Carcino_Mouse Carcino_Rat

CNP0186639
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3.3. Molecular Docking Analysis

Molecular docking is a process of mutual recognition between receptor and ligand
molecules. Molecular docking was performed in this study to verify the rationality of the
pharmacological model of PL 2D-QSAR. AutoDock-Vina was used for molecular docking,
and the best conformation was selected for each compound. The binding energy of all target
compounds was lower than that of the positive control, Orlistat, with −6.7 kcal mol−1

(Table 4). Results showed that the compounds predicted by the model were well bound
with PL, indicating the accuracy of the model. The lowest binding energy of CNP0186639
was −9.6 kcal mol−1, while the binding energies of the other compounds ranged from
−8.4 to −9.5 kcal mol−1, which was lower than that of the positive control. Meanwhile,
CNP0186639 was the compound with the lowest pIC50pre in the QSAR predicted results,
indicating that it can be recommended as a potential PL inhibitor.

Table 4. The affinity of compounds with pancreatic lipase (1LPB) (kcal mol−1).

Active Compound Protein (PDBID) Docking Energy (kcal/mol)

Orlistat pancreatic lipase (1LPB) −6.7
CNP0186639 pancreatic lipase (1LPB) −9.6
CNP0221970 pancreatic lipase (1LPB) −9.2
CNP0358253 pancreatic lipase (1LPB) −9.5
CNP0286940 pancreatic lipase (1LPB) −9.3
CNP0206087 pancreatic lipase (1LPB) −8.4

Note: CNP0186639, [4-[5,7-dihydroxy-3-(3,4,5-trihydroxybenzoyl)oxy-3,4-dihydro-2H-chromen-2-yl]-2,6-
dihydroxyphenyl]2,3,4-trihydroxybenzoate; CNP0221970, Epigallocatechin 3,3′,-Di-O-Gallate; CNP0358253,
[5-[5,7-dihydroxy-3-(3,4,5-trihydroxybenzoyl) oxy-3,4-dihydro-2H-chromen-2-yl]-2,3-dihydroxyphenyl]2,3,4-
trihydroxybenzoate; CNP0286940, Isoorientin 2′′-O-Gallate; CNP0206087, 3-O-Galloylmucic acid.

Visual analysis of the docking results was carried out with pymol, and the results
showed that there were many interactions between the screened natural compounds and
1LPB. In Figure 5, the target compounds were tightly bound to PL (1LPB), and the yellow
dashed lines represented the hydrogen bond formed by the binding of the receptor to the
ligand. It can be observed from the docking surface figure (Figure 5) that the ligand is well
embedded in the hydrophobic pocket of the receptor. CNP0186639 formed a maximum
of eight hydrogen bonds with Ser152, His151, Gly76, Asp79, Ile78, and Arg256 of the
acceptor, which was the highest number of hydrogen bonds among the target compounds.
CNP0221970, CNP0358253, CNP0286940, and CNP0206087 formed five, eight, three, and
two hydrogen bonds with the protein receptor, respectively, and the inhibitory properties
of the substances to PL decreased with the reduction of the number of hydrogen bonds,
except for CNP0358253. This may be due to the fact that the structures of CNP0358253
and CNP0186639 are very similar, both of which have gallic acid attached at position three
of the B ring, and the difference is that the linking sites of the connecting groups on the
C ring are inconsistent. CNP0221970 interacted with the active site of PL and formed
hydrogen bonds with Phe77, Ser152, and Arg256. CNP0358253 showed similar amino acid
residue interactions as CNP0221970, with Asp79, His151, and His263 also interacting to
form hydrogen bonds besides Phe77, Ser152, and Arg256. CNP0286940 bound to Arg256 of
the active pocket to form hydrogen bonds, while CNP0206087 formed hydrogen bonding
interactions with Asp79 and Phe215. Arg256, Ser152, and Phe77 were assumed to be the key
residues that determine the stability and low docking energy of the docking complex. As
seen in Figure 5F, the control group (orlistat) formed hydrogen bonds with Gly76, His151,
and Ser152 amino acid residues of the protein, which were also action sites of the target
compound, further verifying the feasibility of binding the target compound to the receptor.
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It has been suggested that hydrogen bonding interactions play key roles in stabilizing
enzyme-ligand complex catalysis and depend on the number of hydrogen bonds [36]. All
five natural compounds screened by the QSAR model in this study could form hydrogen
bonds with multiple residues of PL, and the number of hydrogen bonds formed was greater
than the positive control. These results confirmed the potential of the target compounds as
inhibitors of PL and the accuracy of the QSAR model.

3.4. Molecular Dynamics Simulation Analysis

MD is generally used in conjunction with molecular docking to further explore the
mechanisms of ligand-protein interactions [37]. MD simulations of the target compounds
were performed using the GROMACS 2019 software package and analyzed using different
trajectories. The RMSD trajectory curves can determine the average deviation between
the complex conformation and the original conformation over a certain time period and
evaluate whether the system has reached a steady state [38].

The RMSF curves were used to study the partial variations of the protein chain residues.
Figure 6A,B showed the fluctuation curves of the amino acid residues of the complexes.
The values of all five complex systems were below 0.4 nm, and stable fluctuations occurred
around 0.1 nm, which provided a suitable basis for subsequent analysis. Binding of five
natural compounds to the PL receptor resulted in increased flexibility of residues in the
key regions (200–225), (230–260), and (400–420), suggesting that the novel natural products
may inhibit PL activity by interacting with key residues that affect the active pocket.
Among these complex systems of compounds binding to PL, PL-CNP0186639 showed the
smallest overall fluctuation, with a peak of 0.27 nm at residue 410. The fluctuations of
PL-CNP0206087 were also slight, again peaking at 0.27 nm near 410 amino acid residues.
PL-CNP0286940 showed an enhanced fluctuation, peaking at 0.32 nm around 250 nm.
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The peaks of PL-Orlistat and PL-CNP018663 were close to 0.39 nm, and the peaks of PL-
CNP0358253 were slightly above 0.35 nm, all with large fluctuations. In conclusion, the
fluctuating trajectories of the target compound-receptor binding complexes followed the
same pattern as that of PL-Orlistat, indicating that the five screened potential inhibitors
showed low conformational changes and high stability upon binding to PL.
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Figure 6. Molecular dynamics (100 ns) results for six enzymatic. (A) Root mean square fluctuation
(RMSF, nm) of PL-Orlistat, PL-CNP0186639, and PL-CNP0221970. (B) Root mean square fluctuation
(RMSF, nm) of PL-CNP0358253, PL-CNP0286940, and PL-CNP0206087. (C) Root mean square
deviations (RMSD, nm) of PL-Orlistat, PL-CNP0186639, and PL-CNP0221970. (D) Root mean square
deviations (RMSD, nm) of PL-CNP0358253, PL-CNP0286940, and PL-CNP0206087. (E) Solvent
Accessible Surface of PL-Orlistat, PL-CNP0186639, and PL-CNP0221970. (F) Solvent Accessible
Surface of PL-CNP0358253, PL-CNP0286940, and PL-CNP0206087. (G) The number of hydrogen
bonds formed between the active compounds and 1LPB of PL-Orlistat, PL-CNP0186639, and PL-
CNP0221970. (H) The number of hydrogen bonds formed between the active compounds and 1LPB
of PL-CNP0358253, PL-CNP0286940, and PL-CNP0206087.

As shown in the Figure 6C,D, the PL-Orlistat system reached a stable state at 30 ns, and
the RMSD value was stable at 0.25 nm. The PL-CNP0186639 and PL-CNP0221970 systems
reached a balance near 40 ns, and their RMSD values were stable at about 0.17 nm, while the
RMSD values of the PL-CNP0196639 system showed a certain decrease after 60 ns. The PL-
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CNP0358253 system reached stability at around 30 ns and maintained it at around 0.23 nm.
Meanwhile, the PL-CNP0286940 and PL-CNP0206087 systems reached equilibrium faster
within 20 ns and stabilized at 0.13 nm and 0.16 nm, respectively. The overall fluctuations
of the PL-CNP022197, PL-CNP0286940, and PL-CNP0206087 complexes were small, even
within a smaller fluctuation range than the control system. In addition, the fluctuations in
the RMSD analyses of protein and small molecule complex systems, and small molecules
alone were all within 0.2 nm, and no significant fluctuations in conformational changes
were observed (Figure S1). In conclusion, In summary, small molecules and receptors form
conformational systems and their respective relative stability and equilibrium over 100 ns
simulation time, suggesting that the 100 ns trajectory conformations of the proteins do
not show substantial structural differences, implying that the ligands and complexes are
structurally stable.

Solvent Accessible Surface Area (SASA) calculates the area over which a solute can
interact with a solvent molecule through van der Waals forces. The SASA value of a protein
decreases as protein densities increase, so changes in SASA can predict changes in protein
structure. The binding of any small molecule may change the SASA value, sometimes
dramatically affecting the structure of the protein. Figure 6E,F shows the SASA changes of
the screened potential PL inhibitor and receptor systems during 100 ns MD simulations.
It can be seen that PL-CNP0221970 has a peak near 17 ns and then declines to level off,
suggesting that the receptor opens the hydrophobic pocket first and becomes more compact
in structure following binding to small molecules. Similarly, the SASA results for the
PL-orlistat system show a decreasing trend in the latter part, suggesting that the binding
of orlistat to PL makes its structure more compact. The SASA of other small molecules
and receptor-bound systems was mainly between 185–205 nm2. PL-CNP0286940 had the
lowest peak (183.7 nm2) at 80 ns, indicating a very tight binding in PL to CNP0286940,
which could be potentially related to the glycoside of CNP0286940. CNP0206087 had the
relatively lowest inhibitory performance among the potential PL inhibitors screened, and
the latter portion of its SASA was higher compared to the others, suggesting poorer binding
to PL compared to the other compounds.

In addition, we analyzed the number of hydrogen bonds for trajectories lasting 100 ns.
Figure 6G,H shows the hydrogen bonding interactions between the small molecule ligand
and 1LPB at a distance of 3.5 Å. The maximum number of hydrogen bonds formed by
Orlistat, CNP0186639, CNP0221970, CNP0358253, CNP0286940, and CNP0206087 with
1LPB is 4, 7, 6, 8, 5, and 7, respectively. During 100 ns, 8 hydrogen bonds were formed
between CNP0358253 and 1LPB, which is the highest number of hydrogen bonds formed
during the whole simulation, ensuring better stability. Moreover, the potential inhibitors
screened by the model were able to form more hydrogen bonds with 1LPB and all of them
were more than Orlistat, suggesting that their hydrogen bonding interactions with the
protein receptor are more abundant and have better stability than Orlistat, which also
explains their superior binding activity.

3.5. Combining Free Energy Calculations

In this study, in order to adequately analyze the potential interaction of the target
residues with the ligand substructure and to quantitatively describe the interaction mech-
anism between the five potential natural products and PL, energy calculations were per-
formed based on the trajectories obtained from the MD results. After obtaining conforma-
tions at 0.1 ns intervals in the 100 ns dynamics trajectory, energy calculations were per-
formed for the complex system using the MMGBSA algorithm based on Poisson-Boltzmann
energy theory. The results for the different energy contributions of several compounds are
shown in Table 5. ∆Evdw, ∆Eele, and ∆Gnon-pol were negative, indicating that van der
Waals forces, electrostatic interactions, and nonpolar solvation energy contribute positively
to the bonding, and that van der Waals forces and electrostatic interactions perform a
major role. The ∆Ggas is obtained by summing the bonding component (bonding force
+ angular force + dihedral angular force) and the non-bonding component (van der Waals
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force + electrostatic interaction) [39]. ∆gpol is the polar solvation energy and exhibits a
positive energy contribution that is detrimental to the stability of the system, inhibiting
the spontaneous binding of the natural inhibitor to PL. The negative binding free energy
indicates that the binding of ligands and receptors proceeds spontaneously and can reach
a steady state, and the lower the energy, the more stable the system is. In the results of
MMGBSA energy calculations, all compounds showed good binding free energies, with
simulated values of −35.68, −33.22, −32.3, −44.35, −30.77, and −22.89 kcal/mol for the
five target compounds, respectively. It can be predicted that CNP0358253, CNP0186639,
and CNP0221970 can bind to PL to form more stable complexes and therefore have more
potential to become natural inhibitors of PL.

Table 5. Binding free energy of complex formation between pancreatic lipase and its inhibitors.

Energy
(kJ/mol) ∆Evdw ∆Eele ∆Gpol ∆Gnon-pol ∆Ggas ∆Gsol ∆Gbind

Orlistat −37.56 −33.32 40.95 −5.75 −70.88 35.2 −35.68
CNP0186639 −42.87 −31.17 46.74 −5.92 −74.04 40.82 −33.22
CNP0221970 −36.33 −53.92 63.46 −5.51 −90.26 57.96 −32.3
CNP0358253 −36.66 −71.72 70.01 −5.99 −108.38 64.03 −44.35
CNP0286940 −45.42 −19.41 39.72 −5.67 −64.83 34.06 −30.77
CNP0206087 −38.78 −40.53 61.83 −5.41 −79.31 56.42 −22.89

Note: ∆Evdw, the van der Waals interaction energy term; ∆Eele, the electrostatic interaction en-
ergy term; ∆Gpol, the polar solvation energy term; ∆Gnon-pol, The non-polar solvation energy
term; ∆Ggas, the gas phase free energy term; ∆Gsol, the solvation free energy term; ∆Gbind,
the free energy of binding. CNP0186639, [4-[5,7-dihydroxy-3-(3,4,5-trihydroxybenzoyl) oxy-3,4-dihydro-
2H-chromen-2-yl]-2,6-dihydroxyphenyl]2,3,4-trihydroxybenzoate; CNP0221970, Epigallocatechin 3,3′,-Di-O-
Gallate; CNP0358253, [5-[5,7-dihydroxy-3-(3,4,5-trihydroxybenzoyl)oxy-3,4-dihydro-2H-chromen-2-yl]-2,3-
dihydroxyphenyl]2,3,4-trihydroxybenzoate; CNP0286940, Isoorientin 2′′-O-Gallate; CNP0206087, 3-O-
Galloylmucic acid.

4. Conclusions

In this study, a predictable anti-PL natural product QSAR model were developed
using the artificial intelligence drug design software MolAIcal based on genetic algorithms
and their conformational relationships. Five potentially efficient anti-PL natural products
were screened based on this novel QSAR model and ADMET. Subsequently, molecular
docking, MD simulation, and MGBSA free energy calculation were performed to not only
reveal the interaction of candidate novel natural products with the amino acid residues
of PL but also to validate the stability of these novel natural compounds bound to PL.
In all, [4-[5,7-dihydroxy-3-(3,4,5-trihydroxybenzoyl)oxy-3,4-dihydro-2H-chromen-2-yl]-
2,6-dihydroxyphenyl]2,3,4-trihydroxybenzoate (CNP0186639), Epigallocatechin 3,3′,-Di-O-
Gallate (CNP0221970), [5-[5,7-dihydroxy-3-(3,4,5-trihydroxybenzoyl)oxy-3,4-dihydro-2H-
chromen-2-yl]-2,3-dihydroxyphenyl]2,3,4-trihydroxybenzoate (CNP0358253), Isoorientin
2′′-O-Gallate (CNP0286940), and 3-O-Galloylmucic acid (CNP0206087) can be considered
as potential novel PL inhibitors.
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